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Abstract: This article relates the Grassmannian complexes of geometric configurations to the tangent
to the Bloch-Suslin complex and to the tangent to Goncharov’s motivic complex. By means of
morphisms, we bring the geometry of configurations in tangent groups, 78,(F) and T8;(F) that
produce commutative diagrams. To show the commutativity of diagrams, we use combinatorial
techniques that include permutations in symmetric group S¢. We also create analogues of the Siegel’s
cross-ratio identity for the truncated polynomial ring F[g],.
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1. Introduction

Goncharov was the first to find relations between the Grassmannian complex of projective
configurations and Bloch-Suslin complex for weight n = 2, and to the Goncharov’s motivic complex
for weight n = 3 (see [3]). This idea leads to the remarkable proof of Zagier’s conjecture for weights
n = 2,3 (see [4]). On the other hand, Cathelineau introduced the tangent form of the Bloch-Suslin
complex and provided some suggestions about the tangent form of Goncharov’s complex (see [1]).

The main idea of this article is to view geometric features of tangent groups, 78,(F) and T'B;5(F),
where T8,(F) is the tangent form of Bloch group B,(F) (see [1]), and TB;(F) is the tangent form of
Goncharov’s group B;(F) (see §3.2) for any field F. To accomplish this task, we define morphisms
T&S, T%’s, (between the Grassamannian complex of geometric configurations and tangent to the Bloch-
Suslin complex) and 7(3)’8, Tig, T;’g (between the Grassamannian complex of geometric configurations
and tangent to the Goncharov’s complex) for weights n = 2,3. Due to these morphisms, we get
diagrams which are shown to be commutative (main result Theorem 3.7). The major techniques for
showing our main result, are to invoke combinatorics in the symmetric group S¢ and to rewrite triple
ratios in the product of two projected cross-ratios. Here, we use permutations of symmetric group S¢

in the alternation sums. The alternation sum Altg in our map T; . has 6! terms, but due to inversion and
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cyclic symmetry, it reduces to 6!/(3!) = 120 terms.

The cross ratio identity over a field F' was first defined by Siegel (see [6]). To view the geometry
of configurations in tangent groups, it is required to introduce an analogue to the Siegel cross-ratio
identity for the determinants of matrices of order 2 X 2 (see Lemma 2.1) that can also be extended to
3 x 3 determinants of matrices. These analogues and Lemma 2.1 enabled us to produce the analogues
of cross-ratios and triple ratios.

On the basis of these analogues, we find morphisms between the Grassmannian subcomplex
C*(A';[sh, d) and tangent to the Bloch-Suslin and to Goncharov complexes (see §3.1 and §3.2). The
proof of the main result requires projected five term relation in 785,(F). To serve this purpose, we
prove the existence of the projected five term relation in 78,(F) (see Lemma 3.4). This relation is
also an analogue of Goncharov’s projected five term relation in B,(F).

In §3.2, we define the tangent group 7'8;(F) which was first hypothetically defined in §9 of [1]. On
the basis of our definition, we mimic construction of 78;(F) with the F-vector space ﬁ? (F) ([5]) and
reproduce Cathelineau’s 22-term functional equation for 78;(F).

2. Materials and method

Let F be a field of characteristic 0. For v > 1, we denote the vth truncated polynomial ring over F'
by Fle], := F[e]/e”. Further define C,, (A” ) as a free abelian group generated by m generic points

Flely
in A’;[s] (an n dimensional affine space over F[g],). Here, we are not considering degenerate points

and are also assuming that no two points coincide and no three points lie on a line. Now forn = 2
B | 5 0 [ e 5 . _[aitaigze\
and v = 2, any n; = ( b, ) € AF\{( 0 )} and ;. := ( b, ) € Az, we put i’ = ( by + by ) =

( Z! ) + ( Z‘:’a )g = 1; + 17, .€ and define a boundary map

d: Cour (Ady,) = Cu(Ad,)

d: (rla”n;) = Z(_l)l(ng’?ﬁjaan;)
i=0

Let w € V; be a volume element formed in V, := A} and A(17;,77;) = {(w,n; A 1), where n;,; € A7.
Here we define

A m3) = A e + Ay, )8
where
A(nz*’ 77;)80 = A(Th‘, nj) and A('L*, 77;)8' = A(Th, nj,s) + A(ni,sa nj)-

More generally for v = n + 1, we have
2
M =M+ Nie€+ M€ + -+ Nime”  and 1m0 =1

and we get
AW 5 = M@ ny) + AL 0)s8 + AGE, ) RE + -+ AW, ) e
where
AM; e = A Mjen) + Aies M) + -+ + AMien, 1))
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Consider the Siegel cross-ratio identity for the 2x2 determinants of four vectors in Cy (A%) (see [3],[6])

Ao, m)A(2,13) = A0, 12) A1, 113) — A0, 13) A1, 172) (2.1)

With the above notation, an analogue to the Siegel cross-ratio identity turns out to be true for A2 Flel,or?
and we can extract further results which are essential for the proof of our main results. Throughout this
section we will assume that A(57;,17;) # O for i # j.

Lemma 2.1. For (n;,n7,n5.m3) € Cy (A%_[E]M), we have
Ao, nDAG, 13) = Mg, 15)AG, 173) — AG70, 13)A07}, 175) (2.2)
where
77? = 771' + r]i,é‘g + ni,gzgz + e+ ni,gngn and ni’g() = T]i
A1) = A ) + AW )eE + A )28 + -+ AG )"
for

A(n;ka n;)s” = A(ni, 77.,".9") + A(ni,a’ nj,s"‘l) +-+ A(ni,s", 77])

Proof. Forr =0,...,n, we can write * = ( 220118 ) and m* = ( 2ir20 M€ )

! ~F ! ~F
>0 1€ ZrZO m.e

Now we have

* PN ZrZO 77r5r ZrZO m"gr
A(?] ) = Py ’ar
ZrZO nm.e ZrZO m,&

= [Z A (1, mr—k)) g
>0 \x=0

PR i Jo

r>0 \ k=0

Hence

A, M)A, 173) Z [Z Ao > M1, k)) (Z A1, Ul,r—j)] g

=0 \=0

= Z & [Z (Z Aok M1.r-k) Z A(2,j, 13- ])))
=0 \r=0 (k=0

= Z & [Zt: [Zr: Z Aok M)A, n3,t—r—j))] ,
=0 \r=0 (k=0 j=0

and similarly for A(ng, 75)A(n7,n3) and A5, 7;)A(77,175). Hence we use the validity of (2.1) to
deduce the analogue for A(7;, nj)’s in place of A(n;, n;) passing from the ring F[&] of power series to
a truncated polynomial ring, say to F[&],1- O

For the special cases; we find the identity (2.1) for n = 0, while for n = 1 we have the following
identity which will be used extensively below:

A0, 1A, 13)e + AG12, 13) AU, 1)e
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= {A(o. m)A®MT, 13)s + AL 13)AGT, 715)s} — 1AG10, 1) A, 1715)e + AL M)A, 13)s) . (2.3)

if we write
(ab)gn := awbgo + Ag-1b, + -+ - + a0b

then (2.3) can be more concisely written as
{AG1, m)AGT, 1)}, = (A, 1A, 1)), — 1A, 1A, 15)), -

2.1. Cross-ratio in F|e],

Now we have enough tools to find the cross-ratios of four points over the truncated polynomial ring
Flg],. The identity (2.2) of Lemma 2.1 enables us to compute this ratio in F[g], for v = n + 1. First
we define the cross-ratio of four points (77, ..., 73) € C4 (A%MM) as

Ay, m3)A,175)
A, m3) AT, 13)

r(ng,...,05) =
We also expand r(7;, . . ., 773) as a truncated polynomial over F[&],4

r(ng, cey ng) = (rgo +r.ge+ rgzg2 + -+ rgnsn) (773, cee 77;) (2.4)
After truncating this for n = 0, one gets

_ AG0, 1)AG, 172)
Ao, 12)A001, 113)

Yo 113) = T ) = P05+ 713) 2.5)

If we truncate (2.4) for n = 1 then the coefficient of £° will remain the same as for n = 0, thus we only
need to compute the coeflicient of & in the following way:
After considering (17, . ..,17;) € Cy4 (Afp[gh) in a generic position, we get

) = Ao, 15)AGT15) — {AG0, 13) + Al 13)HAG, 1m2) + AGTY, 175) 08}
O A m)AGL M) (A0, 1) + AGE, 1)-eHAML 13) + AT 7).E)

Ifa+0e€Fthen —— =1 - Lge Flg], (this is the same as the inversion relation in T8,(F) discussed
later in §2.3).

Let us simplify the above obtained result by multiplying the inverses of denominators and separate
the coefficients of £° and €. The coefficient of £ becomes

{AG, 1AM 1)} {AG, 1)AM 15)}e
— }"(77(), .. .,773)
Ao, 1) A1, m3) Ao, 12)A(1,13)

re(Mgs - - -5 13) = (2.6)

Let us trancate it forn = 2, i.e., (778’ T '7;) € Cy (Alzf[sh)' To make computations easy, we write (7 nj)
instead of A(17;, ;)

{0, m3) + (0, 13)e€ + (5, 15)2E° W11, 112) + (7,105 + (0}, 13) 2 €7}
{10, m2) + 5 115)s8 + (15 M) 282 W1 113) + (173, 13)eE + (117, 173) 282}

r(1g, - -»73) =
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simplify and then separate the coefficients of £°, &' and £2. The coefficients of £° and &' are the same
as we computed in (2.5) and (2.6) respectively, and the coefficient of & is

{5, UL DY G *)
o)) oo

{(mg, )11 M)
(Mo, m2)(m1,113)

{(mg> )77, m3)}e
(M0, 12)(11,13)

r2(gs -5 13) =

(2.7)

_r(U0,~~-,773)
Remark 2.2. The computation of coefficient of &", which is r (1, . . . ,m3), in the truncated polynomial
(2.4) will give us the following:

n

D (AT A, 1)) rer( o 75)) = (AGH BDAG, 7))
k=0

where An;,m,) # 0 for i # j and (n;,....n5) € Ca (A2, )

2.2. Triple-ratio in F|e],

First, we define a triple-ratio r; : C6(A;) — F as (see [4])

6A(no, N1, 13)AM1, 12, 12) A2, 10, 175)
Ao, 71, 1) A, 72, 115) A2, 170, 113)

r3(Mo, - - ., 1s5) = Alt

where Cg(A3) is a free abelian group generated by the configurations of six points in A} and A3 is a
three dimensional affine space over a field F'. Here, we will discuss triple-ratio (generalized cross-ratio)
of 6 points, i.e., (,...,7z) € C6(A13w[g]v) for v = n + 1. The calculations in triple-ratio are similar to
the cross-ratio of 4 points (17, ...,73) € C4(A12V[8]V). Let’s consider v = 2 since the other cases are not
required.

We take (175, . .., 77%) € Ce (A%[gh), for any 77 € (155, ..., 77%)

a; + a; & a; ;¢

£

[ =| bitbice =] bi |+]| big |e=1ni+Ni.€
Ci+ Cig€ C; Cie

AMmi, 5 m) = Al njsmid) + Ay, 175 mp)e€

where A(n;, 17, i) 18 a 3 X 3-determinant,

A}, 77;, e = AWigs i ) + AW s M) + AW 15 M)

and
A5 m)e = A 15 1)

As we can expand, we also get the equalities.
1‘3(7]8, ) 77;) = r3(7]0, R 775) + r3,8(n89 ey 77;)3
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C e e . A 5.m)e
* % % 1 i
for A(1;,n;, 1) # 0, the multiplicative inverse of A(n;, 77}, 17;) 18 — Xy~ At E and from now

on, If simplify the previous equalities, we may use (17;77;77;) instead of A(m;, 77, 1) unless specified.

ok K\ (0o sk 0k

(om0 (i mams)

(memm)minan) (sngns)

L I

_ Al {{(770771773) + (momymy)eeX(mmana) + (minamy) X (manons) + (n;nénz)gs}}
- 6

r(nza RN 77;) = Altﬁ

L D

{(momna) + (i) eX(mmans) + imng)eX(manons) + (15n6m3) €1

Simplifying the above and separating the coefficients of £° and &!, we see that the coefficient of £° is
the triple-ratio of six points (79, . ..,75) € Cg (A;) and the coefficient of ¢ is the following:

r3:(Mos - - > 175)

AL {{(US’?T’73)(77’{'73772)(173778772)}8 (omi13)(mmana)(amons) {(USUT772)('7’{773772)(773778772)}8} 2.8)

— 6 - .
Momina)(mmans)(manons) — (Momina)(mimans)(manons)  (Momina)(Min2ns)(1M2n0m3)

2.3. Tangent to Bloch group([1])

Let F be an algebraically closed field of characteristic 0. Let F[g], = F[e]/&? be the truncated
polynomial ring (or a ring of dual numbers) for an arbitrary field . We can define an F*-action in
F[&], as follows. For 1 € F*,

A:Flel, = Flel), o +d'e > ¢+ Ap'e

we denote this action by x, so we use A x (¢ + ¢’e) = ¢ + Ad'e.

The tangent group T B,(F) is defined as a Z-module generated by the combinations [¢ + ¢’'e] —[@] €
Z|Flel,], (¢,¢" € F): For which we put shorthand {(¢; ¢'] := [¢ + ¢’¢] — [¢] and quotient by the
subgroup generated by the following relation

=t

o1 —y) (¢(1—p)\
; , , 0,1, 2.9
+@ﬂ—@(MP¢J] pvEOLeFy &9
where
(g):¢w—¢w
a ¢
C—w):a—ww—u—@w
1-¢ (1 - ¢)>
and

ﬁa—w)_wu—ww—whww'
v -9)) (1 - ¢)?

Remark 2.3. See [1] for a discussion of TB,(F), where the definition of T B,(F) was justified using
Lemma 3.1 of [1]

We give a list of relations in 78,(F) from [1].
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(1) The two-term relation:

(s, = =1 = ¢, =y ]r

ol = 1._£]
<¢’l//]2 <¢’ ¢2 )

(2) The inversion relation:

(3) Four-term relation:

If we use ¢ = ¢(1 — @) and ¥’ = (1 — ) then (2.9) becomes four-term relation (see [1]).

vy v
so(1 — —Y (1l — - —=1-=
(d; d(1 = ) o—rs Y ( l/’)]2+¢*<¢ ¢( ¢)L
1—¢/.1—¢/( 1—1//)] B
1- ; 1- =0,
+ ¢)*<1—¢ 1-¢ 1-9¢/],

where ¢, #0,1,¢ # ¢.
The following map is an infinitesimal analogue of ¢ (defined in [4]) and d (defined in [1] and [5]),
Cathelineau called it the tangential map.

TBy(F) % (F® F*) o ( N\ *F)

with
4 ¥ A4
9: (s ¢2) = (— @ -¢)+— ®¢)+(— A —)
¢ I-¢ I-¢ ¢
First term of the complex is in degree one and d, has a degree +1.
Note that we get the direct sum of two spaces on the right side.

3. Main results and discussion

3.1. Dilogarithmic bicomplexes

In this section, we will connect the Grassmannian bicomplex to the tangent to the Bloch-Suslin
complex.
We will use the following notations throughout this section

A 1)e = Aiesmy) + Amis ) and Am;,m)e = A, 1))

and we will assume that A(7;,77;) # 0 (as we often want to divide by such determinants).
Let Cm(Aé[g]z) be the free abelian group generated by the configuration of m points in A

Flely’ where
Af%h is defined as an affine space over F[e],. The configurations of m points in Ai[gh are 2-tuples
of vectors over F[e], modulo GL,(F[g],). In this case, one can write the Grassmannian complex as

follows:

2

d d d
-+ = Cs(Afy,,) = Ca(Af,) = C3(Af,)

d: @y M) > D (DR T )
i=0
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where )7;* = ( zjiz’[’j‘i ): ( :iz )+( :Zl;z )8 =10t i€ and ¢i’¢i’¢i,8’wi,g € F,( :Z ) * ( 8 )

The diagram below gives the relation between Grassmannian complex and tangent to the Bloch-
Suslin complex.

Cs(A},) = Ca(B}y,))) ——C3(A},) (4.22)
l.e 0.
TBy(F)—2—~F@F<® \*F

where

as:<¢>;w]2H(%®<1-¢)+%¢®¢)+(1f¢%)

T% . can be written as a sum of two morphisms

™V Cy(Afy,),) = FOF™

and
@ (A} = \F
where
Dme, i, m5)
_AOm)e Ao m) _ ACly e o Alm,m) | Al Te o Al m)
A, m)  AGo,m)  A@oe.n2)  AGn,mo0)  AGo,m) A2, 10)
and

5, 71, 17)
A9, m)e . A, my)s  AG1 1) N\ A5, 15)s . Ay, 115)e \ A5, 15)s

Ao, AGLm) AGe.m) T AGe,ma)  AGmLm) A1)

Furthermore, we put
T3 oo 13) = r@o, s 3)s 1@y - - 115)]

where r(no, ...,n3) and r (i, . . ., 173) are the coefficients of £% and &! respectively.

Our maps 7(2)8 and 77 are based on ratios of determinants and cross-ratios respectively, so there
is enough evidence that they are well-defined. This independence can be seen directly through the
definition of maps.

We will also use shorthand (#;n,) instead of A(r;,17;) wherever we find less space to accommodate
long expressions.

Now we calculate,
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A5, 1AM, 173)

A5, 15)A(M7,13)
(Mom)(21713) y

- 3.1
(M0172)(1717713) ’ (,70,72)2(,71,73)28 G-1)

1-r(y,....1m5) =

where

y =+ Mon2)(min3)(1on1)(112113,6) + (Mo112)(11173) (0171 ) (172,6773)
+ (Mom2)(M1113)(M2m3)(Mom.e) + (M0172)(M11m3)(172773) (M0 £171)
= (Mon1)(m2113)(Mon2)(M13.2) — (Mom)(172173)(1012)(11.£773)
— (Mon1)(m213)(m13)(Mon2.2) — (Mom)(1273)(171173)(10.£172)

Remark 3.1. The F*-action of T B,(F) lifts to an F*-action on C4(A12p[8]2) in the obvious way:

The F*-action is defined above for F[g], induces an F*-action in A%[s]z diagonally as

atae | [ a+dage 2 x
/l*( b+bgs)_(b+/lbgs)EAF[S}Z’AEF

Lemma 3.2. The diagram (4.2a) is commutative.
Proof. The proof follows directly from calculation. O

In the remainder of this section we prove that the following diagram is a bicomplex.

Cs(A} ) —— Ca(A,) (4.2b)

.

C4(A12”[8]2) - C3(A12”[8]2)

2 2
LTLS lTO,s

T8, (F) -2~ F® F<e \’F

To prove that the above diagram is bicomplex, we will give the next results.

7 T28
Proposition 3.3. The map C4(A%[s]2) LR C3(A%[€]2) BN (FFYa® (/\ 2F) is zero.

Proof. Let w € det V; be the volume form in three-dimensional vector space V3, i.e., A(n;, 1), ) =
(w,n;i Anj Ang). Then A, -, -) is a volume form in V3/(n;). Use
A(Uj, 77;: 77;) = A(nl’ 771, T]k) + {A(rlj’ nj’ nz)s} &

where
A}, 77;, e = AWigs i k) + AW s M) + AW 15 M)

We can directly compute 75, o d’ which gives zero. O

The following result is very important for proving Theorem 3.7. Through this result we are able to
see the projected-five term relation for 78, (F).
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2

Sk Sk
Lemma 3.4. Let x;,...,x, € ]PF[E]2

be 5 points in generic position. Then

4
DD alxos o i X TR B X)) = 0 € TB(F), (3.2)
i=0

where x = x; + X\ and x;, x, € P
r(x;1xg, .. X7, oo xg) = r(xilxo, .o Ry Xa) + (XX, L X, L X8,

Proof. Consider five points y, ..., ys € P}, in generic position. We can write the five-term relation in
terms of cross-ratios in B,(F) as (see Proposition 4.5 (2)b in [2]):

4
Z(_l)i[’”()’o, o ’j}ia e 7y4)]2 =0
i=0

These five points depend on 2 parameters modulo the action of PGLy(F), whose action on PPy, is 3-fold
transitive. So we can express these five points with two variables modulo this action as, we can put

o (MMM

Then we can get the five-term relation in two variables ( by using inversion relation in the last two

terms).
] [1-0] [1-3
(¢ — WL+ || + ] - =0.
¢ 2 1- lﬁ 2 I - % )
Now we consider five points yj, ...,y € ]P}[S]z, in generic position, where y = y; + y/¢ for y;, y; € P}..

A generic 2 X 2 matrix in PGL,(F[¢],) depends on 6 = 2(2 X 2) — 2(1) parameters, while each point in

]PIL[E]2 depends on 2 parameters, so these five points in ]Pllr[a]2 modulo the action of PGL,(F[€],) have 4

parameters. Now we can express them by using four variables we choose:

1 0 1 1_ ¢—;8 - ﬂ;s
* ) = ¢ ¢
=M
We calculate all possible determinants which are the following:
A(yo, y1) = Ao, y2) = A(yo, y3) = Ao, y4) = 1, A(y1, y2) = -1,
1 1 1 1
A(y1,y3) = —aA(yl,)M) = —J,A()’z,}@) =1- aA()’z,ﬂ) =1- J
Ao yDe = A, ¥2)e = AV ¥3)e = A, ¥2)e = AG,Y2)e = 0

* * * * ¢
A(y19y3)8 = A(y29y3)s =

Nl
<

’

E’A(yT’yZ)S = A(y;’yjt)s = E
! we can write the following expression in 785, (F)

* k
For yg,....y; € Pry.,

4
D D 0 Fi 3 oG 53D,
i=0
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If we expand the above expression and substitute all the determinants in it, we will get the following
expression in two variables.

($: '], — s y'], + <£; it 4 4 2¢ w] - <1 v (1~ (12 i d
¢ ¢ 2 \1-¢ (1-¢) )
N <¢(1 —¥) Yl —y)¢" — (1 - ¢)¢']
y(l-¢) W (1 - ¢))? >

From (3.2) it is clear that the above is the LHS of the five-term relation in 78,(F). We first show
underneath, that this claim is valid, then later we reduce it to the five-term relation.

Consider xo, . .., x4 € P2 in generic position. These five points also depend on 2 parameters modulo
the action of PGL,(F), so we can express these five points in terms of two variables by the following

choice:
1 0 0 1
(Xo,...,X4): (0],[1],[0),(1],
0 0 1 1

We compute all possible 3x3 determinants of the above and put them in the expansion of the following:

=Y S

we get the following expression in two variables

4
D o, B X0 € Bo(F),
i=0

d

1
1- ¢] [1 - a]
_ I T
¢ I=vl 1 v 1y
clearly the above is the LHS of one version of five-term relation in B,(F).
Since by assumption x,..., X, € ]P%[g]z are 5 points in generic position, we can express them as

modulo the action of PGL;(F[€],) into 4 parameters, then we can choose these points in terms of four
variables in the following way:

1)Y(0)(0) (1 1-Le
O = O LU Lf O] T ]| 5-%e
0)lo 1 1 1

We compute all possible 3 X 3 determinants and substitute them in an expansion of the following:

+
2

[l — ] +

4
Z(—l)i (r(xilxo, .. s Xis oo Xa); Te(X] X, .-, X7, L, X)), € TBL(F),
i=0

we get

, ) Yoy -y 1-y (1-y)¢’ — (1 -y
<¢;¢]2—<t//;¢f]z+<$; 7 L—<1_¢; e i
N <¢(1 — ) Yy - )¢’ — o — @W]
y(l-¢) W (1 - ¢))? >
which is the five-term expression in 78, (F) up to invoking the inversion relation for the last two terms,
which also holds in T8B,(F). i
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Lemma 3.4 indicates that we now have the projected five-term relation for 78,(F) and this relation
will help us to prove the commutative diagram for weight n = 3 in the tangential case.

4 T%g
Proposition 3.5. The map Cs(A,,, ) 5 Cy(A2,.) — TBs(F) is zero.

Proof. We can directly calculate 77, o d’.

4

2o d Uyt = T | YD @il A )
i=0

4
= Z(_l)l <”(77i|770, e ’ﬁi ] 774) 3 Te (Uﬂ’?g’ c ’ﬁ;'k’ cee ’77:)]2 (33)

i=0
The above is the projected five term relation in 78,(F) by Lemma 3.4. O

Theorem 3.2 shows that the diagram (4.2a) is commutative and Propositions 3.3 and 3.5 shows that
we have formed a bicomplex between the Grassmannian complex and Cathelineau’s tangent complex.

3.2. Trilogarithmic complexes

We have already discussed the tangent group (or Z-module) 78,(F) over Fle], in §3.1. In this
section we will discuss group TB;(F) and its functional equations and will connect Grassmannian
complex and tangential complex to Goncharov complex.

3.2.1. The Abelian group T B;5(F)
The Z-module TB;(F) over F|€], is defined as the group generated by:

(a;b] = [a+be] — [a]l € Z[Flela], a,beF, a#0,1
and quotient by the kernel of the following map
b
0s3 1 Z[Flel]l = TBH(F)Q F* & F ® By(F),{a;b] = (a;bl, ®a + p ® [a]>

Now we say that (a; b]; € TB5(F) C Z[F|[e],]/ ker 0. 3.
We have the following relations which are satisfied in 785(F).

(1) The three-term relation.
1 1
(I-a;(1 —a)ls —(asa.ls = {1 —=;[1 == | =0€TB3(F)
a al,l,

(2) The inversion relation
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(3) The Cathelineau 22-term relation ([2])
This relation J(a, b, ¢) for the indeterminates a, b, ¢ can be written in this way

—c]+(l—a4{i:2m”, (34

J@a,b,c) =[la,c]] = [|b,c]] +a

where - |
[[a. b]] = (b — a)r(a, b) + —= 0 (@) + —— (D),
l-a 1-b

while 7(a, b) is defined via five term relation and *-action. We take (x;; x; .]3 with coeflicient

which is handled by *-action.

1 1 b (b 1
,b) =(a;a. - —\b;b, - —— == -
r(@.b) <aa 1_‘1]3 < 1—bL+<a (a)g a—bL

B 1—b_1—b). 1 | [jal=b) (ad-b) 1
1-a'\1-a), b—al, \b(1-a)\b(1-a)), b-al,

and
o(a) ={a;a,-al3 +{1 —a;(1 —a),- (1 -a)ls.

Then we can calculate Cathelineau’s 22-term expression by substituting all values in (3.4)

J(a,b,c) =(a;asclz — (b;b.clz +{c;c.(a—b+ 1)]s
+1-a;(1-a)(1-c))3—=(1-b;(1-b)(1-0)l3

w-aa-om-ak-(5(5) ]+ (5:(5) ] + 2 ()]

(el | () L et
1 l-a b l-a’\l-al, |,
+<a(1—c) (a(l—c))]__a _a <b(1—6) (b(l—c))]

c(1-a)’ \c(1-a) b’\b/els \c(1=b)"\c(1-b)],],
+< ( )(l—c) b- a(b a)(1_64

a —a \l-a 3
+<d1—a)(dl—aU] (1—cm (l—cm)]

’ b ’ el3

(1- C)(l —a) (1=l -a)

< ,( b-a )aL

(1—@b (1-c)b (1-c)(1-=b) ((1-0c)1-Db)

(e (in oo

For the special condition a, = a(1 —a),b. = b(1 —b) and ¢, = c(1 —c), this 22-term expression becomes

zero in T B5(F).
One can write the following complex for 78;5(F).

d: TB (F)@FX
T85(F) — F;B (F) F ® /\ 2FX /\
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3.2.2. Morphisms between Grassmannian and tangent to Goncharov’s complex in weight 3

In this section, we will introduce morphisms between the Grassmannian complex and the tangent
to Goncharov’s complex for weight n = 3. Consider the following diagram

d d

Co(A; Cs(A},,) Ca(A},) (4.3a)

F[8]2) Flel Flel

3 3 3
T2,e l Tl & l TO,s

TB5(F) —"~ (TBy(F) ® F*) & (F ® By(F)) —~ (F® \* F*) @ (\* F)

Here we define the projected cross-ratio

Ao, 17> m)DAGG, 15, 15)
A(ng, 17> m3) A5, 15, 1))

(o015 102 13 71) =
which can be further simplifed to

r(nolmy. 5. 15, 112) = r(olmy, M2, 13, a) + re(glny, 5, 15, M€
where
Ao, 11, 14)A(M0, 12, 173)

Ao, n1,1m3)AM0, 172, 14)
u

Ao, m1,13)* A0, 172, 74)?

r(molmi, m2,m3,n4) =

re(molmys M5, 3, 1) =

u=- A(T]Oa M, 774)A(7705 2, 773){A(7705 1, TIS)A(WS, 77;, 77:)8 + A(UO» n2, T]4)A(778, 7775 7];)8}
+ A0, 171, 13) A0, 72, NaNA@0, 11, 1) A, 15, 13)e + A0, 72, 13) A0, 775 )6}

where the morphisms between the two complexes are defined as follows:

Too (s - 175)

3 # A * A
_ iA(noa-o-ania--oang)a A(T](),...,n,'+1,...,7]3)
=21 A ® A

i=0 A(n()a---7ni’-"’n3) A(n07"-7ni+2a---’n3)

3 * Ak *
Ao, - . s Fliszs - - - s JANG// S/ N 9
Mo, - - -, Aix3 n3)+/\ 0 ) 38), i mod 4

A = ~
Aoy -+ s Tiszs - 5m3) L AOI0s -5 Tjs -5 713)
J#i
T (s -5 113)
1 4
=-3 (—1>l(<r<ni|no, e T T o] @ | | AG )
i=0 i#]

4 * Ak Ak *
+Z(A(no,...,ni,...,nj,...,n4)g

= ~ ® I"(?],'l?]o,...,ﬁi,...,n4) )
A(T]o,...,ni,...,ﬂj,...,l]4)) [ ]2

J=0
J#i
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and
£ E3 2 * %
T;g(n09 ceey US) = EAltG <r3(770, ey 775)’ r3,8(770a ey 775)]3
where
(1 ns) = (Mom113)(1m1121m4)(M2170M5)
30y -5 T[5) —
(mom1n4)(m11m2m5)(112170713)
and

r3(Mgs - - - 705)
_NGrgmm) i) gns)Ye— Gromims)(nimana) Granons) (01m 1) G n5) g1 )e
— omn)mmens)annons)  @emna)mmans)manons) - (omns)(mians)@manons)
the map d, is defined as

9: (a; bl ® c + x @ [y]o)

(3.6)

b b b b
=-——®aArc——Q@U-a)Ac+x@(1-y)Ay|+|— A —-AXx
1-a a l-a a

and

b
0.({a; bl3) = (a;bl, ® a + P ® [al»

Theorem 3.6. Diagram (4.3a), i.e.,

Cs(A2, ) d Cy(A3, )

Flel Flel

3 3
lTl,s lTO,e

(TBo(F) ® F) & (F ® By(F)) —= (Fo N2 FY)e(AYF)

is commutative, i.e., 7(3)8 od=20.0 T? .

Proof. First we divide the map 7, = 7" + 7@ then calculate 7V o d(n;, ..., 77;)

4
o dagy,.... 1) =, (Z(—l)"(nz;, s 772))

i=0

3 A
A1 l.A(n*,...,T];.k,...,T]*)s A( ,...,Al’ ,...,)
:Alt(01z34)(2(—1)( oo g 0 el
i=0 A(n09*"9ni""7773) A(n05"'577i+29°"9773)

A A(n09--'9ﬁi+3"--’n3)
A(n09~"9ﬁi+25"~,n3)

Now, we expand the inner sum that contains 12 terms and pass them through the this alternation to

), i mod 4) (3.7)

. . . . . Ay
the inner sum, gives us 60 different terms overall. We collect terms involving the same A((Z’, Z-{ Z]’:)) e
together for calculation purposes. On the other hand the second part of the map is: '
3 SN, .01
(1) * N A 14 i 0 A > 137¢
77 odng,....n )—A1t01234( (=D - ) (3.8)
0 + ( ) ;; =0 A(UO,---»UJ‘,--.,’%)

J#
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The other side of the proof requires tedious computations. For the calculation of 0, OT? . we will use the

short hand (n;1717,)e for A(m;, 175, 7). and (i) for A((mi, nj, 1x)- First we write 9, o 77 (75, - -, 77})
by using the definitions above.

0z 011 (s - -2 102)

4
1 i A )% A * A A
= 68( -3 Z(—l) ((ronlno. - Ao o) re @G )|, @ ]_[A(m, 7))
i=0 i#j
4 * Ak Ax *
+ Z(A(noa---777j,'--,rij,---’n4)8
A(n()a-'°a77i9'~~977j9°~-9774)

) ® [r(niln()a ey ﬁi’ .. ’]74)]2 ))
=0
J#E

then we divide 8, = 8" + 8. The first part 8V o 7] (5, ..., 77;) is

4 A
1 A re(ings 0 T)

Y =~ - l l ® i ,...,Ai,..., AN Ai’A'
52 )( = vty oy OOl o) LJ(U )

Fe s s B A -
- Lo (= rtplno, . 7o) A | |G )
r@io. - i) |

4 * A Ak *
4_2(A(no,...,771.,...,17].,...,174)‘9
j=0

A~ ~ ®(1_r(ni|770,o--,ﬁi,---,774))
A(Uo,---,Ui,---,nj,---,774))

JEI
/\r(77i|770, ey ﬁi’ ey 774)) (39)

The second part 8 o 77 (775, . .., 77}) is

1 i(_l)i(_rg(n;*ln;;,...,ﬁ;f,...,nza LG o)
3 —0 7’(771'|770,---aﬁi,---,774) 1_r(77i|770a---’ﬁi,---,774)

A IAGE, R,

/\Z( 0 ! J ! )) (3.10)
P AN/ TS / TR / R /1Y
i

**********

then we calculate % and lea 1.e., all the values of the form

. r(polit2.173-114) =Gl s Y
using formula (2.6) we get

re(Molmys 1 151y (Mgmny)e N Mom13)e  (lhiy)e  (MoM115)e

rolns M3, ma)  Momma)  (qomans) (omama)  (omins)

Similarly, we can find this ratio for each value of i = 0, ..., 4. Now use formula (2.6) with the identities
(2.1) and (2.3);

b S I

re(nolty, M, M 118 _ Oliyme | (mitiy)e  Ongitsni)s Ong'Tiina)e
1 —r(olmi.n2,m3.m4)  (Momans) — (omms)  (momans) — (Mornin2)
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After calculating all these values, expand the sums (3.9) and (3.10) and put all values that we have
calculated above. For instance, let us calculate (3.9). In this sum we have a large number of terms, so

ey ® - - -, we find that there

we group them in a suitable way. First collect all the terms involving o)

are 6 different terms with coefficient -3 involving T

3D

® (('70771773) A (mimans) + (Morana) A (nipis) + (o) A (Mon2114)
(omm2)

—(omms) A (o) = (omims) A (niana) = (omans) A (qimans))

;e
(rimme)
will have the coefficient —3 that will be cancelled by —% in (3.9) and then combine 60 different terms
Oimmpe
minjnk)

There are exactly 10 possible terms of Compute all of them individually. We will see that each

with 6 in a group of the same write in the sum form then we will note that it will be the same
as (3.7).

Computation for the second part is relatively easy and direct. We need to put all values of the form
re(mglni 15.m3.m3) r_a(noln],nz,npm) in (3.10), expand the sums, use a A a = 0 modulo 2 torsion. Here we
r(olis 12,173-114) ~ 1=rGrolnima.n3.n4), . . . . .
will have simplified result which can be recombined in the sum notation which will be the same as

(3.8). O

Theorem 3.7. The following diagram (4.3a), i.e.,

Co(A3. ) d Cs(A3. )

Flela Flel

3 3
lTZ,s l‘rl,s

TBs(F) ——2—~ (TBy(F) ® F¥) & (F ® By(F))

is commutative i.e., T;s 0d,=do ‘r? .

Proof. The map T;g gives 720 terms and due to symmetry (cyclic and inverse) we find 120 different
ones (up to the inverse). By definition, we have

2
3 * * . * *
Tz,g(n()’ ceey n5) = EA1t6 <r3(770a ey 775)7 r3,8(7705 ey 775)]3
For convenience, and similar to our previous conventions, we will abbreviate our notation by dropping
A and commas.

8, 0 T, .. 15)
r3:(m - .ng)

G0 ons) © 0 ’75)]2} @10

2 * *
:EAI% {<r3(770 51350 - 15) ), @ 13 (o - - mps) +

rS,S(TIS-"U;

We need to compute the value of > which is
r3(110---115)

L L B

_ omm)e | Ohmmye | (nigns)e  (inge  0nimis)e (i)

o omms)  nmama)  Gnoms)  omima)  (umans)  (namons)
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Formula (3.11) can also be written as

2 . . (Momm3)(11172174)(172170775)
=—Alteq (13170 ... 15); 13115 - - -12) |, ®
45 6{< 0.1y - 7)), Mo 12) mans) (110m3)

((77877’[773)8 L mie | (ngns)e (g (mis)e (g
momnz)  (mmans)  (pmons)  (omns)  (mmens)  (m2nom3)

We will consider here only the first part of the above relation.

(momm3)(111214)(1210M5)
(Momn4) (111215 )(1M210M3)

2 .
25 Altel(rsOm0 1) r3.e( - 3], ©

Further,

=Alte ({r3(no . .. n5); 13,075 - - - ® (10171713)

+Alte ({30 - - . 175)3 73,0105 - - - ® (m1m2n4)
—Altg \{r3(10 . . . 115); 13.:(17 - - - ® (170171714)

® (m1m215)

{ ), |
{ 7, |
+Alte {(r3010 ... 715); 73,605 - .. 03], ® (amons))
{ ), |
—Altg {(r3(n - .. 15); 73,605 - - 131, |

n5)], }

—Alte {(r3 (0 - - -15): 7325 - . )], ® (par0ms)

L .

We use the even cycle (170m1172)(7317475) (or (17m1m5)(115m3175)) to obtain

Sk sk sk sk

Alt {(rs(nommansnans); r.oyminsmynin?)], ® Gromns))
=Alte {(rs(nmanonansna): rs.Crmsnmemansny), ® (nimana))

We can also use here the symmetry

(ra(mommananans); r3.(mommansnans), = ra(mnanonansns); rs(mimangnsmsns)1,

since
3 (MM Mam3Mans) = r3.:(monansn;)  precisely both have the same factors

and similar for the others as well so that (3.12) will be

2 k ok ok sk sk %k
= EAI%{ (rs(ommansmans); r3.(omma13ma3) |, ® (rommns)
= (rs@rommansnans); ra. i i), ® Gromna))

If we apply the odd permutation (773774) (or (17577,)), then we have

2 ko ko ko sk sk sk
= E - 2Altg {(”3(770771772773774775); 7’3,8(770771772773774775)]2 ® (770771773)}
Again apply the odd permutation (170173) ( or (175773))

ko k ko sk

2 o
= EAH6{ (rs(mommansnans); r3.(0gm 1213M375) ], © (10m1173)

E [m(no...ns)]z}

(3.12)
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= (rsammanonans); rs. o mins)], ® (o))

but up to 2-torsion, which we ignore here, we have (n911173) = (173m110) and then the above will become

2 %k k k% %
= 1—5A1t6{( (r3(Mommamsnans); 13, (MM mam3m415) 1,
— (rs@smmanonans)s a5 imyany)1, ) © (nomms)) (3.13)
Recall from the triple-ratio

(mom1m3)(m112m4)(1217075)

(Momna)(mim2n5)(11210173)
can be expressed as the ratio of two projected cross-ratios.
We will see here that r3 .(n;n71751757,75) can also be converted into the ratio of two first order cross-
ratios.

Let a and b be two projected cross-ratios whose ratio is the triple-ratio

r3(Moninan3nans) =

(Momm3)(11112174)(172170M5)
(mom1n4)(m1m2m5)(1121707713)

r3(Moninamanans) =

sk ok ok sk sk

then r3 (o m5m5m,m5) will be written as (Z—)g Since we can also write as

3o a3147s5) = r3(Mommananans) + 13 (Mo 151031415)E

or
r3(om 1a13141s) = r3(ominamsnans) + (X3 (ommanzmans)), €
we get
et ) = ((USnTné)(nTnZUZ)(nénéné))
3.e - %ok % P sk %
OIS ) i) (i) )

E .

Now it is clear that r3 .(17,177175175174775) can also be written as the ratio or product of two projected cross-
ratios. There are exactly three ways to write it (projected by (r7; and 77), (177 and 775) and (77 and 775))
but we will use here i} and 77;. The last expression can be written as

r3,6(MoM 2113713775

C .

. . *)_(r(nyn?nén;n;))
r(mngmsny) ),

and (3.13) can be written as

2 Alt {<V(772|771770775773),(T(U§|UT’7377§’7§)

= Tz 6 ’ S otk ok K sk ®(T’Or]1n3)
15 r(n1lmom2n3n4) r(nllnonz%m))g]z

r(malmmsnsno) (YO mmansmg)
- ; R ® (170171173)
r(mlnsnanons) el

r(niInsnanens)

Applying five-term relations in 785,(F) which are analogous to the one in (2.9).

sk %k

2 * k| %k k%
:EAI%{( (r(malmmnonsns); r=Grmimonss)1, — remlnonansna); e lmomamsny) ),
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r(nal ) (rnminsning)
—< "2’71”5"3”0;( 2B | ) @ (romis) (3.14)
r(minomsnanz) \r(ilmymnyms) ), |,

For each individual determinant, e.g., (1017;773) will have three terms. First consider the third term of
(3.14)

2 r r(m5 i nsmsng)
2 Al {< (772|771775773770);( i i i i S ® (o 13)
15 r(mlinonsnanz) \r(ilmymngms) ) .|,

2 1 r(12lminsn3no) (r(ﬂilﬂ’fnsngno))]
=—Altg{ —Alt = ® (011173)
15 6{36 (om1173)(m21415) (< (1 nonanaty) r(771|770773774772) ik ofh3

We need a subgroup in S'¢ which fixes (19171773) as a determinant i.e., (o171173) ~ (17317110) ~ (P300171)  *
Here in this case S ; permuting {19, 171, 773} and another one permuting {1,, 174, 75} i.€., S3 X §3. Now
consider

r(almnsmano) (YOnmminimg)
AltGmnsomnans) {< ; ® (om113)
ed2

r(mInonsnanz) \r(;Ingmsmn;)
(12msm3)(mnona)  ( (nsm3) (1 mgm,)

2 ok ok ook ok ®(n0n1n3)
(m2nsno)(mmnsna) \(nsmy)mimsny) /1,

:Alt(flonln3)(flz7l4775) {<

By using the odd permutation (77,75) the above becomes zero.
then (3.14) becomes

Sk k ok sk ko k ok ok

2 sk £
=T Alts {((r(nzlmnonsn3); re(malmimanin), = Craminomanana); rimgmamin)1,) ® (nonms)} (3.15)

Consider the first term now,

2 * k sk sk sk
T3l {<r(nzlmnonsn3); re(mlnmonsms)], © (nomns)}

2

1 * Kk k% k
= EAlts {%Alt(nomm)(mms) {(”(772|771770775773)§ re(mlmimensn;)], (770771773)}}

The permutation (17917,173) does not have any role because the ratio is projected by 2. So, it will be
reduced to S3.

2 1 Sk ok k%
= EAlt6 {gAlt(lenﬂls) {(”(772|771770775773)§ re(msmimonsns)], ® (770771773)}}

Write all possible inner alternation, then

1 * * 3 * * * * 3 * *
= EAI%{( (rmalmmonans); re(palminenams) |, — (r(nalmnonans); re(ps Iminemans)1,

s k%

+ (r(mslmnonans); re(rsmingmans), = r(almnonsns); re(rningnsny)),

k sk sk sk

+ (r(malmnonsms); re(pminonsns) ], = <r@mslmnonans); re(msiningmsny)), ) ® (nomm)}
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Now we can use projected five-term relation in 78, (F) here,

1 S Sk * % * % E3 * % £
= EAlté{( (r(molmmanana); re(uolmimamand ], — (r(mimonansna); reGry gz,
— (r(almomnana); r=(psImonimam)], + <r(olmnansns); re(glninamzns)],
— (r(mInonansns); r(nmomansns)l, — (rGplnoninans); r(slmonimans) 1,
+(r(olmnsnana); r-(olmnsnana) 1, — (rmlnonsnsna); r-(ninonsnsna)l,
— (r(mslnomnsma); re(mslmminsmy) ], ) ® (770771773)}
Use the cycle (no171773)(172n475) then we get
1 K|k ok k%
= 75+ 9Als (rnlmmansma): reCnimnsn)], © Gaomns)) (3.16)

The second term of the relation (3.15) can also be written as

1 3k Sk sk sk sk
15 ~OAlts {CramInomanana): re(ri niiams )], © Gromns)|

(3.16) can be combined with the above so we get

sk %k

], — 6 (rminonansna): re(rilmnsmind)1,) ® (omms))
(3.17)

1 ,
= EAR(’ {(9 (r(molmimansna); r(mpln

Use the permutation (17077,173)(17214775) to get

1 K|k ok k%
= 3Alts {CrGaolmmansna); roGrilmimsm)], ® Gromims))

The Bloch group 8,(F) also holds the five-term relation, thus we write the following:
(1911713

(momm3)

3 ® [r(770|771772773774)]z} (3.18)

1 * £ * 3 ¥
= =Altg {(r(nolmnznsm); remolminamsny) ], ® (omins) +

Now go to the other side. Map 73 . can also be written in the alternation sum form

70005 - 1) = SAWCrolmnansna); re(ilmimsmimy)1, © Gomir)
(M1 75)e
+—L 22 @ [r(olmimanana)2)
(Mom172)

Compute Tigod(ng ...n3) and apply cycle (7017:12173n475) for d and then expand Alts from the definition
of 73 ;
l.e?

Ty, 0d(g...m5) = ATl (r(molmimanana); re(glmi i) ], ® (momin2)
+(770771n2)g

® [r(molmim2m3na)l2}
(Momi12)
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Use the odd permutation (1,173), then

1 E3 * * ES >k
= _§Alt6{ (r@molminznana); re(momimnany)l, ® (omins)
(momim3)
+—252 @ [r(olmimanana)la)
(Momm3)

Finally use the two-term relation in 78,(F) and the Bloch group B,(F) to get the required sign. The
final answer will be the same as (3.18) m|

There are some more related results.

Proposition 3.8. The map Cs(A% ) %> Co(A2 ) LA (F& N> F*)e (N’ F) is zero.

Flel Fle

Proof. The proof of this is obtained directly by calculation. Let (77;, . ..,7;,) € Cs (A‘;[Sh) where

a+a.e a a
b+b.e b b
* & &
I c+c.e c Ce i 7 Mie
d+d.c d d.e

Let w be the volume formed in four-dimensional vector space, and A(rx;, -, -, -) be the volume form in
Va/<n:)-

7(3)78 od'(ny,...,ny)
4
:%5(2304Y0ﬁm&.~,$,~an)
i=0

Consider the first coordinate of the map first

3 o
Alf .A(n*,...,n?,“.,n*’n*)g A "'-’Ai 9 e ey s
:Alt(01234)( E (—1)‘( 0 . 3 l4e o (10 TZ+1 13, 14)
=0 A(no,...,ni,-..,ﬂ3,774) A(no,...,ni+2,...,n3,n4)

Ao, -+ Rie3s - 25113, 14)
A(n()’ e 9ﬁi+2’ D) 773’ 774)

) i mod s (3.19)

First, we expand inner sum that gives us 12 different terms after simplification. By applying alternation
sum, we get 60 terms and there is direct cancellation which leads to zero. Now consider the second
coordinate, which gives us

3 SN, R T
—_— i 0° ’ ’ s 13> 47
Altg1234) E =1 AJ_
i=0 j:0 A(n07-'~a77j"~-7n37r]4)

J#i

Again if we expand the inner sum, then we get only four different terms, but after the application of
alternation we get zero. O

As an analogy of Proposition 3.8 in higher weight, we present the following result.
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d T _ )
Proposition 3.9. The map C,,+2(A7;[81]2) — Cur1(Afy,,) B (F SN"F X) ® (\" F) is zero, where

T0.6(Mgs - -+ 71,)
- LA T )e Aoy - Rt -5 T
— Z(_l)l( )70 TIA n ® (TIO 7z+1 n )
i=0 A(UO?"'ani""’nn) A(UO’---’UHZ,---ann)

A(Uo,...,ﬁi+(n_1),...,Un))+(/n\ A(US,,ﬁj,,U;‘; s)
A(UO,-~-,ﬁi+n,--~a77n) j ’

Ao A

j=0
J#

i mod (n+1)

Proof. Let (15, . .., 17, 1) € Coia(A), ). We have

Tg’g o d/(USa ceey 77:4.]) = Tg,g [Z(_l)l(ﬂﬂ'ﬁ), ey ﬁ;ka L) 77:;+1))

i=0

Now use the definition of alternation to represent this sum then we have

Toe 0 d (Mgs - -3 Myyr)

— C i (AT - Tl M My Do A@0s -+ s it - -+ 5 Ts Tns1)
A(UO, L] nl’ st nna nn+l) A(n()’ ] T’l+2’ cee nn’ nn+l)

i=0

A(T](), ey ﬁi+na N 77n+l) A(ﬂo, ey ﬁ]» ceos s nn+l)

J#

Ao Bistnt ool us )y BT T T T e )
A + ,
) (A )

i modn+ 1} (3.20)

Expanding the inner sum gives us n + 1 number of terms. Expand again by using the properties of
wedge that gives n(n + 1) terms. Applying the alternation sum on that, gives us n(n + 1)(n + 2) terms,
so there are n + 2 sets each consisting n(n + 1) terms and each term in n(n + 1) term has n + 1 sets of n
terms which cancel off set by set.

Now expand the inner sum in the second term of (3.20) that gives n + 1 terms and then apply the
alternation sum which gives n + 2 sets of n + 1 terms, we now find cancellation in the expansion of sum
accordingly, which gives a zero as well. O

4. Conclusion

Many studies have been done on Scissor’s congruence and Bloch’s groups. Bringing geometry of
configurations in Bloch’s and Goncharov’s groups plays a vital role in proving Zagier’s conjucutre for
weights n = 2, 3. In this article, we introduced the tangent to Goncharov’s complex and view them by
means of geometric configurations. This leads to the idea at the higher orders of tangent groups.

Theorem 3.6 proves the commutativity of the right hand side square of the diagram (4.3a) and
Theorem 3.7 shows the commutativity of the left hand square of the diagram (4.3a).
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