Research article

Exploring analytical results for (2+1) dimensional breaking soliton equation and stochastic fractional Broer-Kaup system

  • Received: 04 February 2024 Revised: 13 March 2024 Accepted: 14 March 2024 Published: 25 March 2024
  • MSC : 34A05, 35C08, 60G22

  • This paper introduces a pioneering exploration of the stochastic (2+1) dimensional breaking soliton equation (SBSE) and the stochastic fractional Broer-Kaup system (SFBK), employing the first integral method to uncover explicit solutions, including trigonometric, exponential, hyperbolic, and solitary wave solutions. Despite the extensive application of the Broer-Kaup model in tsunami wave analysis and plasma physics, existing literature has largely overlooked the complexity introduced by stochastic elements and fractional dimensions. Our study fills this critical gap by extending the traditional Broer-Kaup equations through the lens of stochastic forces, thereby offering a more comprehensive framework for analyzing hydrodynamic wave models. The novelty of our approach lies in the detailed investigation of the SBSE and SFBK equations, providing new insights into the behavior of shallow water waves under the influence of randomness. This work not only advances theoretical understanding but also enhances practical analysis capabilities by illustrating the effects of noise on wave propagation. Utilizing MATLAB for visual representation, we demonstrate the efficiency and flexibility of our method in addressing these sophisticated physical processes. The analytical solutions derived here mark a significant departure from previous findings, contributing novel perspectives to the field and paving the way for future research into complex wave dynamics.

    Citation: Faeza Lafta Hasan, Mohamed A. Abdoon, Rania Saadeh, Ahmad Qazza, Dalal Khalid Almutairi. Exploring analytical results for (2+1) dimensional breaking soliton equation and stochastic fractional Broer-Kaup system[J]. AIMS Mathematics, 2024, 9(5): 11622-11643. doi: 10.3934/math.2024570

    Related Papers:

  • This paper introduces a pioneering exploration of the stochastic (2+1) dimensional breaking soliton equation (SBSE) and the stochastic fractional Broer-Kaup system (SFBK), employing the first integral method to uncover explicit solutions, including trigonometric, exponential, hyperbolic, and solitary wave solutions. Despite the extensive application of the Broer-Kaup model in tsunami wave analysis and plasma physics, existing literature has largely overlooked the complexity introduced by stochastic elements and fractional dimensions. Our study fills this critical gap by extending the traditional Broer-Kaup equations through the lens of stochastic forces, thereby offering a more comprehensive framework for analyzing hydrodynamic wave models. The novelty of our approach lies in the detailed investigation of the SBSE and SFBK equations, providing new insights into the behavior of shallow water waves under the influence of randomness. This work not only advances theoretical understanding but also enhances practical analysis capabilities by illustrating the effects of noise on wave propagation. Utilizing MATLAB for visual representation, we demonstrate the efficiency and flexibility of our method in addressing these sophisticated physical processes. The analytical solutions derived here mark a significant departure from previous findings, contributing novel perspectives to the field and paving the way for future research into complex wave dynamics.



    加载中


    [1] R. Rosen, Dynamical system theory in biology, NY: Wiley and Sons Inc., 1970.
    [2] P. Waltman, Deterministic threshold models in the theory of epidemics, New York: Springer-Verlag, 1974.
    [3] D. Šiljak, Large scale dynamic systems: stability and structure, New York: Noth-Holland, 1978.
    [4] A. Coddington, N. Levinson, Theory of ordinary differential equations, New York: McGraw Hill, 1955.
    [5] P. Hartman, Ordinary differential equations, New York: John Wiley, 1964.
    [6] V. Lakshmikantham, S. Leela, Differential equations, Academic Press, I– II (1969).
    [7] G. Ladde, S. Ladde, Dynamic processes under random environment, Bull. Marathwada Math. Soc., 8 (2007), 96–123.
    [8] N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1–15. https://doi.org/10.48550/arXiv.1106.0965 doi: 10.48550/arXiv.1106.0965
    [9] A. Mohamed, H. Faeza, T. Nidal, Computational technique to study analytical solutions to the fractional modified KDV-Zakharov-Kuznetsov equation, Abstr. Appl. Anal., 2022 (2022), 2162356. https://doi.org/10.1155/2022/2162356 doi: 10.1155/2022/2162356
    [10] H. Faeza, A. Mohamed, The generalized (2+1) and (3+1)- dimensional with advanced analytical wave solutions via computational applications, Int. J. Nonlinear Anal., 12 (2021), 1213–1241.
    [11] A. Mohamed, H. Faeza, Advantages of the differential equations for solving problems in mathematical physics with symbolic computation, Math. Model. Eng. Probl., 9 (2022), 268–276. https://doi.org/10.18280/mmep.090133 doi: 10.18280/mmep.090133
    [12] S. Alshammari, W. W. Mohammed, S. K. Samura, S. Faleh, The analytical solutions for the stochastic-fractional Broer-Kaup equations, Math. Probl. Eng., 2022 (2022). https://doi.org/10.1155/2022/6895875 doi: 10.1155/2022/6895875
    [13] M. Alquran, M. Khaled, H. Ananbeh, New soliton solutions for systems of nonlinear evolution equations by the rational sine-cosine method, Stud. Math. Sci., 3 (2011), 1–9. https://doi.org/10.3968/j.sms.1923845220110301.105 doi: 10.3968/j.sms.1923845220110301.105
    [14] M. A. Abdoon, R. Saadeh, M. Berir, F. E. Guma, Analysis, modeling and simulation of a fractional-order influenza model, Alex. Eng. J., 74 (2023), 231–240. https://doi.org/10.1016/j.aej.2023.05.011
    [15] M. S. Osman, On multi-soliton solutions for the (2+1)-dimensional breaking soliton equation with variable coefficients in a graded-index waveguide, Comput. Math. Appl., 75 (2018), 1–6. https://doi.org/10.1016/j.camwa.2017.08.033 doi: 10.1016/j.camwa.2017.08.033
    [16] C. M. Szpilka, R. L. Kolar, Numerical analogs to Fourier and dispersion analysis: Development, verification and application to the shallow water equations, Adv. Water Resour., 26 (2003), 649–662. https://doi.org/10.1016/S0309-1708(03)00028-9
    [17] H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, R. Shah, Perturbed Gerdjikov-Ivanov equation: Soliton solutions via Backlund transformation, Optik, 298 (2024), 171576. https://doi.org/10.1016/j.ijleo.2023.171576 doi: 10.1016/j.ijleo.2023.171576
    [18] A. H. Ganie, F. Aljuaydi, Z. Ahmad, E. Bonyah, N. Khan, N. S. Alharthi, et al., A fractal-fractional perspective on chaotic behavior in 4D memristor-nonlinear system, AIP Adv., 14 (2024). https://doi.org/10.1063/5.0187218
    [19] L. Yang, M. Ur Rahman, M. A. Khan, Complex dynamics, sensitivity analysis and soliton solutions in the (2+1)-dimensional nonlinear Zoomeron model, Results Phys., 56 (2024), 107261. https://doi.org/10.1016/j.rinp.2023.107261
    [20] U. Ali, A. H. Ganie, I. Khan, F. Alotaibi, K. Kamran, S. Muhammad, et al., Traveling wave solutions to a mathematical model of fractional order (2+1)-dimensional breaking soliton equation, Fractals, 30 (2022), 2240124. https://doi.org/10.1142/S0218348X22401247
    [21] A. Qazza, R. Hatamleh, The existence of a solution for semi-linear abstract differential equations with infinite B-chains of the characteristic sheaf, Int. J. Appl. Math., 31 (2018), 611. https://doi.org/10.12732/ijam.v31i5.7 doi: 10.12732/ijam.v31i5.7
    [22] W. W. Mohammed, M. El-Morshedy, A. Moumen, E. E. Ali, M. Benaissa, A. E. Abouelregal, Effects of M-truncated derivative and multiplicative noise on the exact solutions of the breaking soliton equation, Symmetry, 15 (2023), 288. https://doi.org/10.3390/sym15020288 doi: 10.3390/sym15020288
    [23] F. M. Al-Askar, W. W. Mohammed, A. M. Albalahi, M. El-Morshedy, The impact of the Wiener process on the analytical solutions of the stochastic (2+1)-dimensional breaking soliton equation by using tanh-coth method, Mathematics, 10 (2022), 817. https://doi.org/10.3390/math10050817
    [24] K. Hosseini, F. Alizadeh, K. Sadri, E. Hinçal, A. R. Z. U. Akbulut, H. M. Alshehri, et al., Lie vector fields, conservation laws, bifurcation analysis, and Jacobi elliptic solutions to the Zakharov-Kuznetsov modified equal-width equation, Opt. Quant. Electron., 56 (2024), 506. https://doi.org/10.1007/s11082-023-06086-9
    [25] Z. Feng, The first-integral method to study the Burgers-Korteweg-de Vries equation, J. Phys. A-Math. Gen., 35 (2002), 343. https://doi.org/10.1088/0305-4470/35/2/312 doi: 10.1088/0305-4470/35/2/312
    [26] A. M. Wazwaz, Integrable (2+1)-dimensional and (3+1)-dimensional breaking soliton equations, Phys. Scr., 81 (2010), 035005. https://doi.org/10.1088/0031-8949/81/03/035005 doi: 10.1088/0031-8949/81/03/035005
    [27] R. Saadeh, M. Abu-Ghuwaleh, A. Qazza, E. Kuffi, A fundamental criteria to establish general formulas of integrals, J. Appl. Math., 2022 (2022). https://doi.org/10.1155/2022/6049367 doi: 10.1155/2022/6049367
    [28] M. A. Akbar, N. H. M. Ali, S. T. Mohyud-Din, Assessment of the further improved (G'/G)-expansion method and the extended tanh-method in probing exact solutions of nonlinear PDEs, SpringerPlus, 2 (2013), 1-9. https://doi.org/10.1186/2193-1801-2-1
    [29] E. Atilgan, M. Senol, A. Kurt, O. Tasbozan, New wave solutions of time-fractional coupled Boussinesq-Whitham-Broer-Kaup equation as a model of water waves, China Ocean Eng., 33 (2019), 477-483. https://doi.org/10.1007/s13344-019-0045-1 doi: 10.1007/s13344-019-0045-1
    [30] R. Saadeh, O. Ala'yed, A. Qazza, Analytical solution of coupled Hirota-Satsuma and KdV equations, Fractal Fract., 6 (2022), 694. https://doi.org/10.3390/fractalfract6120694 doi: 10.3390/fractalfract6120694
    [31] I. Podlubny, Fractional differential equations, Academic Press, 1999.
    [32] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers, 1993.
    [33] M. M. Meerschaert, H. P. Scheffler, Limit distributions for sums of independent random vectors: Heavy tails in theory and practice, John Wiley & Sons, 2004.
    [34] M. Abu-Ghuwaleh, R. Saadeh, A. Qazza, General master theorems of integrals with applications, Mathematics, 10 (2022), 3547. https://doi.org/10.3390/math10193547 doi: 10.3390/math10193547
    [35] S. B. G. Karakoc, K. K. Ali, D. Y. Sucu, A new perspective for analytical and numerical soliton solutions of the Kaup-Kupershmidt and Ito equations, J. Comput. Appl. Math., 421 (2023), 114850. https://doi.org/10.1016/j.cam.2022.114850 doi: 10.1016/j.cam.2022.114850
    [36] M. A. Akbar, A. M. Wazwaz, F. Mahmud, D. Baleanu, R. Roy, H. K. Barman, et al., Dynamical behavior of solitons of the perturbed nonlinear Schrödinger equation and microtubules through the generalized Kudryashov scheme, Results Phys., 43 (2022), 106079. https://doi.org/10.1016/j.rinp.2022.106079
    [37] F. S. Alshammari, M. Asif, M. F. Hoque, A. Aldurayhim, Bifurcation analysis on ion sound and Langmuir solitary waves solutions to the stochastic models with multiplicative noises, Heliyon, 9 (2023). https://doi.org/10.1016/j.heliyon.2023.e16570
    [38] Y. Q. Chen, Y. H. Tang, J. Manafian, H. Rezazadeh, M. S. Osman, Dark wave, rogue wave and perturbation solutions of Ivancevic option pricing model, Nonlinear Dynam., 105 (2021), 2539-2548. https://doi.org/10.1007/s11071-021-06642-6
    [39] M. M. Hossain, M. A. N. Sheikh, M. M. Roshid, M. A. Taher, New soliton solutions and modulation instability analysis of the regularized long-wave equation in the conformable sense, Part. Differ. Equ. Appl. Math., 9 (2024), 100615. https://doi.org/10.1016/j.padiff.2024.100615 doi: 10.1016/j.padiff.2024.100615
    [40] Z. Islam, M. A. N. Sheikh, H. O. Roshid, M. A. Hossain, M. A. Taher, A. Abdeljabbar, Stability and spin solitonic dynamics of the HFSC model: Effects of neighboring interactions and crystal field anisotropy parameters, Opt. Quant. Electron., 56 (2024), 190. https://doi.org/10.1007/s11082-023-05739-z doi: 10.1007/s11082-023-05739-z
    [41] S. Malik, M. S. Hashemi, S. Kumar, H. Rezazadeh, W. Mahmoud, M. S. Osman, Application of new Kudryashov method to various nonlinear partial differential equations, Opt. Quant. Electron., 55 (2023), 8. https://doi.org/10.1007/s11082-022-04261-y doi: 10.1007/s11082-022-04261-y
    [42] H. U. Rehman, G. S. Said, A. Amer, H. Ashraf, M. M. Tharwat, M. Abdel-Aty, et al., Unraveling the (4+1)-dimensional Davey-Stewartson-Kadomtsev-Petviashvili equation: Exploring soliton solutions via multiple techniques, Alex. Eng. J., 90 (2024), 17-23. https://doi.org/10.1016/j.aej.2024.01.058
    [43] M. S. Ullah, H. O. Roshid, M. Z. Ali, New wave behaviors and stability analysis for the (2+1)-dimensional Zoomeron model, Opt. Quant. Electron., 56 (2024), 240. https://doi.org/10.1007/s11082-023-05804-7 doi: 10.1007/s11082-023-05804-7
    [44] J. Liu, W. Wei, W. Xu, An averaging principle for stochastic fractional differential equations driven by fBm involving impulses, Fractal Fract., 6 (2022), 256. https://doi.org/10.3390/fractalfract6050256 doi: 10.3390/fractalfract6050256
    [45] E. Salah, R. Saadeh, A. Qazza, R. Hatamleh, Direct power series approach for solving nonlinear initial value problems, Axioms, 12 (2023), 111. https://doi.org/10.3390/axioms12020111 doi: 10.3390/axioms12020111
    [46] A. B. M. Alzahrani, R. Saadeh, M. A. Abdoon, M. Elbadri, M. Berir, A. Qazza, Effective methods for numerical analysis of the simplest chaotic circuit model with Atangana-Baleanu Caputo fractional derivative, J. Eng. Math., 144 (2024), 9. https://doi.org/10.1007/s10665-023-10319-x doi: 10.1007/s10665-023-10319-x
    [47] M. Elbadri, M. A. Abdoon, M. Berir, D. K. Almutairi, A numerical solution and comparative study of the symmetric rossler attractor with the generalized Caputo fractional derivative via two different methods, Mathematics, 11 (2023), 2997. https://doi.org/10.3390/math11132997 doi: 10.3390/math11132997
    [48] M. A. Abdoon, R. Saadeh, M. Berir, F. E. Guma, Analysis, modeling and simulation of a fractional-order influenza model, Alex. Eng. J., 74 (2023), 231-240. https://doi.org/10.1016/j.aej.2023.05.011
    [49] R. Saadeh, M. A. Abdoon, A. Qazza, M. Berir, A numerical solution of generalized Caputo fractional initial value problems, Fractal Fract., 7 (2023), 332. https://doi.org/10.3390/fractalfract7040332 doi: 10.3390/fractalfract7040332
    [50] M. Elbadri, M. A. Abdoon, M. Berir, D. K. Almutairi, A symmetry chaotic model with fractional derivative order via two different methods, Symmetry, 15 (2023), 1151. https://doi.org/10.3390/sym15061151 doi: 10.3390/sym15061151
    [51] A. B. M. Alzahrani, M. A. Abdoon, M. Elbadri, M. Berir, D. E. Elgezouli, A comparative numerical study of the symmetry chaotic jerk system with a hyperbolic sine function via two different methods, Symmetry, 15 (2023), 1991. https://doi.org/10.3390/sym15111991 doi: 10.3390/sym15111991
    [52] A. Qazza, M. Abdoon, R. Saadeh, M. Berir, A new scheme for solving a fractional differential equation and a chaotic system, Eur. J. Pure Appl. Math., 16 (2023), 1128-1139. https://doi.org/10.29020/nybg.ejpam.v16i2.4769 doi: 10.29020/nybg.ejpam.v16i2.4769
    [53] F. Hasan, M. A. Abdoon, R. Saadeh, M. Berir, A. Qazza, A new perspective on the stochastic fractional order materialized by the exact solutions of Allen-Cahn equation, Int. J. Math. Eng. Manag. Sci., 8 (2023), 912. http://dx.doi.org/10.33889/IJMEMS.2023.8.5.052 doi: 10.33889/IJMEMS.2023.8.5.052
    [54] M. M. Al-Sawalha, S. Mukhtar, R. Shah, A. H. Ganie, K. Moaddy, Solitary waves propagation analysis in nonlinear dynamical system of fractional coupled Boussinesq-Whitham-Broer-Kaup equation, Fractal Fract., 7 (2023), 889. https://doi.org/10.3390/fractalfract7120889 doi: 10.3390/fractalfract7120889
    [55] M. A. Iqbal, M. M. Miah, H. S. Ali, N. H. M. Shahen, A. Deifalla, New applications of the fractional derivative to extract abundant soliton solutions of the fractional order PDEs in mathematics physics, Part. Differ. Equ. Appl. Math., 9 (2024), 100597. https://doi.org/10.1016/j.padiff.2023.100597 doi: 10.1016/j.padiff.2023.100597
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(569) PDF downloads(51) Cited by(2)

Article outline

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog