Research article Special Issues

Solitary wave solutions of Sawada-Kotera equation using two efficient analytical methods

  • Received: 05 September 2023 Revised: 07 December 2023 Accepted: 13 December 2023 Published: 19 December 2023
  • MSC : 26A48, 26A51, 33B10, 39A1, 39B62

  • The soliton solutions are one of the stable solutions where nonlinearity and dispersion are perfectly balanced. They are used in a wide variety of physical fields, including plasma, solid state, neuronal, biological production, and diffusion processes. Different analytical methods have been used until now to obtain the soliton solutions of the Sawada-Kotera (SK) equation. The purpose of this study is to offer two successful analytical methods for solving the classical (1+1) dimensional Sawada-Kotera (SK) equation. In order to solve the partial differential equation (PDE), both the modified auxiliary equation method (MAEM) and the extended direct algebraic method are applied. The classical fifth-order SK equation is examined in this study, leading to a variety of precise soliton solutions, including single, periodic, and dark soliton, which are obtained analytically. To illustrate the effect of the parameters, the results are shown in graphical form.

    Citation: Muhammad Bilal Riaz, Faiza Naseer, Muhammad Abbas, Magda Abd El-Rahman, Tahir Nazir, Choon Kit Chan. Solitary wave solutions of Sawada-Kotera equation using two efficient analytical methods[J]. AIMS Mathematics, 2023, 8(12): 31268-31292. doi: 10.3934/math.20231601

    Related Papers:

  • The soliton solutions are one of the stable solutions where nonlinearity and dispersion are perfectly balanced. They are used in a wide variety of physical fields, including plasma, solid state, neuronal, biological production, and diffusion processes. Different analytical methods have been used until now to obtain the soliton solutions of the Sawada-Kotera (SK) equation. The purpose of this study is to offer two successful analytical methods for solving the classical (1+1) dimensional Sawada-Kotera (SK) equation. In order to solve the partial differential equation (PDE), both the modified auxiliary equation method (MAEM) and the extended direct algebraic method are applied. The classical fifth-order SK equation is examined in this study, leading to a variety of precise soliton solutions, including single, periodic, and dark soliton, which are obtained analytically. To illustrate the effect of the parameters, the results are shown in graphical form.



    加载中


    [1] F. X. Mei, Lie symmetries and conserved quantities of constrained mechanical systems, Acta Mech., 141 (2000), 135–148. https://doi.org/10.1007/BF01268673 doi: 10.1007/BF01268673
    [2] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, Method for solving the Korteweg-deVries equation, Phys. Rev. Lett., 19 (1967), 1095. https://doi.org/10.1103/PhysRevLett.19.1095 doi: 10.1103/PhysRevLett.19.1095
    [3] Y. Liu, G. Wu, Using a new auxiliary equation to construct abundant solutions for nonlinear evolution equations, J. Appl. Math. Phys., 9 (2021), 3155–3164. https://doi.org/10.4236/jamp.2021.912206 doi: 10.4236/jamp.2021.912206
    [4] M. Ito, An extension of nonlinear evolution equations of the KdV (mKdV) type to higher orders, J. Phys. Soc. Jap., 49 (1980), 771–778. https://doi.org/10.1143/JPSJ.49.771 doi: 10.1143/JPSJ.49.771
    [5] M. Wang, Solitary wave solutions for variant Boussinesq equations, Phys. lett. A, 199 (1995), 169–172. https://doi.org/10.1016/0375-9601(95)00092-H doi: 10.1016/0375-9601(95)00092-H
    [6] H. D. Guo, T. C. Xia, B. B. Hu, High-order lumps, high-order breathers and hybrid solutions for an extended (3+1) dimensional Jimbo Miwa equation in fluid dynamics, Nonlinear Dyn., 100 (2020), 601–614. https://doi.org/10.1007/s11071-020-05514-9 doi: 10.1007/s11071-020-05514-9
    [7] A. M. Wazwaz, Two-mode fifth-order KdV equations necessary conditions for multiple-soliton solutions to exist, Nonlinear Dyn., 87 (2017), 1685–1691. tps://doi.org/10.1007/s11071-016-3144-z doi: 10.1007/s11071-016-3144-z
    [8] M. Ali, M. Alquran, I. Jaradat, D. Baleanu, Stationary wave solutions for new developed two waves fifth-order Korteweg-de Vries equation, Adv. Differ. Equ., 2019 (2019), 263. https://doi.org/10.1186/s13662-019-2157-6 doi: 10.1186/s13662-019-2157-6
    [9] G. T. Chala, M. I. N. Máarof, F. M. Guangul, Tidal and wave energy potential assessment, In: Clean energy opportunities in tropical countries, Singapore: Springer, 2021,217–236. https://doi.org/10.1007/978-981-15-9140-2_11
    [10] W. Liu, C. Yang, M. Liu, W. Yu, Y. Zhang, M. Lei, Effect of high-order dispersion on three-soliton interactions for the variable-coefficients Hirota equation, Phys. Rev. E, 96 (2017), 042201. https://doi.org/10.1103/PhysRevE.96.042201 doi: 10.1103/PhysRevE.96.042201
    [11] X. Liu, W. Liu, H. Triki, Q. Zhou, A. Biswas, Periodic attenuating oscillation between soliton interactions for higher-order variable coefficient nonlinear Schrodinger equation, Nonlinear Dyn., 96 (2019), 801–809. https://doi.org/10.1007/s11071-019-04822-z doi: 10.1007/s11071-019-04822-z
    [12] D. Wang, Y. T. Gao, J. J. Su, C. C. Ding, Bilinear forms and soliton solutions for a (2+1) dimensional variable-coefficient nonlinear Schrodinger equation in an optical fiber, Mod. Phys. Lett. B, 34 (2020), 2050336. https://doi.org/10.1142/S0217984920503364 doi: 10.1142/S0217984920503364
    [13] K. Sawada, T. Kotera, A method for finding N-soliton solutions of the K.d.V. equation and K.d.V.-like equation, Prog. Theor. Phys., 51 (1974), 1355–1367. https://doi.org/10.1143/PTP.51.1355 doi: 10.1143/PTP.51.1355
    [14] R. Asokan, D. Vinodh, The tanh-coth method for soliton and exact solutions of the Sawada-Kotera equation, Int. J. Pure Appl. Math., 117 (2017), 19–27.
    [15] A. M. Wazwaz, The Hirotas direct method and the tanh coth method for multiple-soliton solutions of the Sawada Kotera Ito seventh order equation, Appl. Math. Comput., 199 (2008), 133–138. https://doi.org/10.1016/j.amc.2007.09.034 doi: 10.1016/j.amc.2007.09.034
    [16] A. M. Wazwaz, The Hirotas bilinear method and the tanh coth method for multiple-soliton solutions of the Sawada Kotera-Kadomtsev-Petviashvili equation, Appl. Math. Comput., 200 (2008), 160–166. https://doi.org/10.1016/j.amc.2007.11.001 doi: 10.1016/j.amc.2007.11.001
    [17] O. Unsal, A. Bekir, F. Tascan, M. N. Ozer, Complexiton solutions for two nonlinear partial differential equations via modification of simplified Hirota method, Waves Random Complex Media, 27 (2017), 117–128. https://doi.org/10.1080/17455030.2016.1205238 doi: 10.1080/17455030.2016.1205238
    [18] A. M. Wazwaz, Abundant solitons solutions for several forms of the fifth-order KdV equation by using the tanh method, Appl. Math. Comput., 182 (2006), 283–300. https://doi.org/10.1016/j.amc.2006.02.047 doi: 10.1016/j.amc.2006.02.047
    [19] A. M. Wazwaz, The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations, Appl. Math. Comput., 184 (2007), 1002–1014. https://doi.org/10.1016/j.amc.2006.07.002 doi: 10.1016/j.amc.2006.07.002
    [20] C. A. Gomez, A. H. Salas, The variational iteration method combined with improved generalized tanh-coth method applied to Sawada-Kotera equation, Appl. Math. Comput., 217 (2010), 1408–1414. https://doi.org/10.1016/j.amc.2009.05.046 doi: 10.1016/j.amc.2009.05.046
    [21] S. Zeng, Y. Liu, X. Chen, W. X. Zhang, Various breathers, lumps, line solitons and their interaction solutions for the (2+1)-dimensional variable-coefficient Sawada–Kotera equation, Results Phys., 42 (2022), 105992. https://doi.org/10.1016/j.rinp.2022.105992 doi: 10.1016/j.rinp.2022.105992
    [22] J. Manafian, M. Lakestani, Lump-type solutions and interaction phenomenon to the bidirectional Sawada–Kotera equation, Pramana-J Phys., 92 (2019), 41. https://doi.org/10.1007/s12043-018-1700-4 doi: 10.1007/s12043-018-1700-4
    [23] D. Kumar, C. Park, N. Tamanna, G. C. Paul, M. S. Osman, Dynamics of two-mode Sawada-Kotera equation: Mathematical and graphical analysis of its dual-wave solutions, Results Phys., 19 (2020), 103581. https://doi.org/10.1016/j.rinp.2020.103581 doi: 10.1016/j.rinp.2020.103581
    [24] B. Ghanbari, C. K. Kuo, A variety of solitary wave solutions to the (2+1)-dimensional bidirectional SK and variable-coefficient SK equations, Results Phys., 18 (2020), 103266. https://doi.org/10.1016/j.rinp.2020.103266 doi: 10.1016/j.rinp.2020.103266
    [25] Y. Gu, N. Aminakbari, Two different systematic methods for constructing meromorphic exact solutions to the KdV-Sawada-Kotera equation, AIMS Mathematics, 5 (2020), 3990–4010. https://doi.org/10.3934/math.2020257 doi: 10.3934/math.2020257
    [26] J. H. Choi, H. Kim, Exact traveling wave solutions of the stochastic Wick-type fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation, AIMS Mathematics, 6 (2021), 4053–4072. https://doi.org/10.3934/math.2021240 doi: 10.3934/math.2021240
    [27] Z. Y. Zhang, K. H. Ma, L. S. Zhang, The generalized convective Cahn–Hilliard equation: Symmetry classification, power series solutions and dynamical behavior, Int. J. Mod. Phys. C, 31 (2020), 2050024. https://doi.org/10.1142/S0129183120500242 doi: 10.1142/S0129183120500242
    [28] J. Zhuang, Y. Liu, P. Zhuang, Variety interaction solutions comprising lump solitons for the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation, AIMS Mathematics, 6 (2021), 5370–5386. https://doi.org/10.3934/math.2021316 doi: 10.3934/math.2021316
    [29] V. A. Brazhnyi, V. V. Konotop, Stable and unstable vector dark solitons of coupled nonlinear Schrödinger equations: Application to two-component Bose-Einstein condensates, Phys. Rev. E, 72 (2005), 026616. https://doi.org/10.1103/PhysRevE.72.026616 doi: 10.1103/PhysRevE.72.026616
    [30] T. A. Sulaiman, A. Yusuf, A. Abdeljabbar, M. Alquran, Dynamics of lump collision phenomena to the (3+1) dimensional nonlinear evolution equation, J. Geom. Phys., 169 (2021), 104347. https://doi.org/10.1016/j.geomphys.2021.104347 doi: 10.1016/j.geomphys.2021.104347
    [31] T. A. Sulaiman, A. Yusuf, M. Alquran, Dynamics of optical solitons and nonautonomous complex wave solutions to the nonlinear Schrodinger equation with variable coefficients, Nonlinear Dyn., 104 (2021), 639–648. https://doi.org/10.1007/s11071-021-06284-8 doi: 10.1007/s11071-021-06284-8
    [32] T. A. Sulaiman, A. Yusuf, F. Tchier, M. Inc, F. M. O. Tawfiq, F. Bousbahi, Lie-Backlund symmetries, analytical solutions and conservation laws to the more general (2+1) dimensional Boussinesq equation, Results Phys., 22 (2021), 103850. https://doi.org/10.1016/j.rinp.2021.103850 doi: 10.1016/j.rinp.2021.103850
    [33] K. U. Tariq, A. R. Seadawy, On the soliton solutions to the modified Benjamin-Bona-Mahony and coupled Drinfel'd-Sokolov-Wilson models and its applications, J. King Saud Univ.-Sci., 32 (2020), 156–162. https://doi.org/10.1016/j.jksus.2018.03.019 doi: 10.1016/j.jksus.2018.03.019
    [34] S. Kumar, B. Mohan, A study of multi-soliton solutions, breather, lumps, and their interactions for kadomtsev-petviashvili equation with variable time coeffcient using hirota method, Phys. Scr., 96 (2021), 125255. https://doi.org/10.1088/1402-4896/ac3879 doi: 10.1088/1402-4896/ac3879
    [35] M. B. Hubert, M. Justin, G. Betchewe, S. Y. Doka, A. Biswas, Q. Zhou, et al., Optical solitons with modified extended direct algebraic method for quadratic-cubic nonlinearity, Optik, 162 (2018), 161–171. https://doi.org/10.1016/j.ijleo.2018.02.074 doi: 10.1016/j.ijleo.2018.02.074
    [36] F. Tasnim, M. A. Akbar, M. S. Osman, The extended direct algebraic method for extracting analytical solitons solutions to the cubic nonlinear Schrodinger equation involving Beta derivatives in space and time, Fractal Fract., 7 (2023), 426. https://doi.org/10.3390/fractalfract7060426 doi: 10.3390/fractalfract7060426
    [37] A. K. S. Hossain, M. A. Akbar, Solitary wave solutions of few nonlinear evolution equations, AIMS Mathematics, 5 (2020), 1199–1215. https://doi.org/10.3934/math.2020083 doi: 10.3934/math.2020083
    [38] G. Akram, I. Zainab, Dark Peakon, Kink and periodic solutions of the nonlinear Biswas-Milovic equation with Kerr law nonlinearity, Optik, 208 (2020), 164420. https://doi.org/10.1016/j.ijleo.2020.164420 doi: 10.1016/j.ijleo.2020.164420
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1701) PDF downloads(96) Cited by(1)

Article outline

Figures and Tables

Figures(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog