Research article Special Issues

Complex solitons in the conformable (2+1)-dimensional Ablowitz-Kaup-Newell-Segur equation

  • In this paper, we study on the conformable (2+1)-dimensional Ablowitz-KaupNewell-Segur equation in order to show the existence of complex combined dark-bright soliton solutions. To this purpose an effective method which is the sine-Gordon expansion method is used. The 2D and 3D surfaces under some suitable values of parameters are also plotted.

    Citation: Wei Gao, Gulnur Yel, Haci Mehmet Baskonus, Carlo Cattani. Complex solitons in the conformable (2+1)-dimensional Ablowitz-Kaup-Newell-Segur equation[J]. AIMS Mathematics, 2020, 5(1): 507-521. doi: 10.3934/math.2020034

    Related Papers:

    [1] Mohammad Alqudah, Safyan Mukhtar, Albandari W. Alrowaily, Sherif. M. E. Ismaeel, S. A. El-Tantawy, Fazal Ghani . Breather patterns and other soliton dynamics in (2+1)-dimensional conformable Broer-Kaup-Kupershmit system. AIMS Mathematics, 2024, 9(6): 13712-13749. doi: 10.3934/math.2024669
    [2] Naeem Ullah, Muhammad Imran Asjad, Azhar Iqbal, Hamood Ur Rehman, Ahmad Hassan, Tuan Nguyen Gia . Analysis of optical solitons solutions of two nonlinear models using analytical technique. AIMS Mathematics, 2021, 6(12): 13258-13271. doi: 10.3934/math.2021767
    [3] Faeza Lafta Hasan, Mohamed A. Abdoon, Rania Saadeh, Ahmad Qazza, Dalal Khalid Almutairi . Exploring analytical results for (2+1) dimensional breaking soliton equation and stochastic fractional Broer-Kaup system. AIMS Mathematics, 2024, 9(5): 11622-11643. doi: 10.3934/math.2024570
    [4] Yaya Wang, Md Nurul Raihen, Esin Ilhan, Haci Mehmet Baskonus . On the new sine-Gordon solitons of the generalized Korteweg-de Vries and modified Korteweg-de Vries models via beta operator. AIMS Mathematics, 2025, 10(3): 5456-5479. doi: 10.3934/math.2025252
    [5] Haci Mehmet Baskonus, Md Nurul Raihen, Mehmet Kayalar . On the extraction of complex behavior of generalized higher-order nonlinear Boussinesq dynamical wave equation and (1+1)-dimensional Van der Waals gas system. AIMS Mathematics, 2024, 9(10): 28379-28399. doi: 10.3934/math.20241377
    [6] Gulnur Yel, Haci Mehmet Baskonus, Wei Gao . New dark-bright soliton in the shallow water wave model. AIMS Mathematics, 2020, 5(4): 4027-4044. doi: 10.3934/math.2020259
    [7] Gaukhar Shaikhova, Bayan Kutum, Ratbay Myrzakulov . Periodic traveling wave, bright and dark soliton solutions of the (2+1)-dimensional complex modified Korteweg-de Vries system of equations by using three different methods. AIMS Mathematics, 2022, 7(10): 18948-18970. doi: 10.3934/math.20221043
    [8] Mustafa Inc, Mamun Miah, Akher Chowdhury, Shahadat Ali, Hadi Rezazadeh, Mehmet Ali Akinlar, Yu-Ming Chu . New exact solutions for the Kaup-Kupershmidt equation. AIMS Mathematics, 2020, 5(6): 6726-6738. doi: 10.3934/math.2020432
    [9] Aslı Alkan, Halil Anaç . A new study on the Newell-Whitehead-Segel equation with Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2024, 9(10): 27979-27997. doi: 10.3934/math.20241358
    [10] Chun Huang, Zhao Li . New soliton solutions of the conformal time derivative generalized $ q $-deformed sinh-Gordon equation. AIMS Mathematics, 2024, 9(2): 4194-4204. doi: 10.3934/math.2024206
  • In this paper, we study on the conformable (2+1)-dimensional Ablowitz-KaupNewell-Segur equation in order to show the existence of complex combined dark-bright soliton solutions. To this purpose an effective method which is the sine-Gordon expansion method is used. The 2D and 3D surfaces under some suitable values of parameters are also plotted.


    Various natural phenomena, especially in physics, are commonly modelled by nonlinear differential equations. For a better understanding of the behaviors of these equations and the properties of the corresponding solutions, many researchers have improved various methods such as the homotopy perturbation method [1,2], the homotopy analysis method [3,4], expfunction method [5,6], exp(Ω(ξ)) expansion function method [7], extended sinh- Gordon equation expansion method [8,9,10,11], Hirota' s bilinear method [12], Bäcklund transformation [13]. By using the sine-Gordon expansion method we will investigate the solutions of the conformable (2+1)-dimensional Ablowitz-Kaup-Newell-Segur equation. The Ablowitz-KaupNewell-Segur(AKNS) water wave equation which is playing a fundamental role in physics [14]. A number of methods have been used for searching explicit solutions to the AKNS equation. Like for, the inverse scattering transformation, the modified simple equation method, the Hirota' s bilinear method, the ansatz method, the bilinear Bäcklund transformation [15,16,17,18,19,20,21,22]. However, only recently some authors have attempted to solve the Ablowitz-KaupNewell-Segur equation with fractional derivative [23,24]. Nowadays, the researchers study on fractional calculus and improved new operators which are known as the Caputo, the RiemannLiouville, the CaputoFabrizio, the AtanganaBaleanu derivatives. Fractional order models are better describe the real-world problems and thus they are used in engineering and applied sciences. The scientists have proposed many mathematical tools to fractional models recently, they can be seen in [35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61]. The conformable fractional operator overcome some limitations of other fractional operators and provides basic properties of classical calculus such as derivative of the quotient of two functions, the chain rule, the product of two functions, Rolle's theorem, mean value theorem. The application of the conformable derivatives is simpler and very efficient. Furthermore, it allows us better understand behaviors of pysical phenomenon.

    In this paper, we study the Conformable (2+1)-dimensional AKNS (CAKNS) water wave equation with a perturbation parameterρ,

    42αφxαtα+4αφx3αtα+8αφxα2αφxαyα+42αφx2ααφyαρ2αφx2α=0,0<α1, (1.1)

    where α denotes the conformable derivative respect to x,y,t.

    The paper is organized as follows. The definition and some properties of conformable derivative are given in section 2, the main structure of the sine-Gordon expansion method (SGEM)is given in section 3. We will give application the SGEM to the mention equation in section 4. Conclusions are given in the last section 5.

    Definition: Let h:[0,) R be a given function, the conformable derivative of h of order α is defined as,

    Lα(h)(t)=limε0h(t+εt1α)h(t)ε,

    for all t>0,α (0, 1) [25].

    Theorem: Let Lα be the derivative operator with order α and α(0,1)andh,k be α- differentiable at a point t>0.Then [25,26], we have the following

    . Lα(ah+bk)=aLα(h)+bLα(k), a,bR.

    . Lα(tp)=ptpα, pR.

    . Lα(hk)=hLα(g)+kLα(f).

    . Lα(hk)=kLα(h)hLα(k)k2.

    . Lα(λ)=0, for all constant functions h(t)=λ.

    . If h is differentiable then Lα(h)(t)=t1αdhdt(t).

    We will give general structure of the SGEM in this section.

    Let us consider the (2+1)-dimensional sine-Gordon equation is given by [27,28,29,30,31,32,33,34];

    φ2αxx+φ2αyyφ2αtt=η2sin(φ), (3.1)

    where φ=φ(x,y,t),η is a real constant. Using the wave transform φ=φ(x,y,t)=U(ψ), ψ=cosθxαα+sinθyαα+ctαα to to Eq.(2), we can find the nonlinear ordinary differential equations,

    U=η2(1c2)sin(U), (3.2)

    where U=U(ψ),ψandc are the amplitude and velocity of the travelling waves, respectively. We integrate Eq.(3) then we obtain as follows;

    [(U2)]2=η2(1c2)sin2(U2)+K, (3.3)

    where Kis the integration constant. Substituting K=0,w(ψ)=U2andb2=η2(1c2) in Eq.(4), gives

    w=bsin(w). (3.4)

    Setting b=1 in Eq.(5) gives

    w=sin(w). (3.5)

    Solving Eq.(6) via separation of variables, we obtain

    sin(w(ψ))=sech(ψ), (3.6)
    cos(w(ψ))=tanh(ψ), (3.7)

    Suppose that the nonlinear fractional differential equation is given in the more general form;

    P(φαx,φαt,φαy,φ2αxx,φαxφ2αxy,φ2αxt,φ3αxxy,.....), (3.8)

    where and α(0,1] is the order of the conformable derivative. To obtain the solutions of Eq.(9), we suppose the following expressions

    U(ψ)=ni=1tanhi1(ψ)[Bisech(ψ)+Aitanh(ψ)]+A0. (3.9)
    U(w)=ni=1cosi1(w)[Bisin(w)+Aicos(w)]+A0. (3.10)

    Applying the homogeneous balance principle between the highest power nonlinear term and highest derivative in the nonlinear ordinary differential equation(NODE), we determine the value of n. Putting Eq.(11) and its consecutive derivatives into the NODE, we obtain a polynomial equation with sini(w)cosj(w) Using some trigonometric properties to the polynomial equation, it is obtained an algebraic equation system by equating to zero the same power summation of coefficients. With aid of the computation programme, we solve the equation system to obtain the Ai,Bi,andc values. Substituting the Ai,Bi,c values into Eq.(10), we get the new travelling wave solutions to the Eq.(9).

    In this section, we will give application of the SGEM to conformable(2+1)-dimensional Ablowitz-Kaup-Newell-Segurwater wave equation. Let us consider the Eq.(1). Putting the following wave transformation into Eq.(1)

    φ(x,y,t)=U(ψ),ψ=cosθxαα+sinθyαα+ctαα, (4.1)

    So that by using the conformable derivative properties, the Eq.(1) is converted into

    (4ccosθρcos2θ)U+(12sinθcos2θ)UU+(ccos3θ)Uiv=0, (4.2)

    Integrating once Eq.(13) with respect to ψ, we obtain

    (4ccosθρcos2θ)U+(6sinθcos2θ)(U)2+(ccos3θ)U=0, (4.3)

    We transform U=V, it can be written as,

    (4ccosθρcos2θ)V+(6sinθcos2θ)(V)2+(ccos3θ)V=0, (4.4)

    Using the homogenous balance principle between VandV2, we obtain

    n=2 (4.5)

    For the value n=2 Eq.(11) take the form,

    V(w)=B1sin(w)+A1cos(w)+B2cos(w)sin(w)+A2cos2(w)+A0, (4.6)

    Differentiating Eq.(17) twice, yields

    V(w)=B1cos2(w)sin(w)B1sin3(w)2A1sin2(w)cos(w)+B2cos3(w)sin(w)5B2sin3(w)cos(w)4A2cos2(w)sin2(w)+2A2sin4(w), (4.7)

    Substituting Eqs.(17–18) into Eq.(15), we obtain a trigonometric function with different degrees. Equating to zero all sum of coefficients of the same power of the trigonometric functions, we get the following algebraic equation system.

    constants:4ccos[θ]A0ρcos[θ]2A0+6cos[θ]2sin[θ]A20+6cos[θ]2sin[θ]B21+2ccos[θ]3A2=0

    Cos[w]:4ccos[θ]A1ρcos[θ]2A1+12cos[θ]2sin[θ]A0A1+12cos[θ]2sin[θ]A1A2=0,

    Cos[w]Sin[w]2:2ccos[θ]3A112cos[θ]2sin[θ]A1A2+12cos[θ]2sin[θ]B1B2=0

    Cos[w]2:6cos[θ]2sin[θ]A21+4ccos[θ]A2ρcos[θ]2A22ccos[θ]3A2+12cos[θ]2sin[θ]A0A2+6cos[θ]2sin[θ]A226cos[θ]2sin[θ]B21=0

    Cos[w]2Sin[w]2:6ccos[θ]3A26cos[θ]2sin[θ]A22+6cos[θ]2sin[θ]B22=0

    Sin[w]:4ccos[θ]B1ρcos[θ]2B1ccos[θ]3B1+12cos[θ]2sin[θ]A0B1=0

    Cos[w]2Sin[w]:2ccos[θ]3B1+12cos[θ]2sin[θ]A2B1+12cos[θ]2sin[θ]A1B2=0

    Cos[w]Sin[w]:12cos[θ]2sin[θ]A1B1+4ccos[θ]B2ρcos[θ]2B2+ccos[θ]3B2+12cos[θ]2sin[θ]A0B2+12cos[θ]2sin[θ]A2B2=0

    Cos[w]Sin[w]3:6ccos[θ]3B212cos[θ]2sin[θ]A2B2=0

    The solution of this set of equation gives the coefficients of Eq.(10).So that we have the following cases:

    Case 1:

    A0=A2;B1=0;A1=0;B2=iA2;ρ=2(4+cos[θ]2)sin[θ]A2cos[θ]2;c=2sin[θ]A2cos[θ], gives the solution in the form,

    φ1(x,y,t)=A2(iSech[f(x,y,t)]Tanh[f(x,y,t)]) (4.8)

    where f(x,y,t)=xαcos[θ]+yαsin[θ]α2tαsin[θ]A2αcos[θ]

    Case 2:

    A0=2A23;B1=0;A1=0;B2=iA2;ρ=2(4+cos[θ]2)sin[θ]A2cos[θ]2;c=2sin[θ]A2cos[θ], gives the solution

    φ2(x,y,t)=13A2(f(x,y,t)+3iSech[f(x,y,t)]3Tanh[f(x,y,t)]) (4.9)

    Case 3:

    A0=ρcos[θ]212sin[θ]3cos[θ]2sin[θ];A1=0;A2=ρcos[θ]22(4+cos[θ]2)sin[θ];B1=0;B2=iρcos[θ]22(4+cos[θ]2)sin[θ];c=ρcos[θ]4+cos[θ]2,enable to write the solution as,

    φ3(x,y,t)=ρcos[θ]2(g(x,y,t)+3iSech[g(x,y,t)]3Tanh[g(x,y,t)])6(4+cos[θ]2)sin[θ] (4.10)

    where g(x,y,t)=xαcos[θ]+yαsin[θ]αtαρcos[θ]α(4+cos[θ]2)

    Case 4:

    A0=ccos[θ]2sin[θ];A1=0;A2=ccos[θ]2sin[θ];B1=0;B2=iccos[θ]2sin[θ];ρ=c(4+cos[θ]2)cos[θ], gives,

    φ4(x,y,t)=c2cot[θ](iSech[ψ]+Tanh[ψ]) (4.11)

    Case 5:

    A0=ccos[θ]3sin[θ];A1=0;A2=ccos[θ]2sin[θ];B1=0;B2=iccos[θ]2sin[θ];ρ=4ccos[θ]ccos[θ],

    φ5(x,y,t)=c6cosec[θ](ψ3iSech[ψ]12Tanh[ψ]) (4.12)

    Case 6:

    A1=0;A2=3A02;B1=0;B2=3iA02;ρ=3(4+cos[θ]2)sin[θ]A0cos[θ]2;c=3sin[θ]A0cos[θ], enable to write the solution as,

    φ6(x,y,t)=12A0(h(x,y,t)3iSech[h(x,y,t)]3Tanh[h(x,y,t)]) (4.13)

    where h(x,y,t)=xαcos[θ]+yαsin[θ]α+3tαsin[θ]A0αcos[θ],

    In this paper, SGEM has been applied to the conformable (2+1)-dimensional AKNS water wave equation. We have found complex combined dark-bright soliton solutions. The two- and three-dimensional surfaces of all solutions obtained by SGEM under the suitable values of parameters were plotted by showing the main characteristic physical properties of the solutions. The all 2D graphics are observed when the fractional order α=0.5,0.9,1 respectively. When α=0.5 in Figures 2, 4, 6, 10, 12, the solutions behave unstable, in Figure 8 the solution for all α values same behavior. It is also observed that Figures 1, 3, 5, 7, 9, 11 have presented travelling wave behaviours for the governing model. It is seen that fractional order approaches to α=1 the solutions act similar behaviors to integer order. Moreover, the difference of the method is giving different new solutions to have powerful nonlinearity differential equations which have not analytical solutions. It can be also observed that the obtained results may be helpful to better understand water wave propagation, especially in ocean wave dynamics. To the best of our knowledge, these entirely new solutions to the conformable (2+1)-dimensional AKNS have been firstly submitted to the literature. We will develop the above approach to use the differential equations have powerful nonlinearity future analysis.

    Figure 1.  The 3D and contour plots of φ1(x,y,t) when α=0.9,A2=1,θ=π2.
    Figure 2.  The 2D- plots of φ1(x,y,t) when α=0.5,0.9,1,A2=1,θ=π2,t=1.
    Figure 3.  The 3D and contour plots of φ2(x,y,t) when α=0.9,A2=1,θ=π2.
    Figure 4.  The 2D- plots of φ2(x,y,t) when α=0.5,0.9,1,A2=1,θ=π2,t=1.
    Figure 5.  The 3D and contour plots of φ3(x,y,t) when α=0.9,ρ=0.5,θ=π2.
    Figure 6.  The 2D- plots of φ3(x,y,t) when α=0.5,0.9,1,ρ=0.5,θ=π2,t=1.
    Figure 7.  The 3D and contour plots of φ4(x,y,t) when α=0.9,c=0.17,θ=π2.
    Figure 8.  The 2D- plots of φ4(x,y,t) when α=0.5,0.9,1,c=0.17,θ=π2,t=1.
    Figure 9.  The 3D and contour plots of φ5(x,y,t) when α=0.9,c=0.17,θ=π2.
    Figure 10.  The 2D- plots of φ5(x,y,t) when α=0.5,0.9,1,c=0.17,θ=π2,t=1.
    Figure 11.  The 3D and contour plots of φ6(x,y,t) when α=0.9,A0=0.5,θ=π2.
    Figure 12.  The 2D- plots of φ6(x,y,t) when α=0.5,0.9,1,A0=0.5,θ=π2,t=1.

    Authors declare that there is no conflict of interest in this paper.



    [1] J. H. He, Application of Homotopy Perturbation Method to Nonlinear Wave Equations, Chaos Soliton. Fract., 26 (2005), 695-700. doi: 10.1016/j.chaos.2005.03.006
    [2] J. H. He, Homotopy perturbation method for bifurcation of nonlinear problems, Int. J. Nonlinear Sci., 6 (2005), 207-208.
    [3] S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman and Hall/CRC Press, 2003.
    [4] Z. F. Kocak, H. Bulut, G. Yel, The solution of fractional wave equation by using modified trial equation method and homotopy analysis method, AIP Conference Proceedings, 1637 (2014), 504-512. doi: 10.1063/1.4904617
    [5] J. H. He, Exp-function Method for Fractional Differential Equations, Int. J. Nonlinear Sci., 14 (2013), 363-366.
    [6] S. Zhang, H. Q. Zhang, An Exp-function method for new N-soliton solutions with arbitrary functions of a (2+1)-dimensional vcBK system, Comput. Math. Appl., 61 (2011), 1923-1930. doi: 10.1016/j.camwa.2010.07.042
    [7] A. Ali, M. A. Iqbal, Q. M. UL Hassan, et al. An efficient technique for higher order fractional differential equation, Springer Plus, 5 (2016), 281.
    [8] C. Cattani, T. A. Sulaiman, H. M. Baskonus, On the soliton solutions to the Nizhnik-NovikovVeselov and the Drinfeld-Sokolov systems, Opt. Quant. Electron., 50 (2018), 138.
    [9] H. Bulut, T. A. Sulaiman, H. M. Baskonus,et al. Optical solitons and other solutions to the conformable space-time fractional Fokas-Lenells equation, Optik, 172 (2018), 20-27. doi: 10.1016/j.ijleo.2018.06.108
    [10] W. Xian-Lin and T. Jia-Shi, Travelling Wave Solutions for Konopelchenko-Dubrovsky Equation Using an Extended sinh-Gordon Equation Expansion Method, Commun. Theor. Phys., 50 (2008), 1047.
    [11] T. A. Sulaiman, G. Yel, H. Bulut, M-fractional solitons and periodic wave solutions to the Hirota Maccari system, Mod. Phys. Lett. B, 33 (2019), 1950052.
    [12] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192-1194. doi: 10.1103/PhysRevLett.27.1192
    [13] M. R. Miura, Bäcklund Transformation, Springer-Verlag, Berlin, 1978.
    [14] M. J. Ablowitz, D. J. Kaup, A. C. Newell, et al. The inverse scattering transform-fourier analysis for nonlinear problems, Stud. Appl. Math., 53 (1974), 249-315. doi: 10.1002/sapm1974534249
    [15] M. A. Helal, A. R.Seadawy, M. H. Zekry, Stability analysis solutions for the fourth-order nonlinear Ablowitz-Kaup-Newell-Segurwater wave equation, Appl. Math. Sci., 7 (2013), 3355-3365.
    [16] V. B. Matveev, A. O. Smirnov, Solutions of the Ablowitz-Kaup- Newell-Segur hierarchy equations of the "rogue wave" type: an unified approach, Theor. Math. Phys., 186 (2016), 3355-3365.
    [17] A. M. Wazwaz, The (2+1) and (3+1)-dimensional CBS equations: multiple soliton solutions and multiple singular soliton solutions, Z. Naturforsch Pt A., 65 (2010), 173-181.
    [18] T. Özer, New traveling wave solutions to AKNS and SKdV equations, Chaos Soliton. Fract., 42 (2009), 577-583. doi: 10.1016/j.chaos.2009.01.023
    [19] Z. Cheng, X. Hao, The periodic wave solutions for a (2+1)-dimensional AKNS equation, Appl. Math. Comput., 234 (2014), 118-126.
    [20] A. Ali, A. R. Seadawy, D. Lu, Computational methods and traveling wave solutions for the fourthorder nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation via two methods and its applications, Open Phys., 16 (2018), 219-226. doi: 10.1515/phys-2018-0032
    [21] S. Zhang, Z. Wang, Bilinearization and new soliton solutions of Whitham-Broer-Kaup equations with time-dependent coefficients, J. Nonlinear Sci. Appl., 10 (2017), 2324-2339. doi: 10.22436/jnsa.010.05.05
    [22] D. Y. Chen, X. Y. Zhu, J. B. Zhang, et al. New soliton solutions to isospectral AKNS equations, Chinese Journal of Contemporary Mathematics, 33 (2012), 167-167.
    [23] H. C. Yaslan, A. Girgin, New exact solutions for the conformable space-time fractional KdV, CDG, (2+1)-dimensional CBS and (2+1)-dimensional AKNS equations, Journal of Taibah University for Science, 13 (2018), 1-8. doi: 10.1016/j.jtumed.2017.06.003
    [24] F. Ferdous, M. G. Hafez, Oblique closed form solutions of some important fractional evolution equations via the modified Kudryashov method arising in physical problems, Journal of Ocean Engineering and Science, 3 (2018), 244-252. doi: 10.1016/j.joes.2018.08.005
    [25] R. Khalil, M. Al Horani, A. Yousef, et al. A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. doi: 10.1016/j.cam.2014.01.002
    [26] A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 889-898.
    [27] C. Cattani, T. A. Sulaiman, H. M. Baskonus, et al. Solitons in an inhomogeneous Murnaghan's rod, European Physical Journal Plus, 133 (2018), 1-12. doi: 10.1140/epjp/i2018-11804-8
    [28] H. M. Baskonus, New acoustic wave behaviors to the Davey-Stewartson equation with power-law nonlinearity arising in fluid dynamics, Nonlinear Dynam., 86 (2016), 177-183. doi: 10.1007/s11071-016-2880-4
    [29] C. Yan, A simple transformation for nonlinear waves, Phys. Lett. A, 224 (1996), 77-84. doi: 10.1016/S0375-9601(96)00770-0
    [30] H. Bulut, T. A. Sulaiman, H. M. Baskonus, New solitary and optical wave structures to the Korteweg-de Vries equation with dual-power law nonlinearity, Opt. Quant. Electron., 48 (2016), 1-14. doi: 10.1007/s11082-015-0274-3
    [31] Z. Yan, H. Zhang, New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics, Phys. Lett. A, 252 (1999), 291-296. doi: 10.1016/S0375-9601(98)00956-6
    [32] H. M. Baskonus, T. A. Sulaiman, H. Bulut, New Solitary Wave Solutions to the (2+1)-Dimensional Calogero-Bogoyavlenskii-Schi and the Kadomtsev-Petviashvili Hierarchy Equations, Indian J. Phys., 91 (2017), 1237-1243. doi: 10.1007/s12648-017-1033-z
    [33] Y. Zhen-Ya, Z. Hong-Oing, F. En-Gui, New explicit and travelling wave solutions for a class of nonlinear evolution equations, Acta. Phys. Sin, 48 (1999), 1-5.
    [34] C. Cattani, T. A. Sulaiman, H. M. Baskonus, et al. On the soliton solutions to the Nizhnik-NovikovVeselov and the Drinfel'd-Sokolov systems, Opt. Quant. Electron., 50 (2018), 138.
    [35] Z. Hammouch, T. Mekkaoui, Travelling-wave solutions for some fractional partial differential equation by means of generalized trigonometry functions, International Journal of Applied Mathematical Research, 1 (2012), 206-212.
    [36] A. Houwe, M. Justin, S. Y. Doka, et. al, New traveling wave solutions of the perturbed nonlinear Schrodinger equation in the left-handed metamaterials, Asian-European Journal of Mathematics, (2018), 2050022.
    [37] M. A. Khan, O. Kolebaje, A. Yildirim, et al, Fractional investigations of zoonotic visceral leishmaniasis disease with singular and non-singular kernel, The European Physical Journal Plus, 134 (2019), 481.
    [38] R. Jan, M. A. Khan, P. Kumam, et. al, Modeling the transmission of dengue infection through fractional derivatives, Chaos Soliton. Fract., 127 (2019), 189-216. doi: 10.1016/j.chaos.2019.07.002
    [39] W. Wang, M. A. Khan, P. Kumam, et al. A comparison study of bank data in fractional calculus, Chaos Soliton. Fract., 126 (2019), 369-384. doi: 10.1016/j.chaos.2019.07.025
    [40] A. Atangana, M. A. Khan, Validity of fractal derivative to capturing chaotic attractors, Chaos Soliton. Fract., 126 (2019), 50-59. doi: 10.1016/j.chaos.2019.06.002
    [41] M. A. Khan, F. Gómez-Aguilar, Tuberculosis model with relapse via fractional conformable derivative with power law, Math. Method. Appl. Sci., 42 (2019), 7113-7125. doi: 10.1002/mma.5816
    [42] M. A. Khan, A. Khan, A. Elsonbaty, et al, Modeling and simulation results of a fractional dengue model, The European Physical Journal Plus, 134 (2019), 379.
    [43] A. Yokus, S. Gulbahar, Numerical Solutions with Linearization Techniques of the Fractional Harry Dym Equation, Applied Mathematics and Nonlinear Sciences, 4 (2019), 35-42. doi: 10.2478/AMNS.2019.1.00004
    [44] X. J. Yang, New general fractional-order rheological models with kernels of Mittag-Leffler functions, Rom. Rep. Phys, 69 (2017), 118.
    [45] K. M. Owolabi, Z. Hammouch, Mathematical modeling and analysis of two-variable system with noninteger-order derivative, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29 (2019), 013145.
    [46] D. W. Brzeziński, Review of numerical methods for NumILPT with computational accuracy assessment for fractional calculus, Applied Mathematics and Nonlinear Sciences, 3 (2018), 487-502. doi: 10.2478/AMNS.2018.2.00038
    [47] M. A. Khan, Z. Hammouch, D. Baleanu, Modeling the dynamics of hepatitis E via the Caputo-Fabrizio derivative, Mathematical Modelling of Natural Phenomena, 14 (2019), 311.
    [48] X. J. Yang, New rheological problems involving general fractional derivatives with nonsingular power-law kernels, Proceedings of the Romanian Academy Series A-Mathematics Physics Technical Sciences Information Science, 19 (2018),45-52.
    [49] D. W. Brzeziński, Comparison of Fractional Order Derivatives Computational Accuracy - Right Hand vs Left Hand Definition, Applied Mathematics and Nonlinear Sciences, 2 (2017), 237-248. doi: 10.21042/AMNS.2017.1.00020
    [50] C. Cattani, Haar wavelet-based technique for sharp jumps classification, Math. Comput. Model., 39 (2004), 255-278. doi: 10.1016/S0895-7177(04)90010-6
    [51] M. Eslami, H. Rezazadeh, The first integral method for Wu-Zhang system with conformable timefractional derivative, Calcolo, 53 (2016), 475-485. doi: 10.1007/s10092-015-0158-8
    [52] P. Veeresha, D. G. Prakasha, H. M. Baskonus, Novel Simulations to the time-fractional Fisher's equation, Mathematical Sciences, 13 (2019), 33-42. doi: 10.1007/s40096-019-0276-6
    [53] I. K. Youssef, M. H. El Dewaik, Solving Poisson's Equations with fractional order using Haarwavelet, Applied Mathematics and Nonlinear Sciences, 2 (2079), 271-284.
    [54] X. J. Yang, F. Gao, Y. Ju, H. W. Zhou, Fundamental solutions of the general fractional-order diffusion equations, Mathematical Methods in the Applied Sciences, 41 (2018), 9312-9320. doi: 10.1002/mma.5341
    [55] J. Singh, D. Kumar, Z. Hammouch, et al. A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Applied Mathematics and Computation, 316 (2018), 504-515. doi: 10.1016/j.amc.2017.08.048
    [56] A. Atangana, Fractional discretization: The African's tortoise walk, Chaos Soliton. Fract., 130 (2020), 109399.
    [57] C. Ravichandran, K. Jothimani, H. M. Baskonus, et al. New results on nondensely characterized integrodifferential equations with fractional order, European Physical Journal Plus, 133 (2018), 1-10. doi: 10.1140/epjp/i2018-11804-8
    [58] K. S. Al-Ghafri, H. Rezazadeh, Solitons and other solutions of (3+1)-dimensional space-time fractional modified KdV-Zakharov-Kuznetsov equation, Applied Mathematics and Nonlinear Sciences, 4 (2019), 289-304. doi: 10.2478/AMNS.2019.2.00026
    [59] W. Gao, B. Ghanbari, H. M. Baskonus, New numerical simulations for some real world problems with Atangana-Baleanu fractional derivative, Chaos Soliton. Fract., 128 (2019), 34-43. doi: 10.1016/j.chaos.2019.07.037
    [60] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A
    [61] A. Atangana, B. T. Alkahtani, Analysis of the Keller-Segel model with a fractional derivative without singular kernel, Entropy, 17 (2015), 4439-4453. doi: 10.3390/e17064439
  • This article has been cited by:

    1. Nilesh Kumar Thakur, Smriti Chandra Srivastava, Archana Ojha, Dynamical Study of an Eco-Epidemiological Delay Model for Plankton System with Toxicity, 2021, 45, 1028-6276, 283, 10.1007/s40995-020-01042-8
    2. Hadi Rezazadeh, Reza Abazari, Mostafa M. A. Khater, Mustafa Inc, Dumitru Baleanu, New optical solitons of conformable resonant nonlinear Schrödinger’s equation, 2020, 18, 2391-5471, 761, 10.1515/phys-2020-0137
    3. M. Higazy, Maryam Ahmed Alyami, New Caputo-Fabrizio fractional order SEIASqEqHR model for COVID-19 epidemic transmission with genetic algorithm based control strategy, 2020, 59, 11100168, 4719, 10.1016/j.aej.2020.08.034
    4. Vahid Reza Hosseini, Farzaneh Yousefi, W.-N. Zou, The numerical solution of high dimensional variable-order time fractional diffusion equation via the singular boundary method, 2021, 20901232, 10.1016/j.jare.2020.12.015
    5. Mostafa M.A. Khater, Raghda A.M. Attia, Choonkil Park, Dianchen Lu, On the numerical investigation of the interaction in plasma between (high & low) frequency of (Langmuir & ion-acoustic) waves, 2020, 18, 22113797, 103317, 10.1016/j.rinp.2020.103317
    6. Sunil Kumar, Surath Ghosh, Mohamed Jleli, Serkan Araci, A fractional system of Cauchy‐reaction diffusion equations by adopting Robotnov function , 2020, 0749-159X, 10.1002/num.22649
    7. Kiran Malathesha Safare, Virupaxappa Shekarappa Betageri, Doddabhadrappla Gowda Prakasha, Pundikala Veeresha, Sunil Kumar, A mathematical analysis of ongoing outbreak COVID ‐19 in India through nonsingular derivative , 2021, 37, 0749-159X, 1282, 10.1002/num.22579
    8. Wei Gao, Mine Senel, Gulnur Yel, Haci Mehmet Baskonus, Bilgin Senel, New complex wave patterns to the electrical transmission line model arising in network system, 2020, 5, 2473-6988, 1881, 10.3934/math.2020125
    9. Haci Mehmet Baskonus, Muhammad Younis, Muhammad Bilal, Usman Younas, Wei Gao, Modulation instability analysis and perturbed optical soliton and other solutions to the Gerdjikov-Ivanov equation in nonlinear optics, 2020, 34, 0217-9849, 2050404, 10.1142/S0217984920504047
    10. Hongqing Liu, Quantitative situational awareness algorithm of land state network based on neutral statistics, 2021, 1868-5137, 10.1007/s12652-020-02827-w
    11. Jinhui Tang, Feng Lou, LA-ICP-MS Zircon U-Pb dating of Early Jurassic granite basement in Chagan Area of the Northest Guangdong and its geological implications, 2020, 24, 2339-3459, 133, 10.15446/esrj.v24n2.87364
    12. Nauman Khalid, Muhammad Abbas, Muhammad Kashif Iqbal, Jagdev Singh, Ahmad Izani Md. Ismail, A computational approach for solving time fractional differential equation via spline functions, 2020, 59, 11100168, 3061, 10.1016/j.aej.2020.06.007
    13. Ramazan Ozarslan, Erdal Bas, Dumitru Baleanu, Representation of solutions for Sturm–Liouville eigenvalue problems with generalized fractional derivative, 2020, 30, 1054-1500, 033137, 10.1063/1.5131167
    14. Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y
    15. Najva Aminakbari, Yongyi Gu, Wenjun Yuan, Meromorphic exact solutions of the (2 + 1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff equation, 2020, 18, 2391-5455, 1342, 10.1515/math-2020-0099
    16. Amal Alshabanat, Mohamed Jleli, Sunil Kumar, Bessem Samet, Generalization of Caputo-Fabrizio Fractional Derivative and Applications to Electrical Circuits, 2020, 8, 2296-424X, 10.3389/fphy.2020.00064
    17. Sinan Deniz, Optimal perturbation iteration method for solving fractional FitzHugh-Nagumo equation, 2021, 142, 09600779, 110417, 10.1016/j.chaos.2020.110417
    18. Mutaz Mohammad, Alexander Trounev, Carlo Cattani, An Efficient Method Based on Framelets for Solving Fractional Volterra Integral Equations, 2020, 22, 1099-4300, 824, 10.3390/e22080824
    19. Pundikala Veeresha, Doddabhadrappla Gowda Prakasha, Haci Mehmet Baskonus, Gulnur Yel, An efficient analytical approach for fractional Lakshmanan‐Porsezian‐Daniel model, 2020, 0170-4214, 10.1002/mma.6179
    20. Mine Aylin Bayrak, Ali Demir, Ebru Ozbilge, On solution of fractional partial differential equation by the weighted fractional operator, 2020, 59, 11100168, 4805, 10.1016/j.aej.2020.08.044
    21. Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Juan L.G. Guirao, Muhammad Shoaib, A novel design of fractional Meyer wavelet neural networks with application to the nonlinear singular fractional Lane-Emden systems, 2021, 60, 11100168, 2641, 10.1016/j.aej.2021.01.004
    22. M. S. Osman, J. A. T Machado, D. Baleanu, A. Zafar, M. Raheel, On distinctive solitons type solutions for some important nonlinear Schrödinger equations, 2021, 53, 0306-8919, 10.1007/s11082-020-02711-z
    23. Andang Sunarto, Praveen Agarwal, Jumat Sulaiman, Jackel Vui Lung Chew, Elayaraja Aruchunan, Iterative method for solving one-dimensional fractional mathematical physics model via quarter-sweep and PAOR, 2021, 2021, 1687-1847, 10.1186/s13662-021-03310-2
    24. Kamlesh Jangid, Sanjay Bhatter, Sapna Meena, Dumitru Baleanu, Maysaa Al Qurashi, Sunil Dutt Purohit, Some fractional calculus findings associated with the incomplete I-functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-02725-7
    25. Mehtap Lafci Büyükkahraman, Hüseyin Bereketoglu, On a Partial Differential Equation with Piecewise Constant Mixed Arguments, 2020, 44, 1028-6276, 1791, 10.1007/s40995-020-00976-3
    26. Muhammad Mustahsan, H. M. Younas, S. Iqbal, Sushila Rathore, Kottakkaran Sooppy Nisar, Jagdev Singh, An Efficient Analytical Technique for Time-Fractional Parabolic Partial Differential Equations, 2020, 8, 2296-424X, 10.3389/fphy.2020.00131
    27. Md Nur Alam, Aly R. Seadawy, Dumitru Baleanu, Closed-form solutions to the solitary wave equation in an unmagnatized dusty plasma, 2020, 59, 11100168, 1505, 10.1016/j.aej.2020.03.030
    28. Haile Habenom, Abdi Oli, D. L. Suthar, Zakia Hammouch, p , q -Extended Struve Function: Fractional Integrations and Application to Fractional Kinetic Equations, 2021, 2021, 2314-4785, 1, 10.1155/2021/5536817
    29. Ved Prakash Dubey, Sarvesh Dubey, Devendra Kumar, Jagdev Singh, A computational study of fractional model of atmospheric dynamics of carbon dioxide gas, 2021, 142, 09600779, 110375, 10.1016/j.chaos.2020.110375
    30. Pengbo Wan, Jalil Manafian, Hajar Farhan Ismael, Sizar Abid Mohammed, Investigating One-, Two-, and Triple-Wave Solutions via Multiple Exp-Function Method Arising in Engineering Sciences, 2020, 2020, 1687-9120, 1, 10.1155/2020/8018064
    31. Muhammad Tahir, Sunil Kumar, Hamood Rehman, Muhammad Ramzan, Ahmad Hasan, Mohamed S. Osman, Exact traveling wave solutions of Chaffee–Infante equation in (2 + 1)‐dimensions and dimensionless Zakharov equation, 2021, 44, 0170-4214, 1500, 10.1002/mma.6847
    32. Md. Abdul Kayum, Shamim Ara, M.S. Osman, M. Ali Akbar, Khaled A. Gepreel, Onset of the broad-ranging general stable soliton solutions of nonlinear equations in physics and gas dynamics, 2021, 20, 22113797, 103762, 10.1016/j.rinp.2020.103762
    33. Asghar Ali, Aly R. Seadawy, Dumitru Baleanu, Analytical mathematical schemes: Circular rod grounded via transverse Poisson’s effect and extensive wave propagation on the surface of water, 2020, 18, 2391-5471, 545, 10.1515/phys-2020-0163
    34. M. Ali Akbar, Md. Abdul Kayum, M.S. Osman, Abdel-Haleem Abdel-Aty, Hichem Eleuch, Analysis of voltage and current flow of electrical transmission lines through mZK equation, 2021, 20, 22113797, 103696, 10.1016/j.rinp.2020.103696
    35. Wei Gao, Haci Mehmet Baskonus, Li Shi, New investigation of bats-hosts-reservoir-people coronavirus model and application to 2019-nCoV system, 2020, 2020, 1687-1847, 10.1186/s13662-020-02831-6
    36. M. Tahir, G. Zaman, S. I. A Shah, Using caputo-fabrizio derivative for the transmission of mathematical model epidemic Corona Virus, 2021, 78, 2254-3902, 119, 10.1007/s40324-020-00230-1
    37. Hamood Ur Rehman, Naeem Ullah, Muhammad Imran Asjad, Ali Akgül, Exact solutions of convective–diffusive Cahn–Hilliard equation using extended direct algebraic method , 2020, 0749-159X, 10.1002/num.22622
    38. Yeşim Sağlam Özkan, On the exact solutions to Biswas–Arshed equation involving truncated M-fractional space-time derivative terms, 2021, 227, 00304026, 166109, 10.1016/j.ijleo.2020.166109
    39. Manish Goyal, Haci Mehmet Baskonus, Amit Prakash, Regarding new positive, bounded and convergent numerical solution of nonlinear time fractional HIV/AIDS transmission model, 2020, 139, 09600779, 110096, 10.1016/j.chaos.2020.110096
    40. Fares Kamache, Salah Mahmoud Boulaaras, Rafik Guefaifia, Nguyen Thanh Chung, Bahri Belkacem Cherif, Mohamed Abdalla, Kamyar Hosseini, On Existence of Multiplicity of Weak Solutions for a New Class of Nonlinear Fractional Boundary Value Systems via Variational Approach, 2021, 2021, 1687-9139, 1, 10.1155/2021/5544740
    41. Wei Gao, Pundikala Veeresha, Doddabhadrappla Gowda Prakasha, Haci Mehmet Baskonus, New numerical simulation for fractional Benney–Lin equation arising in falling film problems using two novel techniques, 2021, 37, 0749-159X, 210, 10.1002/num.22526
    42. K. S. Al-Ghafri, E. V. Krishnan, Optical Solitons in Metamaterials Dominated by Anti-cubic Nonlinearity and Hamiltonian Perturbations , 2020, 6, 2349-5103, 10.1007/s40819-020-00896-1
    43. Nur Hasan Mahmud Shahen, Md. Habibul Bashar, Md. Shuzon Ali, Abdulla - Al - Mamun, Dynamical analysis of long-wave phenomena for the nonlinear conformable space-time fractional (2+1)-dimensional AKNS equation in water wave mechanics, 2020, 6, 24058440, e05276, 10.1016/j.heliyon.2020.e05276
    44. Samaneh Sadat Sajjadi, Dumitru Baleanu, Amin Jajarmi, Hassan Mohammadi Pirouz, A new adaptive synchronization and hyperchaos control of a biological snap oscillator, 2020, 138, 09600779, 109919, 10.1016/j.chaos.2020.109919
    45. Wei Gao, Pundikala Veeresha, Doddabhadrappla Gowda Prakasha, Haci Mehmet Baskonus, Gulnur Yel, New Numerical Results for the Time-Fractional Phi-Four Equation Using a Novel Analytical Approach, 2020, 12, 2073-8994, 478, 10.3390/sym12030478
    46. C. Yue, A. Elmoasry, M. M. A. Khater, M. S. Osman, R. A. M. Attia, D. Lu, Nasser S. Elazab, On complex wave structures related to the nonlinear long–short wave interaction system: Analytical and numerical techniques, 2020, 10, 2158-3226, 045212, 10.1063/5.0002879
    47. Umair Ali, Muhammad Sohail, Muhammad Usman, Farah Aini Abdullah, Ilyas Khan, Kottakkaran Sooppy Nisar, Fourth-Order Difference Approximation for Time-Fractional Modified Sub-Diffusion Equation, 2020, 12, 2073-8994, 691, 10.3390/sym12050691
    48. Kateryna Marynets, On One Interpolation Type Fractional Boundary-Value Problem, 2020, 9, 2075-1680, 13, 10.3390/axioms9010013
    49. Sunil Kumar, Ranbir Kumar, Jagdev Singh, K.S. Nisar, Devendra Kumar, An efficient numerical scheme for fractional model of HIV-1 infection of CD4+ T-cells with the effect of antiviral drug therapy, 2020, 59, 11100168, 2053, 10.1016/j.aej.2019.12.046
    50. P Veeresha, D G Prakasha, Novel approach for modified forms of Camassa–Holm and Degasperis–Procesi equations using fractional operator, 2020, 72, 0253-6102, 105002, 10.1088/1572-9494/aba24b
    51. Haci Mehmet Baskonus, Ajay Kumar, Ashok Kumar, Wei Gao, Deeper investigations of the (4 + 1)-dimensional Fokas and (2 + 1)-dimensional Breaking soliton equations, 2020, 34, 0217-9792, 2050152, 10.1142/S0217979220501520
    52. Mutaz Mohammad, Carlo Cattani, A collocation method via the quasi-affine biorthogonal systems for solving weakly singular type of Volterra-Fredholm integral equations, 2020, 59, 11100168, 2181, 10.1016/j.aej.2020.01.046
    53. Mehvish Fazal Ur Rehman, Yongyi Gu, Wenjun Yuan, Soheil Salahshour, Exact Analytical Solutions of Nonlinear Fractional Liouville Equation by Extended Complex Method, 2020, 2020, 1687-9139, 1, 10.1155/2020/8815363
    54. Guoting Deng, Yin Yang, Emran Tohidi, High accurate pseudo-spectral Galerkin scheme for pantograph type Volterra integro-differential equations with singular kernels, 2021, 396, 00963003, 125866, 10.1016/j.amc.2020.125866
    55. Fatma Berna BENLI, Değişken katsayılı çok boyutlu dalga benzeri denklemler için kesirli yaklaşım üzerine etkili bir metot, 2021, 1301-7985, 490, 10.25092/baunfbed.893445
    56. Wei Gao, P. Veeresha, D.G. Prakasha, Haci Mehmet Baskonus, Gulnur Yel, New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function, 2020, 134, 09600779, 109696, 10.1016/j.chaos.2020.109696
    57. P. Veeresha, D.G. Prakasha, N. Magesh, A. John Christopher, Deepak Umrao Sarwe, Solution for fractional potential KdV and Benjamin equations using the novel technique, 2021, 24680133, 10.1016/j.joes.2021.01.003
    58. Li Wang, Yuxi Wu, Jiping Xu, Huiyan Zhang, Xiaoyi Wang, Jiabin Yu, Qian Sun, Zhiyao Zhao, Nonlinear dynamic numerical analysis and prediction of complex system based on bivariate cycling time stochastic differential equation, 2020, 59, 11100168, 2065, 10.1016/j.aej.2019.12.050
    59. Dumitru Baleanu, Amin Jajarmi, Hakimeh Mohammadi, Shahram Rezapour, A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative, 2020, 134, 09600779, 109705, 10.1016/j.chaos.2020.109705
    60. Hemen Dutta, Hatıra Günerhan, Karmina K. Ali, Resat Yilmazer, Exact Soliton Solutions to the Cubic-Quartic Non-linear Schrödinger Equation With Conformable Derivative, 2020, 8, 2296-424X, 10.3389/fphy.2020.00062
    61. Khaled M. Saad, Manal Alqhtani, J.F. Gómez-Aguilar, Fractal-fractional study of the hepatitis C virus infection model, 2020, 19, 22113797, 103555, 10.1016/j.rinp.2020.103555
    62. S. H. Alfalqi, Mostafa M. A. Khater, J. F. Alzaidi, Dianchen Lu, Hijaz Ahmad, Dynamical Behaviour of the Light Pulses through the Optical Fiber: Two Nonlinear Atangana Conformable Fractional Evolution Equations, 2020, 2020, 2314-4785, 1, 10.1155/2020/8862484
    63. H.M. Srivastava, V.P. Dubey, R. Kumar, J. Singh, D. Kumar, D. Baleanu, An efficient computational approach for a fractional-order biological population model with carrying capacity, 2020, 138, 09600779, 109880, 10.1016/j.chaos.2020.109880
    64. Lijuan Mo, Adum3210 chip based design of the control system of water lifting irrigation based on the internet of things, 2021, 82, 01419331, 103861, 10.1016/j.micpro.2021.103861
    65. Qingchen Lu, Onur Alp Ilhan, Jalil Manafian, Laleh Avazpour, Multiple rogue wave solutions for a variable-coefficient Kadomtsev–Petviashvili equation, 2020, 0020-7160, 1, 10.1080/00207160.2020.1822996
    66. Chun Huang, Zhao Li, Maria L. Gandarias, New Exact Solutions of the Fractional Complex Ginzburg–Landau Equation, 2021, 2021, 1563-5147, 1, 10.1155/2021/6640086
    67. Zehra Pinar, The symmetry analysis of electrostatic micro-electromechanical system (MEMS), 2020, 34, 0217-9849, 2050199, 10.1142/S0217984920501997
    68. Shahzad Sarwar, New soliton wave structures of nonlinear (4 + 1)-dimensional Fokas dynamical model by using different methods, 2021, 60, 11100168, 795, 10.1016/j.aej.2020.10.009
    69. D.G. Prakasha, P. Veeresha, Analysis of Lakes pollution model with Mittag-Leffler kernel, 2020, 5, 24680133, 310, 10.1016/j.joes.2020.01.004
    70. Ved Prakash Dubey, Rajnesh Kumar, Jagdev Singh, Devendra Kumar, An efficient computational technique for time-fractional modified Degasperis-Procesi equation arising in propagation of nonlinear dispersive waves, 2021, 6, 24680133, 30, 10.1016/j.joes.2020.04.006
    71. Wei Gao, P. Veeresha, Haci Mehmet Baskonus, D. G. Prakasha, Pushpendra Kumar, A new study of unreported cases of 2019-nCOV epidemic outbreaks, 2020, 138, 09600779, 109929, 10.1016/j.chaos.2020.109929
    72. Sunil Kumar, Surath Ghosh, Mansour S.M. Lotayif, Bessem Samet, A model for describing the velocity of a particle in Brownian motion by Robotnov function based fractional operator, 2020, 59, 11100168, 1435, 10.1016/j.aej.2020.04.019
    73. HuiChol Choi, KumSong Jong, KyongSon Jon, YongSim Sin, Numerical Solutions of Multi-order Fractional Antiperiodic Boundary Value Problems, 2020, 44, 1028-6276, 1839, 10.1007/s40995-020-00986-1
    74. Qifeng Zhu, Kunpeng Chang, Junjie Chen, Xinmin Zhang, Huixue Xia, Hongwei Zhang, Hua Wang, Haixia Li, Yangyang Jin, Characteristics of heat transfer and fluid flow in microchannel heat sinks with rectangular grooves and different shaped ribs, 2020, 59, 11100168, 4593, 10.1016/j.aej.2020.08.014
    75. Haleh Tajadodi, Zareen A. Khan, Ateeq ur Rehman Irshad, J.F. Gómez-Aguilar, Aziz Khan, Hasib Khan, Exact solutions of conformable fractional differential equations, 2021, 22, 22113797, 103916, 10.1016/j.rinp.2021.103916
    76. Nguyen H. Tuan, Yones Esmaeelzadeh Aghdam, Hossein Jafari, Hamid Mesgarani, A novel numerical manner for two‐dimensional space fractional diffusion equation arising in transport phenomena, 2021, 37, 0749-159X, 1397, 10.1002/num.22586
    77. Hadi Rezazadeh, Meryem Odabasi, Kalim U. Tariq, Reza Abazari, Haci Mehmet Baskonus, On the conformable nonlinear Schrödinger equation with second order spatiotemporal and group velocity dispersion coefficients, 2021, 05779073, 10.1016/j.cjph.2021.01.012
    78. Jalil Manafian, Mehrdad Lakestani, Interaction among a lump, periodic waves, and kink solutions to the fractional generalized CBS‐BK equation, 2021, 44, 0170-4214, 1052, 10.1002/mma.6811
    79. Vinod Gill, Yudhveer Singh, Devendra Kumar, Jagdev Singh, Analytical Study for Fractional Order Mathematical Model of Concentration of Ca2+ in Astrocytes Cell with a Composite Fractional Derivative, 2020, 11, 1756-9737, 2050005, 10.1142/S1756973720500055
    80. Rabia Shikrani, M.S. Hashmi, Nargis Khan, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Jagdev Singh, Devendra Kumar, An efficient numerical approach for space fractional partial differential equations, 2020, 59, 11100168, 2911, 10.1016/j.aej.2020.02.036
    81. Ajay Kumar, Esin Ilhan, Armando Ciancio, Gulnur Yel, Haci Mehmet Baskonus, Extractions of some new travelling wave solutions to the conformable Date-Jimbo-Kashiwara-Miwa equation, 2021, 6, 2473-6988, 4238, 10.3934/math.2021251
    82. K. Hosseini, L. Kaur, M. Mirzazadeh, H. M. Baskonus, 1-Soliton solutions of the (2 + 1)-dimensional Heisenberg ferromagnetic spin chain model with the beta time derivative, 2021, 53, 0306-8919, 10.1007/s11082-021-02739-9
    83. Majid Bagheri, Ali Khani, Soheil Salahshour, Analytical Method for Solving the Fractional Order Generalized KdV Equation by a Beta-Fractional Derivative, 2020, 2020, 1687-9139, 1, 10.1155/2020/8819183
    84. Li Wei, Hui Xie, Linear matching method of database index files based on discrete mathematics, 2020, 1868-5137, 10.1007/s12652-020-02653-0
    85. Md Nur Alam, Aly R. Seadawy, Dumitru Baleanu, Closed-form wave structures of the space-time fractional Hirota–Satsuma coupled KdV equation with nonlinear physical phenomena, 2020, 18, 2391-5471, 555, 10.1515/phys-2020-0179
    86. Haci Mehmet Baskonus, Muzaffer Ercan, Extraction Complex Properties of the Nonlinear Modified Alpha Equation, 2021, 5, 2504-3110, 6, 10.3390/fractalfract5010006
    87. Yong-Min Li, Haci Mehmet Baskonus, Asrin Maghdid Khudhur, Investigations of the complex wave patterns to the generalized Calogero–Bogoyavlenskii–Schiff equation, 2021, 1432-7643, 10.1007/s00500-021-05627-2
    88. P. Veeresha, Haci Mehmet Baskonus, D.G. Prakasha, Wei Gao, Gulnur Yel, Regarding new numerical solution of fractional Schistosomiasis disease arising in biological phenomena, 2020, 133, 09600779, 109661, 10.1016/j.chaos.2020.109661
    89. Jalil Manafian, Onur Alp Ilhan, Sherin Youns Mohyaldeen, Subhiya M. Zeynalli, Gurpreet Singh, New strategic method for fractional mitigating internet bottleneck with quadratic–cubic nonlinearity, 2021, 2008-1359, 10.1007/s40096-020-00373-2
    90. Haci Mehmet Baskonus, Mustafa Kayan, Regarding new wave distributions of the non-linear integro-partial Ito differential and fifth-order integrable equations, 2021, 0, 2444-8656, 10.2478/amns.2021.1.00006
    91. Munesh Devi, Shalini Yadav, Rajan Arora, Optimal system, invariance analysis of fourth-Order nonlinear ablowitz-Kaup-Newell-Segur water wave dynamical equation using lie symmetry approach, 2021, 404, 00963003, 126230, 10.1016/j.amc.2021.126230
    92. Muhammad Bilal, Usman Younas, Haci Mehmet Baskonus, Muhammad Younis, Investigation of shallow water waves and solitary waves to the conformable 3D-WBBM model by an analytical method, 2021, 03759601, 127388, 10.1016/j.physleta.2021.127388
    93. Bo Xu, Yufeng Zhang, Sheng Zhang, Fractional isospectral and non-isospectral AKNS hierarchies and their analytic methods for N-fractal solutions with Mittag-Leffler functions, 2021, 2021, 1687-1847, 10.1186/s13662-021-03374-0
    94. S. N. Raw, P. Mishra, B. P. Sarangi, B. Tiwari, Appearance of Temporal and Spatial Chaos in an Ecological System: A Mathematical Modeling Study, 2021, 1028-6276, 10.1007/s40995-021-01139-8
    95. Muhammad Bilal, Jamshad Ahmad, Investigation of optical solitons and modulation instability analysis to the Kundu–Mukherjee–Naskar model, 2021, 53, 0306-8919, 10.1007/s11082-021-02939-3
    96. Esin İLHAN, Fractional approach for model of network access control using efficient method, 2021, 1301-7985, 732, 10.25092/baunfbed.931085
    97. Yaya Wang, P. Veeresha, D. G. Prakasha, Haci Mehmet Baskonus, Wei Gao, Regarding Deeper Properties of the Fractional Order Kundu-Eckhaus Equation and Massive Thirring Model, 2022, 133, 1526-1506, 697, 10.32604/cmes.2022.021865
    98. Awatif Muflih Alqahtani, Solution of the Generalized Burgers Equation Using Homotopy Perturbation Method with General Fractional Derivative, 2023, 15, 2073-8994, 634, 10.3390/sym15030634
    99. Wei Gao, Haci Mehmet Baskonus, Deeper investigation of modified epidemiological computer virus model containing the Caputo operator, 2022, 158, 09600779, 112050, 10.1016/j.chaos.2022.112050
    100. Gülnur Yel, Hasan Bulut, Esin İlhan, A new analytical method to the conformable chiral nonlinear Schrödinger equation in the quantum Hall effect, 2022, 96, 0304-4289, 10.1007/s12043-022-02292-4
    101. Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Aldawoud Kamal, Juan L.G. Guirao, Dac-Nhuong Le, Tareq Saeed, Mohamad Salama, Neuro-Swarm heuristic using interior-point algorithm to solve a third kind of multi-singular nonlinear system, 2021, 18, 1551-0018, 5285, 10.3934/mbe.2021268
    102. Aniqa Zulfiqar, Jamshad Ahmad, Computational Solutions of Fractional (2 + 1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation Using an Analytic Method and Application, 2022, 47, 2193-567X, 1003, 10.1007/s13369-021-05917-9
    103. S.E. Farahat, E.S. EL Shazly, I.L. El-Kalla, A.H. Abdel Kader, Bright, dark and kink exact soliton solutions for perturbed Gerdjikov–Ivanov equation with full nonlinearity, 2023, 277, 00304026, 170688, 10.1016/j.ijleo.2023.170688
    104. Neslihan Ozdemir, Handenur Esen, Aydin Secer, Mustafa Bayram, Abdullahi Yusuf, Tukur Abdulkadir Sulaiman, Optical solitons and other solutions to the Hirota–Maccari system with conformable, M-truncated and beta derivatives, 2022, 36, 0217-9849, 10.1142/S0217984921506259
    105. Serbay Duran, Extractions of travelling wave solutions of (2 + 1)-dimensional Boiti–Leon–Pempinelli system via (Gʹ/G, 1/G)-expansion method, 2021, 53, 0306-8919, 10.1007/s11082-021-02940-w
    106. Santoshi Panigrahi, Sunita Chand, Sundarappan Balamuralitharan, Stability and Hopf bifurcation analysis of fractional‐order nonlinear financial system with time delay, 2021, 44, 0170-4214, 14393, 10.1002/mma.7705
    107. Yan Cao, Hayder A. Dhahad, Fahd Jarad, Kamal Sharma, Ali A. Rajhi, A.S. El-Shafay, Shima Rashidi, Shahram Rezapour, S.A. Najati, Ayman A. Aly, Abdulaziz H. Alghtani, Muhammad Bilal Riaz, Extracting novel categories of analytical wave solutions to a nonlinear Schrödinger equation of unstable type, 2021, 31, 22113797, 105036, 10.1016/j.rinp.2021.105036
    108. Muhammad Bilal, Jingli Ren, Usman Younas, Stability analysis and optical soliton solutions to the nonlinear Schrödinger model with efficient computational techniques, 2021, 53, 0306-8919, 10.1007/s11082-021-03040-5
    109. Abhishek Kumar, Stability of a Fractional-Order Epidemic Model with Nonlinear Incidences and Treatment Rates, 2020, 44, 1028-6276, 1505, 10.1007/s40995-020-00960-x
    110. Syed T. R. Rizvi, Aly R. Seadawy, U. Akram, M. Younis, Ali Althobaiti, Solitary wave solutions along with Painleve analysis for the Ablowitz–Kaup–Newell–Segur water waves equation, 2022, 36, 0217-9849, 10.1142/S0217984921505485
    111. Li Yan, Ajay Kumar, Juan Luis García Guirao, Haci Mehmet Baskonus, Wei Gao, Deeper properties of the nonlinear Phi-four and Gross-Pitaevskii equations arising mathematical physics, 2022, 36, 0217-9849, 10.1142/S0217984921505679
    112. Muhammad Bilal, Jingli Ren, Dynamics of exact solitary wave solutions to the conformable time-space fractional model with reliable analytical approaches, 2022, 54, 0306-8919, 10.1007/s11082-021-03408-7
    113. ARMANDO CIANCIO, GULNUR YEL, AJAY KUMAR, HACI MEHMET BASKONUS, ESIN ILHAN, ON THE COMPLEX MIXED DARK-BRIGHT WAVE DISTRIBUTIONS TO SOME CONFORMABLE NONLINEAR INTEGRABLE MODELS, 2022, 30, 0218-348X, 10.1142/S0218348X22400187
    114. A. Coronel-Escamilla, J. E. Solís-Pérez, J. F. Gómez-Aguilar, José R. Razo-Hernández, A. A. Alderremy, Shaban Aly, Dynamics and synchronization of a fractional conformable neural network with power-law, 2022, 231, 1951-6355, 1771, 10.1140/epjs/s11734-022-00465-1
    115. Rajarama Mohan Jena, Snehashish Chakraverty, Dumitru Baleanu, Waleed Adel, Hadi Rezazadeh, A robust technique based solution of time-fractional seventh-order Sawada–Kotera and Lax’s KdV equations, 2021, 35, 0217-9849, 2150265, 10.1142/S0217984921502651
    116. Islam Samir, Niveen Badra, Hamdy M. Ahmed, Ahmed H. Arnous, Optical soliton perturbation with Kudryashov’s generalized law of refractive index and generalized nonlocal laws by improved modified extended tanh method, 2022, 61, 11100168, 3365, 10.1016/j.aej.2021.08.050
    117. Rashida Hussain, Ansa Imtiaz, Tayyiaba Rasool, Hadi Rezazadeh, Mustafa Inc, Novel exact and solitary solutions of conformable Klein–Gordon equation via Sardar-subequation method, 2022, 24680133, 10.1016/j.joes.2022.04.036
    118. M. Eslami, A. Neirameh, Generalized exponential rational function for distinct types solutions to the conformable resonant Schrödinger’s equation, 2021, 35, 0217-9792, 10.1142/S0217979221503069
    119. Muhammad Bilal, Usman Younas, Jingli Ren, Dynamics of exact soliton solutions to the coupled nonlinear system using reliable analytical mathematical approaches, 2021, 73, 0253-6102, 085005, 10.1088/1572-9494/ac02b5
    120. Mohd Taib Shatnawi, Noureddine Djenina, Adel Ouannas, Iqbal M. Batiha, Giuseppe Grassi, Novel convenient conditions for the stability of nonlinear incommensurate fractional-order difference systems, 2022, 61, 11100168, 1655, 10.1016/j.aej.2021.06.073
    121. Fuzhang Wang, Mostafa M.A. Khater, Computational simulation and nonlinear vibration motions of isolated waves localized in small part of space, 2022, 24680133, 10.1016/j.joes.2022.03.009
    122. Li Yan, Gulnur Yel, Haci Mehmet Baskonus, Hasan Bulut, Wei Gao, Newly developed analytical method and its applications of some mathematical models, 2022, 36, 0217-9792, 10.1142/S0217979222500400
    123. Na Zhao, Jalil Manafian, Onur Alp Ilhan, Gurpreet Singh, Rana Zulfugarova, Abundant interaction between lump and k-kink, periodic and other analytical solutions for the (3+1)-D Burger system by bilinear analysis, 2021, 35, 0217-9792, 2150173, 10.1142/S0217979221501733
    124. Sunil Kumar, Ram P. Chauhan, Mohamed S. Osman, S. A. Mohiuddine, A study on fractional HIV‐AIDs transmission model with awareness effect, 2021, 0170-4214, 10.1002/mma.7838
    125. Abdullahi Yusuf, Tukur Abdulkadir Sulaiman, Evren Hincal, Dumitru Baleanu, Lump, its interaction phenomena and conservation laws to a nonlinear mathematical model, 2022, 7, 24680133, 363, 10.1016/j.joes.2021.09.006
    126. Wei Gao, Hatıra Günerhan, Haci Mehmet Baskonus, Analytical and approximate solutions of an epidemic system of HIV/AIDS transmission, 2020, 59, 11100168, 3197, 10.1016/j.aej.2020.07.043
    127. Mohamed Al-Masaeed, Eqab. M. Rabei, Ahmed Al-Jamel, Dumitru Baleanu, Quantization of fractional harmonic oscillator using creation and annihilation operators, 2021, 19, 2391-5471, 395, 10.1515/phys-2021-0035
    128. Handenur Esen, Neslihan Ozdemir, Aydin Secer, Mustafa Bayram, Traveling wave structures of some fourth-order nonlinear partial differential equations, 2023, 8, 24680133, 124, 10.1016/j.joes.2021.12.006
    129. P. Veeresha, Esin Ilhan, D. G. Prakasha, Haci Mehmet Baskonus, Wei Gao, Regarding on the Fractional Mathematical Model of Tumour Invasion and Metastasis, 2021, 127, 1526-1506, 1013, 10.32604/cmes.2021.014988
    130. İbrahim Yalçınkaya, Hijaz Ahmad, Orkun Tasbozan, Ali Kurt, Soliton solutions for time fractional ocean engineering models with Beta derivative, 2022, 7, 24680133, 444, 10.1016/j.joes.2021.09.015
    131. Ali Turab, Wutiphol Sintunavarat, The novel existence results of solutions for a nonlinear fractional boundary value problem on the ethane graph, 2021, 60, 11100168, 5365, 10.1016/j.aej.2021.04.020
    132. Muhammad Bilal, Jamshad Ahmad, Dynamical nonlinear wave structures of the predator–prey model using conformable derivative and its stability analysis, 2022, 96, 0973-7111, 10.1007/s12043-022-02378-z
    133. Li Yan, Gulnur Yel, Ajay Kumar, Haci Mehmet Baskonus, Wei Gao, Newly Developed Analytical Scheme and Its Applications to the Some Nonlinear Partial Differential Equations with the Conformable Derivative, 2021, 5, 2504-3110, 238, 10.3390/fractalfract5040238
    134. SHAO-WEN YAO, ESIN ILHAN, P. VEERESHA, HACI MEHMET BASKONUS, A POWERFUL ITERATIVE APPROACH FOR QUINTIC COMPLEX GINZBURG–LANDAU EQUATION WITHIN THE FRAME OF FRACTIONAL OPERATOR, 2021, 29, 0218-348X, 2140023, 10.1142/S0218348X21400235
    135. Wei Wu, Xiaozhao Li, Samireh Kadaei, Alessio Cascardi, An Experimental Study on the Lateral Stress of Composite Steel Wall Structure by Using Self-Compacting Concrete, 2022, 2022, 1687-8094, 1, 10.1155/2022/7772556
    136. Haci Mehmet Baskonus, Juan Luis García Guirao, Ajay Kumar, Fernando S. Vidal Causanilles, German Rodriguez Bermudez, Nikos E. Mastorakis, Regarding New Traveling Wave Solutions for the Mathematical Model Arising in Telecommunications, 2021, 2021, 1687-9139, 1, 10.1155/2021/5554280
    137. Fan Wang, Research on defect detection of media information security based on genetic algorithm, 2023, 13, 2190-5509, 2439, 10.1007/s13204-021-02137-3
    138. Mehwish Rani, Naveed Ahmed, Silvestru Sever Dragomir, New exact solutions for nonlinear fourth-order Ablowitz–Kaup–Newell–Segur water wave equation by the improved tanh(φ(ξ) 2 )-expansion method, 2023, 37, 0217-9792, 10.1142/S0217979223500443
    139. A. S. H. F. Mohammed, H. O. Bakodah, Approximate Solutions for Dark and Singular Optical Solitons of Chen-Lee-Liu Model by Adomian-based Methods, 2021, 7, 2349-5103, 10.1007/s40819-021-01035-0
    140. K Hosseini, A Akbulut, D Baleanu, S Salahshour, The Sharma–Tasso–Olver–Burgers equation: its conservation laws and kink solitons, 2022, 74, 0253-6102, 025001, 10.1088/1572-9494/ac4411
    141. Yongyi Gu, Najva Aminakbari, Bernoulli (G′/G)-expansion method for nonlinear Schrödinger equation with third-order dispersion, 2022, 36, 0217-9849, 10.1142/S0217984922500282
    142. Yi-Xia Li, Ercan Celik, Juan L.G. Guirao, Tareq Saeed, Haci Mehmet Baskonus, On the modulation instability analysis and deeper properties of the cubic nonlinear Schrödinger’s equation with repulsive δ-potential, 2021, 25, 22113797, 104303, 10.1016/j.rinp.2021.104303
    143. Melike Kaplan, Arzu Akbulut, Nauman Raza, Research on sensitivity analysis and traveling wave solutions of the (4 + 1)-dimensional nonlinear Fokas equation via three different techniques, 2022, 97, 0031-8949, 015203, 10.1088/1402-4896/ac42eb
    144. Lalchand Verma, Ramakanta Meher, Study on generalized fuzzy fractional human liver model with Atangana–Baleanu–Caputo fractional derivative, 2022, 137, 2190-5444, 10.1140/epjp/s13360-022-03396-x
    145. Shivangi Gupta, Manish Goyal, Amit Prakash, A Hybrid Computational Scheme with Convergence Analysis for the Dependent Rosenau-Hyman Equation of Arbitrary Order Via Caputo-Fabrizio Operator, 2021, 7, 2349-5103, 10.1007/s40819-021-01182-4
    146. L. Verma, R. Meher, Z. Avazzadeh, O. Nikan, Solution for generalized fuzzy fractional Kortewege-de Varies equation using a robust fuzzy double parametric approach, 2022, 24680133, 10.1016/j.joes.2022.04.026
    147. KANG-JIA WANG, GENG LI, JING-HUA LIU, GUO-DONG WANG, SOLITARY WAVES OF THE FRACTAL REGULARIZED LONG-WAVE EQUATION TRAVELING ALONG AN UNSMOOTH BOUNDARY, 2022, 30, 0218-348X, 10.1142/S0218348X22500086
    148. Shailesh A. Bhanotar, Mohammed K. A. Kaabar, Mostafa Eslami, Analytical Solutions for the Nonlinear Partial Differential Equations Using the Conformable Triple Laplace Transform Decomposition Method, 2021, 2021, 1687-9651, 1, 10.1155/2021/9988160
    149. Sachin Kumar, Ihsanullah Hamid, M.A. Abdou, Specific wave profiles and closed-form soliton solutions for generalized nonlinear wave equation in (3+1)-dimensions with gas bubbles in hydrodynamics and fluids, 2023, 8, 24680133, 91, 10.1016/j.joes.2021.12.003
    150. KANGLE WANG, NEW FRACTAL SOLITON SOLUTIONS FOR THE COUPLED FRACTIONAL KLEIN–GORDON EQUATION WITH β-FRACTIONAL DERIVATIVE, 2023, 31, 0218-348X, 10.1142/S0218348X23500032
    151. Emad H. M. Zahran, Hijaz Ahmad, New Perceptions for the Soliton Solutions to the Complex Wave Patterns Model Against its Numerical Solutions, 2024, 63, 1572-9575, 10.1007/s10773-024-05631-w
    152. Asim Zafar, Abdul Saboor, Mustafa Inc, Muhammad Ashraf, Sohail Ahmad, New fractional solutions for the Clannish Random Walker’s Parabolic equation and the Ablowitz-Kaup-Newell-Segur equation, 2024, 56, 1572-817X, 10.1007/s11082-023-06197-3
    153. Wei Gao, Haci Mehmet Baskonus, Ghulam Rasool, The Modulation Instability Analysis and Analytical Solutions of the Nonlinear Gross−Pitaevskii Model with Conformable Operator and Riemann Wave Equations via Recently Developed Scheme, 2023, 2023, 1687-9139, 1, 10.1155/2023/4132763
    154. Mostafa M. A. Khater, Novel constructed dark, bright and rogue waves of three models of the well-known nonlinear Schrödinger equation, 2024, 38, 0217-9792, 10.1142/S0217979224500231
    155. Mohammed H. Ali, Hamdy M. Ahmed, Hassan M. El-Owaidy, Ahmed A. El-Deeb, Islam Samir, Exploration new solitons to generalized nonlinear Schrödinger equation with Kudryashov’s dual form of generalized non-local nonlinearity using improved modified extended tanh-function method, 2024, 0972-8821, 10.1007/s12596-023-01567-2
    156. Ajay Kumar, Raj Shekhar Prasad, Haci Mehmet Baskonus, Juan Luis Garcia Guirao, On the implementation of fractional homotopy perturbation transform method to the Emden–Fowler equations, 2023, 97, 0973-7111, 10.1007/s12043-023-02589-y
    157. Muhammad Bilal, Jingli Ren, Mustafa Inc, Reem K. Alhefthi, Optical soliton and other solutions to the nonlinear dynamical system via two efficient analytical mathematical schemes, 2023, 55, 0306-8919, 10.1007/s11082-023-05103-1
    158. Jagdev Singh, Rashmi Agrawal, Dumitru Baleanu, Dynamical analysis of fractional order biological population model with carrying capacity under Caputo-Katugampola memory, 2024, 91, 11100168, 394, 10.1016/j.aej.2024.02.005
    159. MUBASHIR QAYYUM, EFAZA AHMAD, MUHAMMAD SOHAIL, NADIA SARHAN, EMAD MAHROUS AWWAD, AMJAD IQBAL, DESIGN AND IMPLEMENTATION OF FUZZY-FRACTIONAL WU–ZHANG SYSTEM USING HE–MOHAND ALGORITHM, 2024, 32, 0218-348X, 10.1142/S0218348X24400322
    160. Lihui Tu, Huanjie Hong, Validity and error analysis of calculating matrix exponential function and vector product, 2024, 13, 2192-8029, 10.1515/nleng-2024-0007
    161. Md. Habibul BASHAR, Mamunur ROSHİD, Exact Travelling Wave Solutions of the Nonlinear Evolution Equations by Improved F-Expansion in Mathematical Physics, 2020, 3, 2651-4001, 115, 10.33434/cams.659225
    162. Himani Agarwal, Manvendra Narayan Mishra, Ravi Shanker Dubey, On fractional Caputo operator for the generalized glucose supply model via incomplete Aleph function, 2024, 2661-3352, 10.1142/S2661335224500035
    163. Muhammad Bilal, Hamza Haris, Abdul Waheed, Muhammad Faheem, The analysis of exact solitons solutions in monomode optical fibers to the generalized nonlinear Schrödinger system by the compatible techniques, 2023, 1, 2956-7068, 149, 10.2478/ijmce-2023-0012
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8184) PDF downloads(861) Cited by(163)

Figures and Tables

Figures(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog