
http://www.aimspress.com/journal/Math

AIMS Mathematics, 5(1): 507–521.
DOI:10.3934/math.2020034
Received: 09 October 2019
Accepted: 29 November 2019
Published: 06 December 2019

Research article

Complex solitons in the conformable (2+1)-dimensional
Ablowitz-Kaup-Newell-Segur equation

Wei Gao1,∗, Gulnur Yel2, Haci Mehmet Baskonus3 and Carlo Cattani4

1 School of Information Science and Technology, Yunnan Normal University, Yunnan, China
2 Final International University, Kyrenia Mersin 10, Turkey
3 Harran University, Faculty of Education, Sanliurfa, Turkey
4 Tuscia University, Engineering School (DEIM), Viterbo, Italy

* Correspondence: Email: gaowei@ynnu.edu.cn; Tel: +8613529457727.

Abstract: In this paper, we study on the conformable (2+1)-dimensional Ablowitz-KaupNewell-
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1. Introduction

Various natural phenomena, especially in physics, are commonly modelled by nonlinear
differential equations. For a better understanding of the behaviors of these equations and the
properties of the corresponding solutions, many researchers have improved various methods such as
the homotopy perturbation method [1,2], the homotopy analysis method [3,4], expfunction method
[5,6], exp(−Ω(ξ)) expansion function method [7], extended sinh- Gordon equation expansion method
[8–11], Hirota’ s bilinear method [12], Bäcklund transformation [13]. By using the sine-Gordon
expansion method we will investigate the solutions of the conformable (2+1)-dimensional
Ablowitz-Kaup-Newell-Segur equation. The Ablowitz-KaupNewell-Segur(AKNS) water wave
equation which is playing a fundamental role in physics [14]. A number of methods have been used
for searching explicit solutions to the AKNS equation. Like for, the inverse scattering transformation,
the modified simple equation method, the Hirota’ s bilinear method, the ansatz method, the bilinear
Bäcklund transformation [15–22]. However, only recently some authors have attempted to solve the
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Ablowitz-KaupNewell-Segur equation with fractional derivative [23,24]. Nowadays, the researchers
study on fractional calculus and improved new operators which are known as the Caputo, the
Riemann−Liouville, the Caputo−Fabrizio, the Atangana−Baleanu derivatives. Fractional order
models are better describe the real-world problems and thus they are used in engineering and applied
sciences. The scientists have proposed many mathematical tools to fractional models recently, they
can be seen in [35–61]. The conformable fractional operator overcome some limitations of other
fractional operators and provides basic properties of classical calculus such as derivative of the
quotient of two functions, the chain rule, the product of two functions, Rolle’s theorem, mean value
theorem. The application of the conformable derivatives is simpler and very efficient. Furthermore, it
allows us better understand behaviors of pysical phenomenon.

In this paper, we study the Conformable (2+1)-dimensional AKNS (CAKNS) water wave equation
with a perturbation parameterρ,

4
∂2αϕ

∂xα∂tα
+

∂4αϕ

∂x3α∂tα
+ 8

∂αϕ

∂xα
∂2αϕ

∂xα∂yα
+ 4

∂2αϕ

∂x2α

∂αϕ

∂yα
− ρ

∂2αϕ

∂x2α = 0, 0 < α ≤ 1, (1.1)

where α denotes the conformable derivative respect to x, y, t.
The paper is organized as follows. The definition and some properties of conformable derivative are

given in section 2, the main structure of the sine-Gordon expansion method (SGEM)is given in section
3. We will give application the SGEM to the mention equation in section 4. Conclusions are given in
the last section 5.

2. Preliminary remarks on conformable derivative

Definition: Let h : [0,∞) −→ R be a given function, the conformable derivative of h of order α is
defined as,

Lα(h)(t) = limε→0
h(t+εt1−α)−h(t)

ε
,

for all t > 0, α ∈ (0, 1)[25].
Theorem: Let Lα be the derivative operator with order α and α ∈ (0, 1)andh, k be α- differentiable at
a point t > 0.Then [25,26], we have the following

i . Lα(ah + bk) = aLα(h) + bLα(k), ∀a, b ∈ R.

ii . Lα(tp) = ptp−α, ∀p ∈ R.

iii . Lα(hk) = hLα(g) + kLα( f ).

iv . Lα(h
k ) =

kLα(h)−hLα(k)
k2 .

v . Lα(λ) = 0, for all constant functions h(t) = λ.

vi . If h is differentiable then Lα(h)(t) = t1−α dh
dt (t).
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3. The Sine-Gordon expansion method

We will give general structure of the SGEM in this section.
Let us consider the (2+1)-dimensional sine-Gordon equation is given by [27–34];

ϕ2α
xx + ϕ2α

yy − ϕ
2α
tt = η2sin(ϕ), (3.1)

where ϕ = ϕ(x, y, t), η is a real constant. Using the wave transform ϕ = ϕ(x, y, t) = U(ψ), ψ =

cosθ xα
α

+ sinθ yα

α
+ c tα

α
to to Eq.(2), we can find the nonlinear ordinary differential equations,

U′′ =
η2

(1 − c2)
sin(U), (3.2)

where U = U(ψ), ψ and c are the amplitude and velocity of the travelling waves, respectively. We
integrate Eq.(3) then we obtain as follows;[(U

2

)′]2

=
η2

(1 − c2)
sin2

(U
2

)
+ K, (3.3)

where Kis the integration constant. Substituting K = 0,w(ψ) = U
2 andb2 =

η2

(1−c2) in Eq.(4), gives

w′ = bsin(w). (3.4)

Setting b = 1 in Eq.(5) gives
w′ = sin(w). (3.5)

Solving Eq.(6) via separation of variables, we obtain

sin(w(ψ)) = sech(ψ), (3.6)

cos(w(ψ)) = tanh(ψ), (3.7)

Suppose that the nonlinear fractional differential equation is given in the more general form;

P(ϕαx , ϕ
α
t , ϕ

α
y , ϕ

2α
xx , ϕ

α
xϕ

2α
xy , ϕ

2α
xt , ϕ

3α
xxy,.....), (3.8)

where and α ∈ (0, 1] is the order of the conformable derivative. To obtain the solutions of Eq.(9), we
suppose the following expressions

U(ψ) =

n∑
i=1

tanhi−1(ψ)[Bisech(ψ) + Aitanh(ψ)] + A0. (3.9)

U(w) =

n∑
i=1

cosi−1(w)[Bisin(w) + Aicos(w)] + A0. (3.10)

Applying the homogeneous balance principle between the highest power nonlinear term and highest
derivative in the nonlinear ordinary differential equation(NODE), we determine the value of n .
Putting Eq.(11) and its consecutive derivatives into the NODE, we obtain a polynomial equation with
sini(w)cos j(w) Using some trigonometric properties to the polynomial equation, it is obtained an
algebraic equation system by equating to zero the same power summation of coefficients. With aid of
the computation programme, we solve the equation system to obtain the Ai, Bi, and c values.
Substituting the Ai, Bi, c values into Eq.(10), we get the new travelling wave solutions to the Eq.(9).
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4. Application of SGEM

In this section, we will give application of the SGEM to conformable(2+1)-dimensional
Ablowitz-Kaup-Newell-Segurwater wave equation. Let us consider the Eq.(1). Putting the following
wave transformation into Eq.(1)

ϕ(x, y, t) = U(ψ), ψ = cosθ
xα

α
+ sinθ

yα

α
+ c

tα

α
, (4.1)

So that by using the conformable derivative properties,the Eq.(1) is converted into

(4ccosθ − ρcos2θ)U
′′

+ (12sinθcos2θ)U
′

U
′′

+ (ccos3θ)U iv = 0, (4.2)

Integrating once Eq.(13) with respect to ψ , we obtain

(4ccosθ − ρcos2θ)U
′

+ (6sinθcos2θ)(U
′

)2 + (ccos3θ)U
′′′

= 0, (4.3)

We transform U
′

= V, it can be written as,

(4ccosθ − ρcos2θ)V + (6sinθcos2θ)(V)2 + (ccos3θ)V
′′

= 0, (4.4)

Using the homogenous balance principle between V
′′

andV2, we obtain

n = 2 (4.5)

For the value n = 2 Eq.(11) take the form,

V(w) = B1sin(w) + A1cos(w) + B2cos(w)sin(w) + A2cos2(w) + A0, (4.6)

Differentiating Eq.(17) twice, yields

V
′′

(w) = B1cos2(w)sin(w) − B1sin3(w) − 2A1sin2(w)cos(w)+
B2cos3(w)sin(w) − 5B2sin3(w)cos(w) − 4A2cos2(w)sin2(w)+
2A2sin4(w),

(4.7)

Substituting Eqs.(17–18) into Eq.(15), we obtain a trigonometric function with different degrees.
Equating to zero all sum of coefficients of the same power of the trigonometric functions,we get the
following algebraic equation system.
constants : 4ccos[θ]A0 − ρcos[θ]2A0 + 6cos[θ]2sin[θ]A2

0 + 6cos[θ]2sin[θ]B2
1 + 2ccos[θ]3A2 = 0

Cos[w] : 4ccos[θ]A1 − ρcos[θ]2A1 + 12cos[θ]2sin[θ]A0A1 + 12cos[θ]2sin[θ]A1A2 = 0,
Cos[w]S in[w]2 : −2ccos[θ]3A1 − 12cos[θ]2sin[θ]A1A2 + 12cos[θ]2sin[θ]B1B2 = 0
Cos[w]2 : 6cos[θ]2sin[θ]A2

1 + 4ccos[θ]A2 − ρcos[θ]2A2 − 2ccos[θ]3A2 + 12cos[θ]2sin[θ]A0A2 +

6cos[θ]2sin[θ]A2
2 − 6cos[θ]2sin[θ]B2

1 = 0
Cos[w]2S in[w]2 : −6ccos[θ]3A2 − 6cos[θ]2sin[θ]A2

2 + 6cos[θ]2sin[θ]B2
2 = 0

S in[w] : 4ccos[θ]B1 − ρcos[θ]2B1 − ccos[θ]3B1 + 12cos[θ]2sin[θ]A0B1 = 0
Cos[w]2S in[w] : 2ccos[θ]3B1 + 12cos[θ]2sin[θ]A2B1 + 12cos[θ]2sin[θ]A1B2 = 0
Cos[w]S in[w] : 12cos[θ]2sin[θ]A1B1 + 4ccos[θ]B2 − ρcos[θ]2B2 + ccos[θ]3B2 +
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12cos[θ]2sin[θ]A0B2 + 12cos[θ]2sin[θ]A2B2 = 0
Cos[w]S in[w]3 : −6ccos[θ]3B2 − 12cos[θ]2sin[θ]A2B2 = 0
The solution of this set of equation gives the coefficients of Eq.(10).So that we have the following
cases:
Case 1:
A0 = −A2; B1 = 0; A1 = 0; B2 = iA2; ρ = −

2(4+cos[θ]2)sin[θ]A2
cos[θ]2 ; c = −2sin[θ]A2

cos[θ] , gives the solution in the
form,

ϕ1(x, y, t) = A2(−iS ech[ f (x, y, t)] − Tanh[ f (x, y, t)]) (4.8)

where f (x, y, t) =
xαcos[θ]+yαsin[θ]

α
−

2tαsin[θ]A2
αcos[θ]

Case 2:
A0 = −2A2

3 ; B1 = 0; A1 = 0; B2 = −iA2; ρ =
2(−4+cos[θ]2)sin[θ]A2

cos[θ]2 ; c = −2sin[θ]A2
cos[θ] , gives the solution

ϕ2(x, y, t) =
1
3

A2( f (x, y, t) + 3iS ech[ f (x, y, t)] − 3Tanh[ f (x, y, t)]) (4.9)

Case 3:
A0 =

ρcos[θ]2

12sin[θ]−3cos[θ]2 sin[θ] ; A1 = 0; A2 =
ρcos[θ]2

2(−4+cos[θ]2)sin[θ] ; B1 = 0; B2 =
iρcos[θ]2

2(−4+cos[θ]2)sin[θ] ; c =

−
ρcos[θ]
−4+cos[θ]2 ,enable to write the solution as,

ϕ3(x, y, t) =
ρcos[θ]2(g(x, y, t) + 3iS ech[g(x, y, t)] − 3Tanh[g(x, y, t)])

6(−4 + cos[θ]2)sin[θ]
(4.10)

where g(x, y, t) =
xαcos[θ]+yαsin[θ]

α
−

tαρcos[θ]
α(−4+cos[θ]2)

Case 4:
A0 = ccos[θ]

2sin[θ] ; A1 = 0; A2 = − ccos[θ]
2sin[θ] ; B1 = 0; B2 = iccos[θ]

2sin[θ] ; ρ =
c(4+cos[θ]2)

cos[θ] , gives,

ϕ4(x, y, t) =
c
2

cot[θ](−iS ech[ψ] + Tanh[ψ]) (4.11)

Case 5:
A0 = ccos[θ]

3sin[θ] ; A1 = 0; A2 = − ccos[θ]
2sin[θ] ; B1 = 0; B2 = − iccos[θ]

2sin[θ] ; ρ = 4c
cos[θ] − ccos[θ],

ϕ5(x, y, t) = −
c
6

cosec[θ](ψ − 3iS ech[ψ] −
1
2

Tanh[ψ]) (4.12)

Case 6:
A1 = 0; A2 = −3A0

2 ; B1 = 0; B2 = −3iA0
2 ; ρ = −

3(−4+cos[θ]2)sin[θ]A0
cos[θ]2 ; c = 3sin[θ]A0

cos[θ] , enable to write the
solution as,

ϕ6(x, y, t) = −
1
2

A0(h(x, y, t) − 3iS ech[h(x, y, t)] − 3Tanh[h(x, y, t)]) (4.13)

where h(x, y, t) =
xαcos[θ]+yαsin[θ]

α
+ 3tαsin[θ]A0

αcos[θ] ,
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Figure 1. The 3D and contour plots of ϕ1(x, y, t) when α = 0.9, A2 = 1, θ = π
2 .

-10 -5 5 10

x

-1.5

-1.0

-0.5

0.5

1.0

Im[ 1

-10 -5 5 10

x

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

Re[ 1(x,y,t)]

Figure 2. The 2D- plots of ϕ1(x, y, t) when α = 0.5, 0.9, 1, A2 = 1, θ = π
2 , t = 1 .
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Figure 3. The 3D and contour plots of ϕ2(x, y, t) when α = 0.9, A2 = 1, θ = π
2 .
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Figure 4. The 2D- plots of ϕ2(x, y, t) when α = 0.5, 0.9, 1, A2 = 1, θ = π
2 , t = 1 .
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Figure 5. The 3D and contour plots of ϕ3(x, y, t) when α = 0.9, ρ = 0.5, θ = π
2 .
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Figure 6. The 2D- plots of ϕ3(x, y, t) when α = 0.5, 0.9, 1, ρ = 0.5, θ = π
2 , t = 1 .
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Figure 7. The 3D and contour plots of ϕ4(x, y, t) when α = 0.9, c = 0.17, θ = π
2 .
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Figure 8. The 2D- plots of ϕ4(x, y, t) when α = 0.5, 0.9, 1, c = 0.17, θ = π
2 , t = 1 .
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Figure 9. The 3D and contour plots of ϕ5(x, y, t) when α = 0.9, c = 0.17, θ = π
2 .
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Figure 10. The 2D- plots of ϕ5(x, y, t) when α = 0.5, 0.9, 1, c = 0.17, θ = π
2 , t = 1 .
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Figure 11. The 3D and contour plots of ϕ6(x, y, t) when α = 0.9, A0 = 0.5, θ = π
2 .
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Figure 12. The 2D- plots of ϕ6(x, y, t) when α = 0.5, 0.9, 1, A0 = 0.5, θ = π
2 , t = 1 .

5. Conclusion

In this paper, SGEM has been applied to the conformable (2+1)-dimensional AKNS water wave
equation. We have found complex combined dark-bright soliton solutions. The two- and
three-dimensional surfaces of all solutions obtained by SGEM under the suitable values of parameters
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were plotted by showing the main characteristic physical properties of the solutions. The all 2D
graphics are observed when the fractional order α = 0.5, 0.9, 1 respectively. When α = 0.5 in Figures
2, 4, 6, 10, 12, the solutions behave unstable, in Figure 8 the solution for all α values same behavior.
It is also observed that Figures 1, 3, 5, 7, 9, 11 have presented travelling wave behaviours for the
governing model. It is seen that fractional order approaches to α = 1 the solutions act similar
behaviors to integer order. Moreover, the difference of the method is giving different new solutions to
have powerful nonlinearity differential equations which have not analytical solutions. It can be also
observed that the obtained results may be helpful to better understand water wave propagation,
especially in ocean wave dynamics. To the best of our knowledge, these entirely new solutions to the
conformable (2+1)-dimensional AKNS have been firstly submitted to the literature. We will develop
the above approach to use the differential equations have powerful nonlinearity future analysis.
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