Citation: Junjie Mao, Xiaowei Liu. Dynamical analysis of Kaldor business cycle model with variable depreciation rate of capital stock[J]. AIMS Mathematics, 2020, 5(4): 3321-3330. doi: 10.3934/math.2020213
[1] | N. Kaldor, A model of the trade cycle, Econ. J., 50 (1940), 78-92. doi: 10.2307/2225740 |
[2] | W. W. Chang, D. J. Smyth, The existence and persistence of cycles in a non-linear model: Kaldor's 1940 model re-examined, Rev. Econ. Study., 38 (1971), 37-44. doi: 10.2307/2296620 |
[3] | J. Grasman, J. J. Wentzel, Co-existence of a limit cycle and an equilibrium in kaldor's business cycle model and its consequences, J. Econ. Behav. Organ., 24 (1994), 369-377. doi: 10.1016/0167-2681(94)90043-4 |
[4] | K. Hattaf, D. Riad, N. Yousfi, A generalized business cycle model with delays in gross product and capital stock, Chaos Soliton. Fract., 98 (2017), 31-37. doi: 10.1016/j.chaos.2017.03.001 |
[5] | A. Krawiec, M. Szydlowski, The Kaldor-Kalecki business cycle model, Ann. Oper. Res., 89 (1999), 89-100. doi: 10.1023/A:1018948328487 |
[6] | X. P. Wu, Codimension-2 bifurcations of the Kaldor model of business cycle, Chaos Soliton. Fract., 44 (2011), 28-42. doi: 10.1016/j.chaos.2010.11.002 |
[7] | S. Chatterjee, Capital utilization, economic growth and convergence, J. Econ. Dyn. Control., 29 (2005), 2093-2124. doi: 10.1016/j.jedc.2004.10.005 |
[8] | E. Angelopoulou, S. Kalyvitis, Estimating the Euler equation for aggregate investment with endogenous capital depreciation, South. Econ. J., 78 (2012), 1057-1078. doi: 10.4284/0038-4038-78.3.1057 |
[9] | M. Ishaq Nadiri, I. R. Prucha, Estimation of the depreciation rate of physical and R&D capital in the U.S. total manufacturing sector, Econ. Inq., 34 (1996), 43-56. doi: 10.1111/j.1465-7295.1996.tb01363.x |
[10] | Z. Ma, Y. Zhou, Qualitative and Stable Methods for Ordinary Differential Equations, Science Press, Beijing, 2001. |
[11] | J. Zhang, B. Feng, Geometric Theory and Bifurcation Problem of Ordinary Differential Equations, 2 Eds., Peking University Press, Beijing, 2000. |