Research article

Geometry of configurations in tangent groups

  • Received: 05 October 2019 Accepted: 27 November 2019 Published: 09 December 2019
  • MSC : 11G55, 18G, 19D

  • This article relates the Grassmannian complexes of geometric configurations to the tangent to the Bloch-Suslin complex and to the tangent to Goncharov's motivic complex. By means of morphisms, we bring the geometry of configurations in tangent groups, $T\mathcal{B}_2(F)$ and $T\mathcal{B}_3(F)$ that produce commutative diagrams. To show the commutativity of diagrams, we use combinatorial techniques that include permutations in symmetric group S6. We also create analogues of the Siegel's cross-ratio identity for the truncated polynomial ring F[ε]ν.V

    Citation: Raziuddin Siddiqui. Geometry of configurations in tangent groups[J]. AIMS Mathematics, 2020, 5(1): 522-545. doi: 10.3934/math.2020035

    Related Papers:

  • This article relates the Grassmannian complexes of geometric configurations to the tangent to the Bloch-Suslin complex and to the tangent to Goncharov's motivic complex. By means of morphisms, we bring the geometry of configurations in tangent groups, $T\mathcal{B}_2(F)$ and $T\mathcal{B}_3(F)$ that produce commutative diagrams. To show the commutativity of diagrams, we use combinatorial techniques that include permutations in symmetric group S6. We also create analogues of the Siegel's cross-ratio identity for the truncated polynomial ring F[ε]ν.V


    加载中


    [1] J. L. Cathelineau, The tangent complex to the Bloch-Suslin complex, B. Soc. Math. Fr., 135 (2007), 565-597. doi: 10.24033/bsmf.2546
    [2] P. Elbaz-Vincent, H. Gangl, On Poly (ana) logs I, Compos. Math., 130 (2002), 161-214. doi: 10.1023/A:1013757217319
    [3] A. B. Goncharov, Geometry of configurations, polylogarithms and motivic cohomology, Adv. Math., 114 (1995), 197-318. doi: 10.1006/aima.1995.1045
    [4] A. B. Goncharov, Polylogarithms and motivic Galois groups, In: Proceedings of Symposia in Pure Mathematics, Providence: American Mathematical Society, 55 (1994), 43-96.
    [5] S. Hussain, R. Siddiqui, Projective configurations and the variant of Cathelineau's complex, J. Prime Res. Math., 12 (2016), 24-34.
    [6] C. Siegel, Approximation algebraischer zahlen, Math. Z., 10 (1921), 173-213. doi: 10.1007/BF01211608
    [7] S. Ünver, Additive polylogarithms and their functional equations, Math. Ann., 348 (2010), 833-858. doi: 10.1007/s00208-010-0493-7
    [8] S. Ünver, On the additive dilogarithm, Algebr. Number Theory, 3 (2009), 1-34. doi: 10.2140/ant.2009.3.1
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3286) PDF downloads(324) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog