Citation: Xiping Liu, Mei Jia, Zhanbing Bai. Nonlocal problems of fractional systems involving left and right fractional derivatives at resonance[J]. AIMS Mathematics, 2020, 5(4): 3331-3345. doi: 10.3934/math.2020214
[1] | A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science Limited, 2006. |
[2] | I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering, Academic Press, 1999. |
[3] | K. Diethelm, The analysis of fractional differential equations, Springer-Verlag, Berlin, 2010. |
[4] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John-Wily and Sons, New York, 1993. |
[5] | Y. Zhou, Basic Theory of fractional differential equations, World Scientific, Singapore, 2014. |
[6] | Q. Song, Z. Bai, Positive solutions of fractional differential equations involving the RiemannStieltjes integral boundary condition, Adv. Differ. Equ., 2018 (2018), 183. |
[7] | X. Zhao, Y. Liu, H. Pang, Iterative positive solutions to a coupled fractional differential system with the multistrip and multipoint mixed boundary conditions, Adv. Differ. Equ., 2019 (2019), 1-23. doi: 10.1186/s13662-018-1939-6 |
[8] | Y. Tian, S. Sun, Z. Bai, Positive solutions of fractional differential equations with p-Laplacian, J. Funct. Space., 2017 (2017). |
[9] | G. C. Wu, D. Baleanu, Z. Deng, et al. Lattice fractional diffusion equation in terms of a RieszCaputo difference, Physica A: Statistical Mechanics and its Applications, 438 (2015), 335-339. doi: 10.1016/j.physa.2015.06.024 |
[10] | X. Liu, M. Jia, W. Ge, The method of lower and upper solutions for mixed fractional four-point boundary value problem with p-Laplacian operator, Appl. Math. Lett., 65 (2017), 56-62. doi: 10.1016/j.aml.2016.10.001 |
[11] | S. K. Ntouyas, J. Tariboon, P. Thiramanus, Mixed problems of fractional coupled systems of Riemann-Liouville differential equations and Hadamard integral conditions, J. Comput. Anal. Appl., 21 (2016), 813-828. |
[12] | X. Liu, M. Jia, The method of lower and upper solutions for the general boundary value problems of fractional differential equations with p-Laplacian, Adv. Differ. Equ., 2018 (2018), 1-15. doi: 10.1186/s13662-017-1452-3 |
[13] | F. Ge, C. Kou, Stability analysis by Krasnoselskii's fixed point theorem for nonlinear fractional differential equations, Appl. Math. Comput., 257 (2015), 308-316. |
[14] | L. Yang, Application of Avery-Peterson fixed point theorem to nonlinear boundary value problem of fractional differential equation with the Caputo's derivative, Commun. Nonlinear Sci., 17 (2012), 4576-4584. doi: 10.1016/j.cnsns.2012.04.010 |
[15] | Y. Xu, Z. He, Synchronization of variable-order fractional financial system via active control method, Open Phys., 11 (2013), 824-835. |
[16] | A. Bashir, S. K. Ntouyas, Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions, Appl. Math. Comput., 266 (2015), 615-622. |
[17] | B. Zhu, L. Liu, Y. Wu, Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay, Comput. Math. Appl., 78 (2019), 1811-1818. doi: 10.1016/j.camwa.2016.01.028 |
[18] | M. Fečkan, J. Wang, Periodic impulsive fractional differential equations, Adv. Nonliear Anal., 8 (2019): 482-496. |
[19] | R. Arévalo, A. Garcimartín, D. Maza, Anomalous diffusion in silo drainage, The European Physical Journal E, 23 (2007), 191-198. doi: 10.1140/epje/i2006-10174-1 |
[20] | J. S. Leszczynski, T. Blaszczyk, Modeling the transition between stable and unstable operation while emptying a silo, Granul. Matter, 13 (2011), 429-438. doi: 10.1007/s10035-010-0240-5 |
[21] | E. Szymanek, The application of fractional order differential calculus for the description of temperature profiles in a granular layer, Advances in the Theory and Applications of Non-integer Order Systems, 257 (2013), 243-248. doi: 10.1007/978-3-319-00933-9_22 |
[22] | Y. Tian, J. J. Nieto, The applications of critical-point theory to discontinuous fractional-order differential equations, P. Edinburgh Math. Soc., 60 (2017 ), 1021-1051. |
[23] | M. Jia, X. Liu, Multiplicity of solutions for integral boundary value problems of fractional differential equations with upper and lower solutions, Appl. Math. Comput., 232 (2014), 313-323. |
[24] | M. Jia, L. Li, X. Liu, et al. A class of nonlocal problems of fractional differential equations with composition of derivative and parameters, Adv. Differ. Equ., 2019 (2019). |
[25] | C. Bai, Infinitely many solutions for a perturbed nonlinear fractional boundary-value problem, Electron. J. Differ. Equ., 2013 (2013), 1-12. doi: 10.1186/1687-1847-2013-1 |
[26] | M. Galewski, G. M. Bisci, Existence results for one-dimensional fractional equations, Math. Method. Appl. Sci., 39 (2016), 1480-1492. doi: 10.1002/mma.3582 |
[27] | Y. Zhao, H. Chen, B. Qin, Multiple solutions for a coupled system of nonlinear fractional differential equations via variational methods, Appl. Math. Comput., 257 (2015), 417-427. |
[28] | X. Liu, M. Jia, Solvability and numerical simulations for BVPs of fractional coupled systems involving left and right fractional derivatives, Appl. Math. Comput., 353 (2019), 230-242. |
[29] | C. Torres, Existence of a solution for the fractional forced pendulum, J. Appl. Math. Comput. Mech., 13 (2014), 125-142. doi: 10.17512/jamcm.2014.1.13 |
[30] | T. Blaszczyk, E. Kotela, M. R. Hall, et al. Analysis and applications of composed forms of Caputo fractional derivatives, Acta Mechanica et Automatica, 5 (2011), 11-14. |
[31] | F. Jiao, Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl. 62 (2011), 1181-1199. doi: 10.1016/j.camwa.2011.03.086 |
[32] | R. E. Gaines, J. Mawhin, Coincidence degree and nonlinear differential equations, 1977. |