In the present manuscript, an age-structured heroin epidemic model is formulated with the assumption that susceptibility and recovery are age-dependent. Keeping in view some control measures for heroin addiction, a control problem for further analysis is presented. The main results are the existence of control variables, sensitivities, adjoint system and the setting of an optimal control problem. We used the techniques of weak derivatives and a general principle of Pontryagin's type for obtaining the optimal control problem. To compare our results, we demonstrated sample simulations which show the effect of control on the entire population.
Citation: Asaf Khan, Gul Zaman, Roman Ullah, Nawazish Naveed. Optimal control strategies for a heroin epidemic model with age-dependent susceptibility and recovery-age[J]. AIMS Mathematics, 2021, 6(2): 1377-1394. doi: 10.3934/math.2021086
[1] | Asghar Ahmadkhanlu, Hojjat Afshari, Jehad Alzabut . A new fixed point approach for solutions of a p-Laplacian fractional q-difference boundary value problem with an integral boundary condition. AIMS Mathematics, 2024, 9(9): 23770-23785. doi: 10.3934/math.20241155 |
[2] | Djamila Chergui, Taki Eddine Oussaeif, Merad Ahcene . Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions. AIMS Mathematics, 2019, 4(1): 112-133. doi: 10.3934/Math.2019.1.112 |
[3] | Cuiying Li, Rui Wu, Ranzhuo Ma . Existence of solutions for Caputo fractional iterative equations under several boundary value conditions. AIMS Mathematics, 2023, 8(1): 317-339. doi: 10.3934/math.2023015 |
[4] | Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi . On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593 |
[5] | Isra Al-Shbeil, Abdelkader Benali, Houari Bouzid, Najla Aloraini . Existence of solutions for multi-point nonlinear differential system equations of fractional orders with integral boundary conditions. AIMS Mathematics, 2022, 7(10): 18142-18157. doi: 10.3934/math.2022998 |
[6] | Yujun Cui, Chunyu Liang, Yumei Zou . Existence and uniqueness of solutions for a class of fractional differential equation with lower-order derivative dependence. AIMS Mathematics, 2025, 10(2): 3797-3818. doi: 10.3934/math.2025176 |
[7] | Yitao Yang, Dehong Ji . Properties of positive solutions for a fractional boundary value problem involving fractional derivative with respect to another function. AIMS Mathematics, 2020, 5(6): 7359-7371. doi: 10.3934/math.2020471 |
[8] | Xiulin Hu, Lei Wang . Positive solutions to integral boundary value problems for singular delay fractional differential equations. AIMS Mathematics, 2023, 8(11): 25550-25563. doi: 10.3934/math.20231304 |
[9] | Xiping Liu, Mei Jia, Zhanbing Bai . Nonlocal problems of fractional systems involving left and right fractional derivatives at resonance. AIMS Mathematics, 2020, 5(4): 3331-3345. doi: 10.3934/math.2020214 |
[10] | Najla Alghamdi, Bashir Ahmad, Esraa Abed Alharbi, Wafa Shammakh . Investigation of multi-term delay fractional differential equations with integro-multipoint boundary conditions. AIMS Mathematics, 2024, 9(5): 12964-12981. doi: 10.3934/math.2024632 |
In the present manuscript, an age-structured heroin epidemic model is formulated with the assumption that susceptibility and recovery are age-dependent. Keeping in view some control measures for heroin addiction, a control problem for further analysis is presented. The main results are the existence of control variables, sensitivities, adjoint system and the setting of an optimal control problem. We used the techniques of weak derivatives and a general principle of Pontryagin's type for obtaining the optimal control problem. To compare our results, we demonstrated sample simulations which show the effect of control on the entire population.
In this research, we mainly focused on wave equation to study and examine the coupled system. In this system, we assumed a bounded domain Ω∈RN where ∂Ω indicates sufficiently smooth boundary of Ω∈RN and take the positive constants ξ0,ξ1,σ,β1,β3 where m≥1 for N=1,2, and 1<m≤N+2N−2 for N≥3. The coupled system with these terms is given by
{vtt−(ξ0+ξ1‖∇v‖22+δ(∇v,∇vt)L2(Ω))Δv(t)+∫∞0g1(s)Δv(t−s)ds+β1|vt(t)|m−2vt(t)+∫τ2τ1|β2(r)||vt(t−r)|m−2vt(t−r)dr+f1(v,w)=0.wtt−(ξ0+ξ1‖∇w‖22+δ(∇w,∇wt)L2(Ω))Δw(t)+∫∞0g2(s)Δw(t−s)ds+β3|wt(t)|m−2wt(t)+∫τ2τ1|β4(r)||wt(t−r)|m−2wt(t−r)dr+f2(v,w)=0.v(z,−t)=v0(z),vt(z,0)=v1(z),w(z,−t)=w0(z),wt(z,0)=w1(z),inΩvt(z,−t)=j0(z,t),wt(z,−t)=ϱ0(z,t),inΩ×(0,τ2)v(z,t)=w(z,t)=0,in∂Ω×(0,∞) | (1.1) |
in which G=Ω×(τ1,τ2)×(0,∞) and τ1<τ2 are taken to be non-negative constants in a manner that β2, β4:[τ1,τ2]→R indicates distributive time delay while gi, i=1,2 are positive.
The viscoelastic damping term, whose kernel is the function g, is a physical term used to describe the link between the strain and stress histories in a beam that was inspired by the Boltzmann theory. There are several publications that discuss this subject and produce a lot of fresh and original findings [1,2,3,4,5], particularly the hypotheses regarding the initial condition [6,7,8,9,10,11,12] and the kernel. See [13,14,15,16,17]. As it concerns to the plate equation and the span problem, Balakrishnan and Taylor introduced a novel damping model in [18] that they dubbed the Balakrishnan-Taylor damping. Here are a few studies that specifically addressed the research of this dampening for further information [18,19,20,21,22,23].
Several applications and real-world issues are frequently affected by the delay, which transforms numerous systems into interesting research topics. Numerous writers have recently studied the stability of the evolution systems with time delays, particularly the effect of distributed delay. See [24,25,26].
In [1], the authors presented the stability result of the system over a considerably broader class of kernels in the absence of delay and Balakrishnan-Taylor damping ξ0=1,ξ1=δ=βi=0,i=1,…,4.
Based on everything said above, one specific problem may be solved by combining these damping terms (distributed delay terms, Balakrishnan-Taylor damping and infinite memory), especially when the past history and the distributed delay
∫τ2τ1|βi(r)||ut(t−r)|m−2ut(t−r)dr, i=2,4 |
are added. We shall attempt to throw light on it since we think it represents a fresh topic that merits investigation and analysis in contrast to the ones mentioned before. Our study is structured into multiple sections: in the second section, we establish the assumptions, notions, and lemmas we require; in the final section, we substantiate our major finding.
In this section of the paper, we will introduce some basic results related to the theory for the analysis of our problem. Let us take the below:
(G1) hi:R+→R+ are a non-increasing C1 functions fulfills the following
gi(0)>0,,ξ0−∫∞0hi(s)ds=li>0,i=1,2, | (2.1) |
and
g0=∫∞0h1(s)ds,ˆg0=∫∞0g2(s)ds, |
(G2) One can find a function C1 functions Gi:R+→R+ holds true Gi(0)=G′i(0)=0.
The functions Gi(t) are strictly increasing and convex of class C2(R+) on (0,ϱ],r≤gi(0) or linear in a manner that
g′i(t)≤−ζi(t)Gi(gi(t)),∀t≥0,fori=1,2, | (2.2) |
in which ζi(t) are a C1 functions fulfilling the below
ζi(t)>0,ζ′i(t)≤0,∀t≥0. | (2.3) |
(G3) β2, β4:[τ1,τ2]→R are a bounded function fulfilling the below
∫τ2τ1|β2(r)|dr<β1,∫τ2τ1|β4(r)|dr<β3. | (2.4) |
(G4) fi:R2→R are C1 functions with fi(0,0)=0, and one can find a function F in a way that
f1(c,e)=dFdc(c,e),f2(c,e)=dFde(c,e),F≥0,af1(c,e)+ef2(c,e)=F(c,e)≥0, | (2.5) |
and
dfidc(c,e)+dfide(c,e)≤d(1+cpi−1+epi−1).∀(c,e)∈R2. | (2.6) |
Take the below
(g∘ϕ)(t):=∫Ω∫∞0h(r)|ϕ(t)−ϕ(t−r)|2drdz, |
and
M1(t):=(ξ0+ξ1‖∇v‖22+δ(∇v(t),∇vt(t))L2(Ω)),M2(t):=(ξ0+ξ1‖∇w‖22+δ(∇w(t),∇wt(t))L2(Ω)). |
Lemma 2.1. (Sobolev-Poincare inequality [27]). Assume that 2≤q<∞ for n=1,2 and 2≤q<2nn−2 for n≥3. Then, one can find c∗=c(Ω,q)>0 in a manner that
‖v‖q≤c∗‖∇v‖2,∀v∈G10(Ω). |
Moreover, choose the below as in [26]:
x(z,ρ,r,t)=vt(z,t−rρ),y(z,ρ,r,t)=wt(z,t−rρ) |
with
{rxt(z,ρ,r,t)+xρ(z,ρ,r,t)=0,syt(z,ρ,r,t)+yρ(z,ρ,r,t)=0x(z,0,r,t)=vt(z,t),y(z,0,r,t)=wt(z,t). | (2.7) |
Take the auxiliary variable (see [28])
ηt(z,s)=v(z,t)−v(z,t−s),s≥0,ϑt(z,s)=w(z,t)−w(z,t−s),s≥0. |
Then
ηtt(z,s)+ηts(z,s)=vt(z,t),ϑtt(z,s)+ϑts(z,s)=wt(z,t). | (2.8) |
Rewrite the problem (1.1) as follows
{vtt−(l1+ξ1‖∇v‖22+δ(∇v,∇vt)L2(Ω))Δv(t)+∫∞0g1(s)Δηt(s)ds+β1|vt(t)|m−2vt(t)+∫τ2τ1|β2(s)||x(z,1,r,t)|m−2x(z,1,r,t)dr+f1(v,w)=0,wtt−(l2+ξ1‖∇w‖22+δ(∇w,∇wt)L2(Ω))Δw(t)+∫∞0g2(s)Δϑt(s)ds+β3|wt(t)|m−2wt(t)+∫τ2τ1|β4(r)||y(z,1,r,t)|m−2y(z,1,r,t)dr+f2(v,w)=0,rxt(z,ρ,r,t)+xρ(z,ρ,r,t)=0,ryt(z,ρ,r,t)+yρ(z,ρ,r,t)=0,ηtt(z,s)+ηts(z,s)=vt(z,t)ϑtt(z,s)+ϑts(z,s)=wt(z,t), | (2.9) |
where
(z,ρ,r,t)∈Ω×(0,1)×(τ1,τ2)×(0,∞). |
with
{v(z,−t)=v0(z),vt(z,0)=v1(z),w(z,−t)=w0(z),wt(z,0)=w1(z),inΩx(z,ρ,r,0)=j0(z,ρr),y(z,ρ,r,0)=ϱ0(z,ρr),inΩ×(0,1)×(0,τ2)v(z,t)=ηt(z,s)=0,z∈∂Ω,t,s∈(0,∞),ηt(z,0)=0,∀t≥0,η0(z,s)=η0(s)=0,∀s≥0,w(z,t)=ϑt(z,s)=0,z∈∂Ω,t,s∈(0,∞),ϑt(z,0)=0,∀t≥0,ϑ0(z,s)=ϑ0(s)=0,∀s≥0. | (2.10) |
In the upcoming Lemma, the energy functional will be introduced.
Lemma 2.2. Let the energy functional is symbolized by E, then it is given by
E(t)=12(‖vt‖22+‖wt‖22)+ξ14(‖∇v(t)‖42+‖∇w(t)‖42)+∫ΩF(v,w)dz+12(l1‖∇v(t)‖22+l2‖∇w(t)‖22)+12((g1∘∇v)(t)+(g2∘∇w)(t))+m−1m∫10∫τ2τ1s(|β2(r)|‖x(z,ρ,r,t)‖mm+|β4(r)|‖y(z,ρ,r,t)‖mm)drdρ. | (2.11) |
The above fulfills the below
E′(t)≤−γ0(‖vt(t)‖mm+‖wt(t)‖mm)+12((g′1∘∇v)(t)+(g′2∘∇w)(t))−δ4{(ddt{‖∇v(t)‖22})2+(ddt{‖∇w(t)‖22})2}≤0, | (2.12) |
in which γ0=min{β1−∫τ2τ1|β2(r)|dr,β3−∫τ2τ1|β4(r)|dr}.
Proof. To prove the result, we take the inner product of (2.9) with vt,wt and after that integrating over Ω, the following is obtained
(vtt(t),vt(t))L2(Ω)−(M3(t)Δv(t),vt(t))L2(Ω)+(∫∞0h1(s)Δηt(s)ds,vt(t))L2(Ω)+β1(|vt|m−2vt,vt)L2(Ω)+∫τ2τ1|β2(s)|(|x(z,1,r,t)|m−2x(z,1,r,t),vt(t))L2(Ω)dr+(wtt(t),wt(t))L2(Ω)−(M4(t)Δw(t),wt(t))L2(Ω)+(∫∞0h2(s)Δϑt(s)ds,wt(t))L2(Ω)+β3(|wt|m−2wt,wt)L2(Ω)+∫τ2τ1|β4(s)|(|y(z,1,r,t)|m−2y(z,1,r,t),wt(t))L2(Ω)dr+(f1(v,w),vt(t))L2(Ω)+(f2(v,w),wt(t))L2(Ω)=0. | (2.13) |
in which
M3(t):=(l1+ξ1‖∇v‖22+δ(∇v(t),∇vt(t))L2(Ω)),M4(t):=(l2+ξ1‖∇w‖22+δ(∇w(t),∇wt(t))L2(Ω)). |
Using mathematical skills, the following is obtained
(vtt(t),vt(t))L2(Ω)=12ddt(‖vt(t)‖22), | (2.14) |
further simplification leads us to the following
−(M3(t)Δv(t),vt(t))L2(Ω)=−((l1+ξ1‖∇v‖22+δ(∇v(t),∇vt(t))L2(Ω))Δv(t),vt(t))L2(Ω)=(l1+ξ1‖∇v‖22+δ(∇v(t),∇vt(t))L2(Ω))∫Ω∇v(t).∇vt(t)dz=(l1+ξ1‖∇v‖22+δ(∇v(t),∇vt(t))L2(Ω))ddt{∫Ω|∇v(t)|2dz}=ddt{12(l1+ξ12‖∇v‖22)‖∇v(t)‖22}+δ4ddt{‖∇v(t)‖22}2. | (2.15) |
The following is obtained after calculation
(∫∞0g1(s)Δηt(s)ds,vt(t))L2(Ω)=∫Ω∇vt∫∞0g1(s)∇ηt(s)dsdz=∫∞0g1(s)∫Ω∇vt∇ηt(s)dzds=∫∞0g1(s)∫Ω(∇ηtt+∇ηts)∇ηt(s)dzds=∫∞0g1(s)∫Ω∇ηtt∇ηt(s)dzds+∫Ω∫∞0g1(s)∇ηts∇ηt(∇)d∇dz=12ddt(g1∘∇v)(t)−12(g′1∘∇v)(t). | (2.16) |
In the same way, we have
(wtt(t),wt(t))L2(Ω)=12ddt(‖wt(t)‖22),−(M4(t)Δw(t),wt(t))L2(Ω)=ddt{12(l2+ξ12‖∇w‖22)‖∇w(t)‖22}+δ4ddt{‖∇w(t)‖22}2,(∫∞0g2(s)Δϑt(s)ds,wt(t))L2(Ω)=12ddt(g2∘∇w)(t)−12(g′2∘∇w)(t). | (2.17) |
Now, multiplying the equation (2.9) by −x|β2(r)|,−y|β4(r)|, and integrating over Ω×(0,1)×(τ1,τ2) and utilizing (2.7), the below is obtained
ddtm−1m∫Ω∫10∫τ2τ1r|β2(r)|.|x(z,ρ,r,t)|mdrdρdz=−(m−1)∫Ω∫10∫τ2τ1|β2(r)|.|y|m−1xρdrdρdz=−m−1m∫Ω∫10∫τ2τ1|β2(r)|ddρ|x(z,ρ,r,t)|mdrdρdz=m−1m∫Ω∫τ2τ1|β2(r)|(|x(z,0,r,t)|m−|x(z,1,r,t)|m)drdz=m−1m(∫τ2τ1|β2(r)|dr)∫Ω|vt(t)|mdz−m−1m∫Ω∫τ2τ1|β2(r)|.|x(z,1,r,t)|mdrdz=m−1m(∫τ2τ1|β2(r)|dr)‖vt(t)‖mm−m−1m∫τ2τ1|β2(r)|‖x(z,1,r,t)‖mmdr. | (2.18) |
Similarly, we have
ddtm−1m∫Ω∫10∫τ2τ1r|β4(r)|.|y(z,ρ,r,t)|mdrdρdz=m−1m(∫τ2τ1|β4(r)|dr)‖wt(t)‖mm−m−1m∫τ2τ1|β4(r)|‖y(z,1,r,t)‖mmdr. | (2.19) |
Here, we utilize the inequalities of Young as
∫τ2τ1|β2(r)|(|x(z,1,r,t)|m−2x(z,1,r,t),vt(t))L2(Ω)ds≤1m(∫τ2τ1|β2(r)|dr)‖vt(t)‖mm+m−1m∫τ2τ1|β2(r)|‖x(z,1,r,t)‖mmdr, | (2.20) |
and
∫τ2τ1|β4(r)|(|y(z,1,r,t)|m−2y(z,1,r,t),wt(t))L2(Ω)dr≤1m(∫τ2τ1|β4(r)|dr)‖wt(t)‖mm+m−1m∫τ2τ1|β4(r)|‖y(z,1,r,t)‖mmdr. | (2.21) |
Finally, we have
(f1(v,w),vt(t))L2(Ω)+(f2(v,w),wt(t))L2(Ω)=ddt∫ΩF(v,w)dz. | (2.22) |
Thus, after replacement of (2.14)–(2.22) into (2.13), we determined (2.11) and (2.12). As a result, we obtained that E is a non-increasing function by (2.2)–(2.5), which is required.
Theorem 2.3. Take the function U=(v,vt,w,wt,x,y,ηt,ϑt)T and assume that (2.1)–(2.5) holds true. Then, for any U0∈H, then one can find a unique solution U of problems (2.9) and (2.10) in a manner that
U∈C(R+,G). |
If U0∈G1, then U fulfills the following
U∈C1(R+,G)∩C(R+,G1), |
in which
G=(G10(Ω)×L2(Ω))2×(L2(Ω,(0,1),(τ1,τ2)))2×(Lg1×Lg2).G1={U∈G/v,w∈G2∩G10,vt,wt∈G10(Ω),x,y,xρ,yρ∈L2(Ω,(0,1),(τ1,τ2)),(ηt,ϑt)∈Lg1×Lg2,ηt(z,0)=ϑt(z,0)=0,x(z,0,r,t)=vt,y(z,0,r,t)=wt}. |
Here, the stability of the systems (2.9) and (2.10) will be established and investigated. For which the following lemma is needed
Lemma 3.1. Let us suppose that (2.1) and (2.2) fulfills.
∫Ω(∫∞0gi(s)(v(t)−v(t−s))ds)2dz≤Cκ,i(hi∘v)(t),i=1,2. | (3.1) |
where
Cκi:=∫∞0g2i(s)κgi(s)−g′i(s)dshi(t):=κgi(t)−g′i(t),i=1,2. |
Proof.
∫Ω(∫∞0gi(s)(v(t)−v(t−s))ds)2dz=∫Ω(∫t−∞gi(t−s)(v(t)−v(t−s))ds)2dz=∫Ω(∫t−∞gi(t−s)√κgi(t−s)−g′i(t−s)√κgi(t−s)−g′i(t−s)(v(t)−v(s))ds)2dz | (3.2) |
which is obtained through Young's inequality (Eq 3.1).
Lemma 3.2. (Jensens inequality). Let f:Ω→[c,e] and h:Ω→R are integrable functions in a manner that for any z∈Ω, h(z)>0 and ∫Ωh(z)dz=k>0. Furthermore, assume a convex function G such that G:[c,e]→R. Then
G(1k∫Ωf(z)h(z)dz)<1k∫ΩG(f(z))h(z)dz. | (3.3) |
Lemma 3.3. It is mentioned in [12] that one can find a positive constant β, ˆβ in a manner that
I1(t)=∫Ω∫∞tg1(s)|∇ηt(δ)|2dsdz≤βμ(t),I2(t)=∫Ω∫∞tg2(s)|∇ϑt(δ)|2dsdz≤ˆβˆμ(t), | (3.4) |
in which
μ(t)=∫∞0g1(t+s)(1+∫Ω∇v20(z,s)dz)ds,ˆμ(t)=∫∞0g2(t+s)(1+∫Ω∇w20(z,s)dz)ds. |
Proof. As the function E(t) is decreasing and utilizing (2.11), we have the following
∫Ω|∇ηt(s)|2dz=∫Ω(∇v(z,t)−v(z,t−s)2dz≤2∫Ω∇v2(z,t)dz+2∫Ω∇v2(z,t−s)dz≤2sups>0∫Ω∇v2(z,s)dz+2∫Ω∇v2(z,t−x)dz≤4E(0)l1+2∫Ω∇v2(z,t−s)dz, | (3.5) |
for any t,s≥0. Further, we have
I1(t)≤4E(0)l1∫∞tg1(s)ds+2∫∞tg1(s)∫Ω∇v2(z,t−s)dzds≤4E(0)l1∫∞0g1(t+s)ds+2∫∞0g1(t+s)∫Ω∇v20(z,s)dzds≤βμ(t), | (3.6) |
in which β=max{4E(0)l1,2} and μ(t)=∫∞0g1(t+s)(1+∫Ω∇u20(z,s)dz)ds.
In the same way, we can deduce that
I2(t)≤4E(0)l2∫∞0g2(t+s)ds+2∫∞0g2(t+s)∫Ω∇w20(z,s)dzds≤ˆβˆμ(t), | (3.7) |
in which ˆβ=max{4E(0)l2,2} and ˆμ(t)=∫∞0g2(t+s)(1+∫Ω∇w20(z,s)dz)ds. In the upcoming part, we set the following
Ψ(t):=∫Ω(v(t)vt(t)+w(t)wt(t))dz+δ4(‖∇v(t)‖42+‖∇w(t)‖42), | (3.8) |
and
Φ(t):=−∫Ωvt∫∞0g1(s)(v(t)−v(t−s))dsdz−∫Ωwt∫∞0g2(s)(w(t)−w(t−s))dsdz, | (3.9) |
and
Θ(t):=∫10∫τ2τ1re−ρr(|β2(r)|.‖x(z,ρ,r,t)‖mm+|β4(r)|.‖y(z,ρ,r,t)‖mm)drdρ. | (3.10) |
Lemma 3.4. In (3.8), the functional Ψ(t) fulfills the following
Ψ′(t)≤‖vt‖22+‖wt‖22−(l−ε(c1+c2)−σ1)(‖∇v‖22+‖∇w‖22)−ξ1(‖∇v‖42+‖∇w‖42)+c(ε)(‖vt‖mm+‖wt‖mm)+c(σ1)(Cκ,1(g1∘∇v)(t)+Cκ,2(h2∘∇w)(t))−∫ΩF(v,w)dz+c(ε)∫τ2τ1(|β2(r)‖x(z,1,r,t)‖mm+|β4(r)‖y(z,1,r,t)‖mm)dr. | (3.11) |
for any ε,σ1>0 with l=min{l1,l2}.
Proof. To prove the result, differentiate (3.8) first and then apply (2.9), we have the following
Ψ′(t)=‖vt‖22+∫Ωvttvdz+δ‖∇v‖22∫Ω∇vt∇vdz+‖wt‖22+∫Ωwttwdz+δ‖∇w‖22∫Ω∇wt∇wdz=‖vt‖22+‖wt‖22−ξ0(‖∇v‖22+‖∇w‖22)−ξ1(‖∇v‖42+‖∇w‖42)−β1∫Ω|vt|m−2vtvdz⏟I11−β3∫Ω|wt|m−2wtwdz⏟I12+∫Ω∇v(t)∫∞0g1(s)∇v(t−s)dsdz⏟I21+∫Ω∇w(t)∫∞0g2(s)∇w(t−s)dsdz⏟I22−∫Ω∫τ2τ1|β2(r)||x(z,1,r,t)|m−2x(z,1,r,t)vdrdz⏟I31−∫Ω∫τ2τ1|β4(r)||y(z,1,r,t)|m−2y(z,1,r,t)wdrdz⏟I32−∫Ω(vf1(v,w)+wf2(v,w))dz⏟I4. | (3.12) |
We estimate the last 6 terms of the RHS of (3.12). The following is obtained by applying Young's, Sobolev-Poincare and Hölder's inequalities on (2.1) and (2.11), we have
I11≤εβm1‖v‖mm+c(ε)‖vt‖mm≤εβm1cmp‖∇v‖m2+c(ε)‖vt‖mm≤εβm1cmp(E(0)l1)(m−2)/2‖∇v‖22+c(ε)‖vt‖mm≤εc11‖∇v‖22+c(ε)‖vt‖mm. | (3.13) |
In addition to this, for any σ1>0, by Lemma 3.1, we have the below
I21≤(∫∞0g1(s)ds)‖∇v‖22−∫Ω∇v(t)∫∞0g1(s)(∇v(t)−∇v(t−s))dsdz≤(ξ0−l1+σ1)‖∇v‖22+cσ1Cκ,1(h1∘∇v)(t). | (3.14) |
Taking same steps to I12, the below is obtained
I31≤εc21‖∇v‖22+c(ε)∫τ2τ1|β2(r)|.‖x(z,1,r,t)‖mmdr. | (3.15) |
Same steps for I11,I21 and I31, we have
I12≤εc12‖∇w‖22+c(ε)‖wt‖mmI22≤(ξ0−l2+σ1)‖∇w‖22+cσ1Cκ,2(h2∘∇w)(t),I32≤εc22‖∇w‖22+c(ε)∫τ2τ1|β4(r)|.‖y(z,1,r,t)‖mmdr. | (3.16) |
Combining (3.13)–(3.21), (3.12) and (2.5), the required (3.11) is obtained.
Lemma 3.5. For any σ,σ2,σ3>0, the functional Φ(t) introduced in (3.9) holds true
Φ′(t)≤−(l0−σ3)(‖vt‖22+‖wt‖22)+ξ1σ(‖∇v‖42+‖∇w‖42)+σ(ξ0+^l02+cˆl)‖∇v‖22+σ(ξ0+ˆh20+cl2)‖∇w‖22+σ22δE(0)(1l1(12ddt‖∇v‖22)2+1l2(12ddt‖∇w‖22)2)+c(σ,σ2,σ3)(Cκ,1(h1∘∇v)(t)+Cκ,2(h2∘∇w)(t))+c(σ)(‖vt‖mm+∫τ2τ1|β2(r)‖x(z,1,r,t)‖mmdr)+c(σ)(‖wt‖mm+∫τ2τ1|β4(r)‖y(z,1,r,t)‖mmdr). | (3.17) |
where ˆl=max{l1,l2}, l0=min{g0,ˆg0} and ^l0=max{g0,ˆg0}.
Proof. To prove the result, simplification of (3.9) and (2.9) through mathematical skills leads us to the following
Φ′(t)=−∫Ωvtt∫∞0g1(s)(v(t)−v(t−s))dsdz−∫Ωvt∂∂t(∫∞0g1(s)(v(t)−v(t−s))ds)dz−∫Ωwtt∫∞0g2(s)(w(t)−w(t−s))dsdz−∫Ωwt∂∂t(∫∞0g2(s)(w(t)−w(t−s))ds)dz=(ξ0+ξ1‖∇v‖22)∫Ω∇v∫∞0g1(s)(∇v(t)−∇v(t−s))dsdz⏟J11+(ξ0+ξ1‖∇w‖22)∫Ω∇w∫∞0g2(s)(∇w(t)−∇w(t−s))dsdz⏟J12+δ∫Ω∇v∇vtdz.∫Ω∇v∫∞0g1(s)(∇v(t)−∇v(t−s))dsdz⏟J21+δ∫Ω∇w∇wtdz.∫Ω∇w∫∞0g2(s)(∇w(t)−∇w(t−s))dsdz⏟J22−∫Ω(∫∞0g1(s)∇v(t−s)ds).(∫∞0g1(s)(∇v(t)−∇v(t−s))ds)dz⏟J31−∫Ω(∫∞0g2(s)∇w(t−s)ds).(∫∞0g2(s)(∇w(t)−∇w(t−s))ds)dz⏟J32−β1∫Ω|vt|m−2vt(∫∞0g1(s)(∇v(t)−∇v(t−s))ds)dz⏟J41−β3∫Ω|wt|m−2wt(∫∞0g2(s)(∇w(t)−∇w(t−s))ds)dx⏟J42−∫Ω∫τ2τ1|β2(r)||x(z,1,r,t)|m−2x(z,1,r,t)×∫∞0g1(s)(∇v(t)−∇v(t−s))ds)dsdz⏟J51−∫Ω∫τ2τ1|β4(r)||y(z,1,r,t)|m−2y(z,1,r,t)×∫∞0g2(s)(∇w(t)−∇w(t−s))ds)dsdz⏟J51−∫Ωvt∂∂t(∫∞0g(s)(v(t)−v(t−s))ds)dz⏟J61−∫Ωwt∂∂t(∫∞0g2(s)(w(t)−w(t−s))ds)dz⏟J62−∫Ωf1(v,w).(∫∞0g1(s)(v(t)−v(t−s))ds)dz⏟J71−∫Ωf2(v,w).(∫∞0g2(s)(w(t)−w(t−s))ds)dz⏟J72. | (3.18) |
Here, we will find our the approximation of the terms of the RHS of (3.18). Using the well-known Young's, Sobolev-Poincare and Hölder's inequalities on (2.1), (2.11) and Lemma 3.1, we proceed as follows
|J11|≤(ξ0+ξ1‖∇v‖22)(σ‖∇v‖22+14σCκ,1(h1∘∇v)(t))≤σξ0‖∇v‖22+σξ1‖∇v‖42+(ξ04σ+ξ1E(0)4l1ξ)Cκ,1(h1∘∇v)(t), | (3.19) |
and
J21≤σ2δ(∫Ω∇v∇vtdz)2‖∇v‖22+δ4σ2Cκ,1(h1∘∇v)(t)≤σ22δE(0)l1(12ddt‖∇v‖22)2+δ4σ2Cκ,1(h1∘∇v)(t), | (3.20) |
|J31|≤∫Ω(∫∞0g1(s)∇v(t)ds)(∫∞0g1(s)(∇v(t−s)−∇v(t))ds)dz−∫Ω(∫∞0g1(s)(∇v(t)−∇v(t−s))ds)2dz≤δg20‖∇v‖22+(1+14δ)Cκ,1(h1∘∇v)(t), | (3.21) |
|J41|≤c(σ)‖∇vt‖mm+σβm1∫Ω(∫∞0g1(s)(v(t)−v(t−s))ds)mdz≤c(σ)‖∇vt‖mm+σ(βm1cmp[4g0E(0)l1](m−2))Cκ,1(h1∘∇v)(t)≤c(σ)‖∇vt‖mm+σc3Cκ,1(h1∘∇v)(t). | (3.22) |
In the same, we obtained the following
J51≤c(σ)‖x(z,1,r,t)‖mm+σc4Cκ,1(h1∘∇v)(t), | (3.23) |
and to find the approximation of J61, we have
∂∂t(∫∞0g1(s)(v(t)−v(t−s))ds)=∂∂t(∫t−∞g1(t−s)(v(t)−v(s))ds)=∫t−∞g′1(t−s)(v(t)−v(s))ds+(∫t−∞g1(t−s)ds)vt(t)=∫∞0g′1(s)(v(t)−v(t−s))ds+g0vt(t), |
the (2.2) implies that
J61≤−(g0−σ3)‖vt‖22+cσ3Cκ,1(h1∘∇v)(t). | (3.24) |
In the same steps, the estimation of Ji2, i=1,..,6 are obtained and
J71≤cσl1‖∇v‖22+c(σ)Cκ,1(h1∘∇v)(t)J72≤cσl2‖∇w‖22+c(σ)Cκ,2(h2∘∇v)(t). | (3.25) |
Here, put (3.19)–(3.25) into (3.18), the required result is obtained.
Lemma 3.6. The functional Θ(t) introduced in (3.10) fulfills the below
Θ′(t)≤−γ1∫10∫τ2τ1r(|β2(r)|.‖x(z,ρ,r,t)‖mm+|β4(r)|.‖y(z,ρ,r,t)‖mm)drdρ−γ1∫τ2τ1(|β2(s)|.‖x(z,1,r,t)‖mm+|β4(r)|.‖y(z,1,r,t)‖mm)dr+β5(‖vt(t)‖mm+‖wt(t)‖mm). | (3.26) |
in which β5=max{β1,β3}.
Proof. To prove the result, using Θ(t), and (2.9), we obtained the following
Θ′(t)=−m∫Ω∫10∫τ2τ1e−rρ|β2(r)|.|x|m−1xρ(z,ρ,r,t)drdρdz−m∫Ω∫10∫τ2τ1e−rρ|β4(r)|.|y|m−1yρ(z,ρ,r,t)drdρdz=−∫Ω∫10∫τ2τ1re−rρ|β2(r)|.|x(z,ρ,r,t)|mdrdρdz−∫Ω∫τ2τ1|β2(r)|[e−r|x(z,1,r,t)|m−|x(z,0,r,t)|m]drdz−∫Ω∫10∫τ2τ1re−rρ|β4(r)|.|y(z,ρ,r,t)|mdrdρdz−∫Ω∫τ2τ1|β4(r)|[e−r|y(z,1,r,t)|m−|y(z,0,r,t)|m]drdz |
Utilizing x(z,0,r,t)=vt(z,t),y(z,0,r,t)=wt(z,t), and e−r≤e−rρ≤1, for any 0<ρ<1, moreover, select γ1=e−τ2, we have
Θ′(t)≤−γ1∫Ω∫10∫τ2τ1r(|β2(r)|.|z(z,ρ,r,t)|m+|β4(r)|.|y(z,ρ,r,t)|m)drdρdz−γ1∫Ω∫τ2τ1(|β2(r)||x(z,1,r,t)|m+|β4(r)||y(z,1,r,t)|m)drdz+∫τ2τ1|β2(r)|dr∫Ω|vt|m(t)dz+∫τ2τ1|β4(r)|dr∫Ω|wt|m(t)dz, |
applying (2.4), the required proof is obtained. In the next step, we below functional are introduced
A1(t):=∫Ω∫t0φ1(t−s)∇v(s)2dsdz,A2(t):=∫Ω∫t0φ2(t−s)∇w(s)2dsdz, | (3.27) |
in which φ1(t)=∫∞tg1(s)ds,φ2(t)=∫∞tg2(s)ds.
Lemma 3.7. Let us suppose that (2.1) and (2.2) satisfied. Then, the functional F1=A1+A2 and fulfills the following
F′1(t)≤−12((g1∘∇v)(t)+(g2∘∇w)(t))+3g0∫Ω∇v2dz+3ˆg0∫Ω∇w2dz+12∫Ω∫∞tg1(s)(∇v(t)−∇v(t−s))2dsdz+12∫Ω∫∞tg2(s)(∇w(t)−∇w(t−s))2dsdz. | (3.28) |
Proof. We can easily prove this lemma with the help of Lemma 3.7 in [13] and Lemma 3.4 in [15].
Now, we have sufficient mathematical tools to prove the below mentioned Theorem.
Theorem 3.8. Take (2.1)–(2.5), then one can find positive constants ςi,i=1,2,3 and positive function ς4(t) in a way that the energy functionalmentioned in (2.11) fulfills
E(t)≤ς1D−12(ς2+ς3∫t0ˆζ(ν)D4(ς4(ν)μ0(ν))dν∫t0ζ0(ν)dν), | (3.29) |
in which
D2(t)=tD′(ε0t),D3(t)=tD′−1(t),D4(t)=¯D∗3(t), | (3.30) |
and
μ0=max{μ,ˆμ},ˆζ=max{ζ1,ζ2},ζ0=min{ζ1,ζ2}, |
which are increasing and convex in (0, ϱ].
Proof. For the proof, we define the below functional
G(t):=NE(t)+N1Ψ(t)+N2Φ(t)+N3Θ(t), | (3.31) |
we determined the positive constants N,Ni,i=1,2,3. Simplifying (3.36) and utilizing 2.12, the Lemmas 3.4–3.6, we have
G′(t):=NE′(t)+N1Ψ′(t)+N2Φ′(t)+N3Θ′(t)≤−{N2(l0−σ3)−N1}(‖vt‖22+‖wt‖22)−{N3ξ1−N2ξ1σ}(‖∇v‖42+‖∇w‖42)−{N1(l−ε(c1+c2)−σ1)−N2σ(ξ0+^l02+cˆl)}(‖∇v‖22+‖∇w‖22)−{Nδ4−N2σ22δE(0)l}[(12ddt‖∇v‖22)2+(12ddt‖∇w‖22)2]+{N1c(σ1)+N2c(σ,σ2,σ3)}(Cκ,1(h1∘∇v)(t)+Cκ,2(h2∘∇w)(t))+N2((g′1∘∇v)(t)+(g′2∘∇w)(t))−{γ0N−N1c(ε)−N2c(σ)−N3β5}(‖vt‖mm+‖wt‖mm)−(γ1N3−N1c(ε)−N2c(σ))∫τ2τ1|β2(r)‖x(z,1,r,t)‖mmds)−N3γ1∫10∫τ2τ1r|β2(r)|.‖x(z,ρ,r,t)‖mmdrdρ−(γ1N3−N1c(ε)−N2c(σ))∫τ2τ1|β4(r)‖y(z,1,r,t)‖mmdr)−N3γ1∫10∫τ2τ1r|β4(r)|.‖y(z,ρ,r,t)‖mmdrdρ−N1∫ΩF(v,w)dz. | (3.32) |
We select the various constants at this point such that the values included in parenthesis are positive in this stage. Here, putting
σ3=l02,ε=l4(c1+c2),σ1=l4,σ2=lN16E(0)N2,N1=l04N2. |
Thus, we arrive at
H′(t)≤−l04N2(‖wt‖22+‖wt‖22)−ζ1N2(l04−δ)(‖∇w‖42+‖∇u‖42)−N2(ll08−δ(ζ0+^h02+cˆl))(‖∇w‖22+‖∇u‖22)−Nδ8[(12ddt‖∇v‖22)2+(12ddt‖∇w‖22)2]+N2c(σ,σ1,σ2,σ3)(Cκ,1(h1∘∇v)(t)+Cκ,2(h2∘∇w)(t))+N2((g′1∘∇v)(t)+(g′2∘∇v)(t))−N1∫ΩF(v,w)dz−(γ0N−N2c(σ,ε)−N3β5)(‖vt‖mm+‖wt‖mm)−(γ1N3−N2c(σ,ε))∫τ2τ1|β2(r)‖x(z,1,r,t)‖mmds)−N3γ1∫10∫τ2τ1r|β2(r)|.‖x(z,ρ,r,t)‖mmdrdρ−(γ1N3−N2c(σ,ε))∫τ2τ1|β4(r)‖y(z,1,r,t)‖mmdr)−N3γ1∫10∫τ2τ1r|β4(r)|.‖y(z,ρ,r,t)‖mmdrdρ. | (3.33) |
In the upcoming, we select σ in a manner that
σ<min{l04,ll08(ξ0+^g02+cˆl)}. |
After that, we take N2 in a way that
N2(ll08−σ(ξ0+^g02+cˆl))>4l0, |
and take N3 large enough in a way that
γ1N3−N2c(σ,ε)>0. |
As a result, for positive constants di,i=1,2,3,4,5, (3.33) can be written as
H′(t)≤−d1(‖vt‖22+‖wt‖22)−d2(‖∇v‖42+‖∇w‖42)−4l0(‖∇v‖22+‖∇w‖22)−Nδ8[(12ddt‖∇v‖22)2+(12ddt‖∇w‖22)2]−(N2−d3Cκ)((h1∘∇v)(t)+(h2∘∇w)(t))+Nκ2((g1∘∇v)(t)+(g2∘∇w)(t))−(γ0N−c)(‖vt‖mm+‖wt‖mm)−d5∫ΩF(v,w)dz−d4∫10∫τ2τ1s(|β2(r)|.‖x(z,ρ,r,t)‖mm+|β4(r)|.‖y(z,ρ,r,t)‖mm)drdρ, | (3.34) |
in which Cκ=max{Cκ,1,Cκ,2}.
We know that κg2i(s)κgi(s)−gi(s)≤gi(s), then from from Lebesgue Dominated Convergence, we have the below
limκ→0+κCκ,i=limκ→0+∫∞0κg2i(s)κgi(s)−gi(s)ds=0,i=1,2 | (3.35) |
which leads to
limκ→0+κCκ=0. |
As a result of this, one can find 0<κ0<1 in a manner that if κ<κ0, then
κCκ≤1d3. | (3.36) |
From (3.8)–(3.10) through mathematical skills, we have the following
|H(t)−NE(t)|≤N12(‖vt(t)‖22+‖wt(t)‖22+cp‖∇w(t)‖22+cp‖∇w(t)‖22)+δN14(‖∇v(t)‖42+‖∇w(t)‖42)+N22(‖vt(t)‖22+‖wt(t)‖22)+N22cp(Cκ,1(g1∘∇v)(t)+Cκ,2(g2∘∇w)(t))+N3∫10∫τ2τ1re−ρr(|β2(r)|.‖x(z,ρ,r,t)‖mm+|β4(r)|.‖y(z,ρ,r,t)‖mm)drdρ. | (3.37) |
By the fact e−ρr<1 and (2.2), we have the below
|H(t)−NE(t)|≤C(N1,N2,N3)E(t)=C1E(t). | (3.38) |
that is
(N−C1)E(t)≤H(t)≤(N+C1)E(t). | (3.39) |
Here, set κ=12N and take N large enough in a manner that
N−C1>0,,γ0N−c>0,12N−12κ0>0,κ=12N<κ0, |
we find
H′(t)≤−k2E(t)+14((g1∘∇v)(t)+(g2∘∇w)(t)) | (3.40) |
for some k2>0, and
c5E(t)≤H(t)≤c6E(t),∀t≥0 | (3.41) |
for some c5,c6>0, we have
H(t)∼E(t). |
After that, the below cases are considered:
Case 3.9. Gi,i=1,2 are linear. Multiplying (3.40) by ζ0(t)=min{ζ1(t),ζ2(t)}, we find
ζ0(t)H′(t)≤−k2ζ0(t)E(t)+14ζ0(t)((g1∘∇v)(t)+(g2∘∇w)(t))≤−k2ζ0(t)E(t)+14ζ1(t)(g1∘∇v)(t)+14ζ2(t)(g2∘∇w)(t). | (3.42) |
The last two terms in (3.42), we have
ζ1(t)4(g1∘∇v)(t)=ζ1(t)4∫Ω∫∞0g1(δ)|∇ηt(s)|2dsdz=ζ1(t)4∫Ω∫t0g1(s)|∇ηt(s)|2dsdz⏟I1+ζ1(t)4∫Ω∫∞tg1(s)|∇ηt(s)|2dsdz⏟I2 | (3.43) |
To estimate I1, using (2.11),
I1≤14∫Ω∫t0ζ1(s)g1(s)|∇ηt(s)|2dsdz=−14∫Ω∫t0g′1(s)|∇ηt(s)|2dsdz≤−12l1E′(t), | (3.44) |
and by (3.4), we get
I2≤β4ζ1(t)μ(t). | (3.45) |
In the same way, we obtained
ζ2(t)4(g2∘∇w)(t)≤−12l2E′(t)+ˆβ4ζ2(t)ˆμ(t). | (3.46) |
As a result of this, we get
ζ0(t)H′(t)≤−k2ζ0(t)E(t)−1ˆlE′(t)+2β0w(t), | (3.47) |
where β0=max{β4,ˆβ4} and w(t)=ˆζ(t)μ0(t).
Applying ζ′i(t)≤0, we get
H′1(t)≤−k2ζ0(t)E(t)+2β0w(t), | (3.48) |
with
H1(t)=ζ0(t)H(t)+1ˆlE(t)∼E(t), |
we have
k4E(t)≤H1(t)≤k5E(t), | (3.49) |
then, the following is obtained from (3.48)
k2E(T)∫T0ζ0(t)dt≤k2∫T0ζ0(t)E(t)dt≤H1(0)−H1(T)+2β0∫T0w(t)dt≤H1(0)+2β0∫T0ˆζ(t)μ0(t)dt. |
Further analysis implies that
E(T)≤1k2(G1(0)+2β0∫T0ˆξ(t)μ0(t)dt∫T0ξ0(t)dt), |
From the linearity of D, the linearity of the functions D2,D′2 and D4 can easily be determined. This implies that
E(T)≤λ1D−12(H1(0)k2+2β0k2∫T0ˆζ(t)μ0(t)dt∫T0ζ0(t)dt), | (3.50) |
which gives (3.29) with ς1=λ1, ς2=H1(0)k2, ς3=2β0λ2k2, and ς4(t)=Id(t)=t. Hence, the required proof is completed.
Case 3.10. Let Hi,i=1,2 are nonlinear. Then, with the help of (3.28) and (3.40). Assume the positive functional
H2(t)=H(t)+F1(t) |
then for all t≥0 and for some k3>0, the following holds true
H′2(t)≤−k3E(t)+12∫Ω∫∞tg1(s)(∇v(t)−∇v(t−s))2dsdz+12∫Ω∫∞tg2(s)(∇w(t)−∇w(t−s))2dsdz, | (3.51) |
with the help of (3.4), we have
k3∫t0E(x)dx≤H2(0)−H2(t)+β0∫t0μ0(ς)dς≤H2(0)+β0∫t0μ0(ς)dς. | (3.52) |
Therefore
∫t0E(x)dx≤k6μ1(t), | (3.53) |
where k6=max{H2(0)k3,β0k3} and μ1(t)=1+∫t0μ0(ς)dς.
Corollary 3.11. The following is obtained from (2.11) and (3.53):
∫t0∫Ω|∇v(t)−∇v(t−s)|2dzds+∫t0∫Ω|∇w(t)−∇w(t−s)|2dzds≤2∫t0∫Ω∇v2(t)−∇v2(t−s)dzds+2∫t0∫Ω∇w2(t)−∇w2(t−s)dzds≤4l0∫t0E(t)−E(t−s)ds≤8l0∫t0E(x)dx≤8k6l0μ1(t). | (3.54) |
Now, we define ϕi(t),i=1,2 by
ϕ1(t):=B(t)∫t0∫Ω|∇v(t)−∇v(t−s)|2dzds,ϕ2(t):=B(t)∫t0∫Ω|∇w(t)−∇w(t−s)|2dzds | (3.55) |
where B(t)=B0μ1(t) and 0<B0<min{1,l8k6}.
Then, by (3.53), we have
ϕi(t)<1,∀t>0,i=1,2 | (3.56) |
Further, we suppose that ϕi(t)>0,∀t>0,i=1,2. In addition to this, we define another functional Γ1,Γ2 by
Γ1(t):=−∫t0g′1(s)∫Ω|∇v(t)−∇v(t−s)|2dzds,Γ2(t):=−∫t0g′2(s)∫Ω|∇w(t)−∇w(t−s)|2dzds | (3.57) |
Here, obviously Γi(t)≤−cE′(t),i=1,2. As Gi(0)=0,i=1,2 and Gi(t) are convex strictly on (0, ϱ], then
Gi(λz)≤λGi(z),0<λ<1,z∈(0,ϱ],i=1,2. | (3.58) |
Applying (2.3) and (3.56), we get
Γ1(t)=−1B(t)ϕ1(t)∫t0ϕ1(t)(g′1(s))∫ΩB(t)|∇v(t)−∇v(t−s)|2dzds≥1B(t)ϕ1(t)∫t0ϕ1(t)ζ1(s)G1(g1(s))∫ΩB(t)|∇v(t)−∇v(t−s)|2dzds≥ζ1(t)B(t)ϕ1(t)∫t0G1(ϕ1(t)g1(s))∫ΩB(t)|∇v(t)−∇v(t−s)|2dzds≥ζ1(t)B(t)G1(1ϕ1(t)∫t0ϕ1(t)g1(s)∫ΩB(t)|∇v(t)−∇v(t−s)|2dzds)=ζ1(t)B(t)G1(B(t)∫t0g1(s)∫Ω|∇v(t)−∇v(t−s)|2dzds)=ζ1(t)B(t)¯G1(B(t)∫t0g1(s)∫Ω|∇v(t)−∇v(t−s)|2dzds). | (3.59) |
Γ2(t)≥ζ2(t)B(t)¯G2(B(t)∫t0g2(s)∫Ω|∇w(t)−∇w(t−s)|2dzds). | (3.60) |
Taking the same steps, ¯Gi,i=1,2 are C2-extension of Gi that are convex strictly and increasing strictlyon R+. From (3.59), we have the following
∫t0g1(s)∫Ω|∇v(t)−∇v(t−s)|2dzds≤1B(t)¯G1−1(B(t)Γ1(t)ζ1(t))∫t0g2(s)∫Ω|∇w(t)−∇w(t−s)|2dzds≤1B(t)¯G2−1(B(t)Γ2(t)ζ2(t)). | (3.61) |
Putting (3.61) and (3.4) into (3.40), we have
H′(t)≤−k2E(t)+cB(t)¯G1−1(B(t)Γ1(t)ζ1(t))+cB(t)¯G2−1(B(t)Γ2(t)ζ2(t))+k6μ0(t) | (3.62) |
Here, introduce K1(t) for ε0<r by
K1(t)=D′(ε0B(t)E(t)E(0))H(t)+E(t), | (3.63) |
in which D′=min{G1,G2} and is equivalent to E(t). Because of this E′(t)≤0,¯Gi′>0, and ¯Gi′′>0,i=1,2. Also applying (3.62), we obtained that
K′1(t)=ε0(E′(t)B(t)E(0)+E(t)B′(t)E(0))D′′(ε0E(t)B(t)E(0))H(t)+D′(ε0E(t)B(t)E(0))H′(t)+E′(t)≤−k2E(t)D′(ε0B(t)E(t)E(0))+k6μ0(t)D′(ε0B(t)E(t)E(0))+cB(t)¯G1−1(B(t)Γ1(t)ζ1(t)))D′(ε0B(t)E(t)E(0))+cB(t)¯G2−1(B(t)Γ2(t)ζ2(t)))D′(ε0B(t)E(t)E(0))+E′(t) | (3.64) |
According to [29], we introduce the conjugate function of ¯Gi by ¯Gi∗, which fulfills
AB≤¯Gi∗(A)+¯Gi(B),i=1,2 | (3.65) |
For A=D′(ε0(E(t)B(t))/(E(0)))) and Bi=¯Gi−1((B(t)Γi(t))/(ζi(t))),i=1,2 and applying (3.64), we have
K′1(t)≤−k2E(t)D′(ε0E(t)B(t)E(0))+k6μ0(t)D′(ε0E(t)B(t)E(0))+cB(t)¯G1∗(D′(ε0E(t)B(t)E(0)))+cB(t)B(t)Γ1(t)ζ1(t)+cB(t)¯G2∗(D′(ε0E(t)B(t)E(0)))+cB(t)B(t)Γ2(t)ζ2(t)+E′(t)≤−k2E(t)D′(ε0E(t)B(t)E(0))+k6μ0(t)D′(ε0E(t)B(t)E(0))+cB(t)D′(ε0E(t)B(t)E(0))(¯G1′)−1[D′(ε0E(t)B(t)E(0))]+cB(t)D′(ε0E(t)B(t)E(0))(¯G2′)−1[D′(ε0E(t)B(t)E(0))]+cΓ1(t)ζ1(t)+cΓ2(t)ζ2(t). | (3.66) |
Here, we multiply (3.66) by ζ0(t) and get
ζ0(t)K′1(t)≤−k2ζ0(t)E(t)D′(ε0E(t)B(t)E(0))+k6ζ0(t)μ0(t)D′(ε0E(t)B(t)E(0))+2cζ0(t)B(t)ε0E(t)B(t)E(0)D′(ε0E(t)B(t)E(0))+cΓ1(t)+cΓ2(t)≤−k2ζ0(t)E(t)D′(ε0E(t)B(t)E(0))+k6ζ0(t)μ0(t)D′(ε0E(t)B(t)E(0))+2cζ0(t)B(t)ε0E(t)B(t)E(0)D′(ε0E(t)B(t)E(0))−cE′(t) | (3.67) |
where we utilized the following ε0(B(t)E(t)/E(0))<r, D′=min{G1,G2} and Γi<−cE′(t),i=1,2, and define the functional K2(t) as
K2(t)=ζ0(t)K1(t)+cE(t) | (3.68) |
Effortlessly, one can prove that K2(t)∼E(t), i.e., one can find two positive constants m1 and m2 in a manner that
m1K2(t)≤E(t)≤m2K2(t), | (3.69) |
then, we have
K′2(t)≤−β6ζ0(t)E(t)E(0)D′(ε0E(t)B(t)E(0))+k6ζ0(t)μ0(t)D′(ε0E(t)B(t)E(0))=−β6ζ0(t)B(t)D2(E(t)B(t)E(0))+k6ζ0(t)μ0(t)D′(ε0E(t)B(t)E(0)), | (3.70) |
where β6=(k2E(0)−2cε0) and D2(t)=tD′(ε0t).
Choosing ε0 so small such that β6>0, since D′2(t)=D′(ε0t)+ε0tD′′(ε0t). As D′2(t),D2(t)>0 on (0, 1] and Gi on (0, ϱ] are strictly increasing. Applying Young's inequality (3.65) on the last term in (3.70)
with A=D′(ε0E(t)B(t)E(0)) and B=k6δμ(t), we find
k6μ0(t)D′(ε0E(t)B(t)E(0))=σB(t)(k6σB(t)μ0(t))(D′(ε0E(t)B(t)E(0)))<σB(t)D∗3(k6σB(t)μ0(t))+σB(t)D3(D′(ε0E(t)B(t)E(0)))<σB(t)D4(k6σB(t)μ0(t))+σB(t)(ε0E(t)B(t)E(0))D′(ε0E(t)B(t)E(0))<σB(t)D4(k6σB(t)μ0(t))+σε0B(t)D2(ε0E(t)B(t)E(0)). | (3.71) |
Here, choose σ small enough in a manner that β6−σε0>0 andcombining (3.70) and (3.71), we have
K′2(t)≤−β7ζ0(t)B(t)D2(E(t)B(t)E(0))+σζ0(t)B(t)D4(k6δB(t)μ0(t)). | (3.72) |
where β7=β6−σε0>0, D3(t)=tD′−1(t) and D_{4}(t) = \overline{D}_{3}^{*}\left(t\right) .
In light of fact E' < 0 and \mathcal{B}' < 0 , then D_{2}(\frac{E(t) \mathcal{B}(t)}{E(0)}) is decreasing. As a consequences of this, for 0\leq t\leq T , we have
\begin{equation} D_{2}\bigg(\frac{E(T) \mathcal{B}(T)}{E(0)}\bigg) < D_{2}\bigg(\frac{E(t) \mathcal{B}(t)}{E(0)}\bigg). \end{equation} | (3.73) |
In the next step, combine (3.72) with (3.73) and multiply by \mathcal{B}(t) , the following is obtained
\begin{equation} \mathcal{B}(t)\mathcal{K}_{2}^{\prime}(t)+\beta_{7}\zeta_{0}(t) D_{2}\left(\frac{ E(T) \mathcal{B}(T)}{E(0)}\right) < \sigma\zeta_{0}(t)D_{4}\bigg(\frac{k_{6}}{\sigma}\mathcal{B}(t)\mu_{0}(t)\bigg). \end{equation} | (3.74) |
Since \mathcal{B}' < 0 , then for any 0 < t < T
\begin{eqnarray} (\mathcal{B}\mathcal{K}_{2})^{\prime}(t)+\beta_{7}\zeta_{0}(t) D_{2}\left(\frac{ E(T) \mathcal{B}(T)}{E(0)}\right)& < &\sigma \zeta_{0}(t)D_{4}\bigg(\frac{k_{6}}{\sigma}\mathcal{B}(t)\mu_{0}(t)\bigg)\\ & < &\sigma\widehat{\zeta}(t)D_{4}\bigg(\frac{k_{6}}{\sigma}\mathcal{B}(t)\mu_{0}(t)\bigg). \end{eqnarray} | (3.75) |
Simplify (3.75) over [0, T] and apply \mathcal{B}(0) = 1 , the following is obtained
\begin{equation} D_{2}\left(\frac{ E(T) \mathcal{B}(T)}{E(0)}\right)\int_{0}^{T}\zeta_{0}(t)dt < \frac{\mathcal{K}_{2}(0)}{\beta_{7}}+\frac{\sigma}{\beta_{7}}\int_{0}^{T}\widehat{\zeta}(t)D_{4}\bigg(\frac{k_{6}}{\sigma}\mathcal{B}(t)\mu_{0}(t)\bigg)dt. \end{equation} | (3.76) |
Consequently, we have
\begin{equation} D_{2}\left(\frac{ E(T) \mathcal{B}(T)}{E(0)}\right) < \frac{\frac{\mathcal{K}_{2}(0)}{\beta_{7}}+\frac{\sigma}{\beta_{7}}\int_{0}^{T}\widehat{\zeta}(t)D_{4}(\frac{k_{6}}{\sigma}\mathcal{B}(t)\mu_{0}(t))dt}{\int_{0}^{T}\zeta_{0}(t)dt}. \end{equation} | (3.77) |
As a results of this, we obtain
\begin{equation} \left(\frac{ E(T) \mathcal{B}(T)}{E(0)}\right) < D_{2}^{-1}\bigg(\frac{\frac{\mathcal{K}_{2}(0)}{\beta_{7}}+\frac{\sigma}{\beta_{7}}\int_{0}^{T}\widehat{\zeta}(t)D_{4}(\frac{k_{6}}{\sigma}\mathcal{B}(t)\mu_{0}(t))dt}{\int_{0}^{T}\zeta_{0}(t)dt}\bigg). \end{equation} | (3.78) |
As a result of this, we get
\begin{equation} E(T) < \frac{ E(0)}{\mathcal{B}(T)}D_{2}^{-1}\bigg(\frac{\frac{\mathcal{K}_{2}(0)}{\beta_{7}}+\frac{\sigma}{\beta_{7}}\int_{0}^{T}\widehat{\zeta}(t)D_{4}(\frac{k_{6}}{\sigma}\mathcal{B}(t)\mu_{0}(t))dt}{\int_{0}^{T}\zeta_{0}(t)dt}\bigg). \end{equation} | (3.79) |
where, we have (3.29) with \varsigma_{1} = \frac{ E(0)}{\mathcal{B}(T)} , \varsigma_{2} = \frac{\mathcal{K}_{2}(0)}{\beta_{7}} , \varsigma_{3} = \frac{\sigma}{\beta_{7}} , and \varsigma_{4}(t) = \frac{k_{6}}{\sigma}\mathcal{B}(t) .
Hence, the required result is obtained 3.8.
The purpose of this work was to study when the coupled system of nonlinear viscoelastic wave equations with distributed delay components, infinite memory and Balakrishnan-Taylor damping. Assume the kernels g_{i} :{\bf R}_{+}\rightarrow {\bf R}_{+} holds true the below
g_{i}'(t)\leq-\zeta_{i}(t)G_{i}(g_{i}(t)), \quad \forall t\in {\bf R}_{+}, \quad \text{for} \quad i = 1, 2, |
in which \zeta_{i} and G_{i} are functions. We prove the stability of the system under this highly generic assumptions on the behaviour of g_i at infinity and by dropping the boundedness assumptions in the historical data. This type of problem is frequently found in some mathematical models in applied sciences. Especially in the theory of viscoelasticity. What interests us in this current work is the combination of these terms of damping, which dictates the emergence of these terms in the problem. In the next work, we will try to using the same method with same problem. But in added of other dampings.
The researchers would like to thank the Deanship of Scientific Research, Qassim University for funding the publication of this project.
The authors declare there is no conflicts of interest.
[1] | NIDA, Heroin, National Institute on Drug Abuse, 27 June 2019. Available from: https: //www.drugabuse.gov/publications/drugfacts/heroin. |
[2] | Today's Heroin Epidemic, Center for Disease Control and Prevention (CDC), July 2015. |
[3] | M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Giardini Editori e Stampatori, Pisa, 1994. |
[4] | H. R. Thieme, Mathematics in Populations Biology, Princeton University Press, Princeton, 2003. |
[5] | H. R. Thieme, C. Castillo-Chavez, How many infection-age-dependent infectivity affect the dynamics of HIV/AIDS?, SIAM J. Appl. Math., 53 (2014), 14-47. |
[6] | S. P. Rajasekar, M. Pitchaimani, Quanxin Zhu, Dynamic threshold probe of stochastic SIR model with saturated incidence rate and saturated treatment function, Physica A: Statistical Mechanics and its Applications, 535 (2019), 122300. |
[7] | G. Zamana, Y. Saitob, M. Khanc, Optimal vaccination of an endemic model with variable infectivity and infinite delay, Zeitschrift für Naturforschung A, 68 (2013), 677-685. |
[8] |
M. Ma, S. Liu, J. Li, Bifurcation of a heroin model with nonlinear incidence rate, Nonlinear Dyn., 88 (2017), 555-565. doi: 10.1007/s11071-016-3260-9
![]() |
[9] |
G. P. Samanta, Dynamic behaviour for a nonautonomous heroin epidemic model with time delay, J. Appl. Math. Comput., 35 (2011), 161-178. doi: 10.1007/s12190-009-0349-z
![]() |
[10] | I. M. Wangari, L. Stone, Analysis of a heroin epidemic model with saturated treatment function, J. Appl. Math., 2017 (2017), 1-22. |
[11] |
J. Liu, T. Zhang, Global behaviour of a heroin epidemic model with distributed delays, Appl. Math. Lett., 24 (2011), 1685-1692. doi: 10.1016/j.aml.2011.04.019
![]() |
[12] | B. Fang, X. Li, M. Martcheva, L. Cai, Global asymptotic properties of a heroin epidemic model with treat-age, Appl. Math. Comput., 263 (2015), 315-331. |
[13] | S. Djilali, T. M. Touaoula, S. E. H. Miri, A heroin epidemic model: very general non linear incidence, treat-age, and global stability, Acta Appl. Math., 152 (2017), 171-194. |
[14] | E. White, C. Comiskey, Heroin epidemics, treatment and ODE modelling, Math. Biosci., 208 (2007), 312-324. |
[15] | G. Mulone, B. Straughan, A note on heroin epidemics, Math. Biosci., 218 (2009), 138-141. |
[16] |
J. Mushanyu, F. Nyabadza, G. Muchatibaya, A. G. R. Stewart, Modelling multiple relapses in drug epidemics, Ricerche Mat., 65 (2016), 37-63. doi: 10.1007/s11587-015-0241-0
![]() |
[17] | B. Fang, X. Li, M. Martcheva, L. Cai, Global stability for a heroin model with two distributed delays, Disc. Cont. Dyna. Sys., 19 (2014), 715-733. |
[18] |
Y. Muroya, H. Li, T. Kuniya, Complete global analysis of an SIRS epidemic model with graded cure and incomplete recovery rates, J. Math. Anal. Appl., 410 (2014), 719-732. doi: 10.1016/j.jmaa.2013.08.024
![]() |
[19] | F. Nyabadza, S. D. Hove-Musekwa, From heroin epidemics to methamphetamine epidemics: Modelling substance abuse in a South African province, Math. Biosci., 225 (2010), 132-140. |
[20] |
G. Huang, A. Liu, A note on global stability for a heroin epidemic model with distributed delay, Appl. Math. Lett., 26 (2013), 687-691. doi: 10.1016/j.aml.2013.01.010
![]() |
[21] |
X. Liu, J. Wang, Epidemic dynamics on a delayed multi-group heroin epidemic model with nonlinear incidence rate, J. Nonlinear Sci. Appl., 9 (2016), 2149-2160. doi: 10.22436/jnsa.009.05.20
![]() |
[22] |
B. Fang, X. Li, M. Martcheva, L. Cai, Global stability for a heroin model with age-dependent susceptibility, J. Syst. Sci. Complex., 28 (2015), 1243-1257. doi: 10.1007/s11424-015-3243-9
![]() |
[23] |
J. Yang, X. Li, F. Zhang, Global dynamics of a heroin epidemic model with age structure and nonlinear incidence, Int. J. Biomath., 9 (2016), 1650033. doi: 10.1142/S1793524516500339
![]() |
[24] | J. Wang, J. Wang, T. Kuniya, Analysis of an age-structured multi-group heroin epidemic model, Appl. Math. Comput., 347 (2019), 78-100. |
[25] | G. Grippenberg, S. O. Londen, O. Staffans, Volterra Integral and Functional Equations, Cambridge University Press, Cambridge, 1990. |
[26] | G. F. Webb, Theory of Nonlinear Age-dependent Population Dynamics, Marcel Dekker: New York, 1985. |
[27] | X. Li, J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser: Boston, 1995. |
[28] |
A. Khan, G. Zaman, Optimal control strategy of SEIR endemic model with continuous agestructure in the exposed and infectious classes, Optim. Contr. Appl. Meth., 39 (2018), 1716-1727. doi: 10.1002/oca.2437
![]() |
[29] | D. L. Lukes, Differential Equations: Classical to Controlled, Mathematics in Science and Engineering, Academic Press: New York, 1982. |
[30] | M. Martcheva, Age-Structured Epidemic Models. In: An Introduction to Mathematical Epidemiology, Texts in Applied Mathematics, Vol 61, Springer, Boston, MA, 2015. |
[31] |
M. Thater, K. Chudej, H. J. Pesch, Optimal vaccination strategies for an SEIR model of infectious diseases with logistic growth, Math. Biosc. Eng., 15 (2017), 485-505. doi: 10.3934/mbe.2018022
![]() |