Research article Special Issues

Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application

  • Received: 16 March 2022 Revised: 09 April 2022 Accepted: 13 April 2022 Published: 25 April 2022
  • MSC : 26A33, 26A51, 26D10

  • Defining new fractional operators and employing them to establish well-known integral inequalities has been the recent trend in the theory of mathematical inequalities. To take a step forward, we present novel versions of Hermite-Hadamard type inequalities for a new fractional operator, which generalizes some well-known fractional integral operators. Moreover, a midpoint type fractional integral identity is derived for differentiable mappings, whose absolute value of the first-order derivatives are convex functions. Moreover, considering this identity as an auxiliary result, several improved inequalities are derived using some fundamental inequalities such as Hölder-İşcan, Jensen and Young inequality. Also, if we take the parameter $ \rho = 1 $ in most of the results, we derive new results for Atangana-Baleanu equivalence. One example related to matrices is also given as an application.

    Citation: Soubhagya Kumar Sahoo, Fahd Jarad, Bibhakar Kodamasingh, Artion Kashuri. Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application[J]. AIMS Mathematics, 2022, 7(7): 12303-12321. doi: 10.3934/math.2022683

    Related Papers:

  • Defining new fractional operators and employing them to establish well-known integral inequalities has been the recent trend in the theory of mathematical inequalities. To take a step forward, we present novel versions of Hermite-Hadamard type inequalities for a new fractional operator, which generalizes some well-known fractional integral operators. Moreover, a midpoint type fractional integral identity is derived for differentiable mappings, whose absolute value of the first-order derivatives are convex functions. Moreover, considering this identity as an auxiliary result, several improved inequalities are derived using some fundamental inequalities such as Hölder-İşcan, Jensen and Young inequality. Also, if we take the parameter $ \rho = 1 $ in most of the results, we derive new results for Atangana-Baleanu equivalence. One example related to matrices is also given as an application.



    加载中


    [1] S. Faisal, M. Khan, S. Iqbal, Generalized Hermite-Hadamard-Mercer type inequalities via majorization, Filomat, 36 (2022), 469–483. http://dx.doi.org/10.2298/FIL2202469F doi: 10.2298/FIL2202469F
    [2] M. Ragusa, On weak solutions of ultraparabolic equations, Nonlinear Anal.-Theory, 47 (2001), 503–511. http://dx.doi.org/10.1016/S0362-546X(01)00195-X doi: 10.1016/S0362-546X(01)00195-X
    [3] S. Rashid, A. Akdemir, M. Noor, K. Noor, Integral inequalities for exponentially harmonically convex functions via fractional integral operators, Miskolc Math. Notes, 22 (2021), 875–888. http://dx.doi.org/10.18514/MMN.2021.3078 doi: 10.18514/MMN.2021.3078
    [4] M. Ur Rahman, S. Ahmad, R. Matoog, N. Alshehri, T. Khan, Study on the mathematical modelling of COVID-19 with Caputo-Fabrizio operator, Chaos Soliton. Fract., 150 (2021), 111121. http://dx.doi.org/10.1016/j.chaos.2021.111121 doi: 10.1016/j.chaos.2021.111121
    [5] S. Ahmad, M. Ur Rahman, M. Arfan, On the analysis of semi-analytical solutions of Hepatitis B epidemic model under the Caputo-Fabrizio operator, Chaos Soliton. Fract., 146 (2021), 110892. http://dx.doi.org/10.1016/j.chaos.2021.110892 doi: 10.1016/j.chaos.2021.110892
    [6] A. Atangana, D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, J. Eng. Mech., 143 (2017), 4016005. http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0001091 doi: 10.1061/(ASCE)EM.1943-7889.0001091
    [7] F. Gómez, J. Rosales, M. Guíía, RLC electrical circuit of non-integer order, Open Phys., 11 (2013), 1361–1365. http://dx.doi.org/10.2478/s11534-013-0265-6 doi: 10.2478/s11534-013-0265-6
    [8] E. Soczkiewicz, Application of fractional calculus in the theory of viscoelasticity (Russian), Molecular and Quantum Acoustics, 23 (2002), 397–404.
    [9] V. Kulish, J. Lage, Application of fractional calculus to fluid mechanics, J. Fluids Eng., 124 (2002), 803–806. http://dx.doi.org/10.1115/1.1478062 doi: 10.1115/1.1478062
    [10] J. Jensen, Sur les fonctions convexes et les inegalites entre les valeurs moyennes, Acta Math., 30 (1906), 175–193. http://dx.doi.org/10.1007/BF02418571 doi: 10.1007/BF02418571
    [11] C. Niculescu, L. Persson, Convex functions and their applications, Cham: Springer, 2018. http://dx.doi.org/10.1007/978-3-319-78337-6
    [12] J. Hadamard, Étude sur les propriétés des fonctions entiéres en particulier d'une fonction considéréé par Riemann (French), J. Math. Pure. Appl., 58 (1893), 171–215.
    [13] İ. İşcan, Hermite-Hadamard inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935–942. http://dx.doi.org/10.15672/HJMS.2014437519 doi: 10.15672/HJMS.2014437519
    [14] B. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Space., 2012 (2012), 980438. http://dx.doi.org/10.1155/2012/980438 doi: 10.1155/2012/980438
    [15] K. Tseng, S. Hwang, S. Dragomir, New Hermite-Hadamard-type inequalities for convex functions (I), Appl. Math. Lett., 25 (2012), 1005–1009. http://dx.doi.org/10.1016/j.aml.2011.11.016 doi: 10.1016/j.aml.2011.11.016
    [16] M. Özdemir, M. Avcı, E. Set, On some inequalities of Hermite-Hadamard type via m-convexity, Appl. Math. Lett., 23 (2010), 1065–1070. http://dx.doi.org/10.1016/j.aml.2010.04.037 doi: 10.1016/j.aml.2010.04.037
    [17] S. Özcan, İ. İşcan, Some new Hermite-Hadamard type inequalities for $s$-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 201. http://dx.doi.org/10.1186/s13660-019-2151-2 doi: 10.1186/s13660-019-2151-2
    [18] G. Anastassiou, Generalised fractional Hermite-Hadamard inequalities involving m-convexity and (s, m)-convexity, Facta Univ.-Ser. Math. Inform., 28 (2013), 107–126.
    [19] S. Sahoo, M. Tariq, H. Ahmad, J. Nasir, H. Aydi, A. Mukheimer, New Ostrowski-type fractional integral inequalities via generalized exponential-type convex functions and applications, Symmetry, 13 (2021), 1429. http://dx.doi.org/10.3390/sym13081429 doi: 10.3390/sym13081429
    [20] M. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. http://dx.doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
    [21] K. Liu, J. Wang, D. O'Regan, On the Hermite-Hadamard type inequality for $\psi$-Riemann-Liouville fractional integrals via convex functions, J. Inequal. Appl., 2019 (2019), 27. http://dx.doi.org/10.1186/s13660-019-1982-1 doi: 10.1186/s13660-019-1982-1
    [22] İ. Mumcu, E. Set, A. Akdemir, F. Jarad, New extensions of Hermite-Hadamard inequalities via generalized proportional fractional integral, Numer. Meth. Part. D. E., in press. http://dx.doi.org/10.1002/num.22767
    [23] M. Gürbüz, A. Akdemir, S. Rashid, E. Set, Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities, J. Inequl. Appl., 2020 (2020), 172. http://dx.doi.org/10.1186/s13660-020-02438-1 doi: 10.1186/s13660-020-02438-1
    [24] A. Fernandez, P. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Method. Appl. Sci., 44 (2021), 8414–8431. http://dx.doi.org/10.1002/mma.6188 doi: 10.1002/mma.6188
    [25] P. Mohammed, M. Sarikaya, D. Baleanu, On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020), 595. http://dx.doi.org/10.3390/sym12040595 doi: 10.3390/sym12040595
    [26] S. Sahoo, H. Ahmad, M. Tariq, B. Kodamasingh, H. Aydi, M. De la Sen, Hermite-Hadamard type inequalities involving $k$-fractional operator for $(\overline{h}, m)$-convex functions, Symmetry, 13 (2021), 1686. http://dx.doi.org/10.3390/sym13091686 doi: 10.3390/sym13091686
    [27] T. Khan, M. Khan, Hermite-Hadamard inequality for new generalized conformable fractional operators, AIMS Mathematics, 6 (2020), 23–38. http://dx.doi.org/10.3934/math.2021002 doi: 10.3934/math.2021002
    [28] A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [29] M. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2017), 1049–1059. http://dx.doi.org/10.18514/MMN.2017.1197 doi: 10.18514/MMN.2017.1197
    [30] H. Chen, U. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274–1291. http://dx.doi.org/10.1016/j.jmaa.2016.09.018 doi: 10.1016/j.jmaa.2016.09.018
    [31] A. Atangana, D. Baleanu, New fractional derivatices with non-local and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. http://dx.doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [32] T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107. http://dx.doi.org/10.22436/jnsa.010.03.20 doi: 10.22436/jnsa.010.03.20
    [33] A. Kashuri, Hermite-Hadamard type inequalities for the ABK-fractional integrals, J. Comput. Anal. Appl., 29 (2021), 309–326.
    [34] H. Ahmad, M. Tariq, S. Sahoo, J. Baili, C. Cesarano, New estimations of Hermite-Hadamard type integral inequalities for special functions, Fractal Fract., 5 (2021), 144. http://dx.doi.org/10.3390/fractalfract5040144 doi: 10.3390/fractalfract5040144
    [35] K. Nikodem, On midpoint convex set-valued functions, Aeq. Math., 33 (1987), 46–56. http://dx.doi.org/10.1007/BF01836150 doi: 10.1007/BF01836150
    [36] P. Mohammed, M. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math., 372 (2020), 112740. http://dx.doi.org/10.1016/j.cam.2020.112740 doi: 10.1016/j.cam.2020.112740
    [37] H. Budak, P. Agarwal, New generalized midpoint type inequalities for fractional integral, Miskolc Math. Notes, 20 (2019), 781–793. http://dx.doi.org/10.18514/MMN.2019.2525 doi: 10.18514/MMN.2019.2525
    [38] J. Sousa, E. Capelas De Oliveira, On the $\Psi$-Hilfer fractional derivative, Commun. Nonlinear Sci., 60 (2018), 72–91. http://dx.doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
    [39] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. http://dx.doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [40] T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. http://dx.doi.org/10.1016/S0034-4877(17)30059-9 doi: 10.1016/S0034-4877(17)30059-9
    [41] U. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. http://dx.doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062
    [42] H. Srivastava, Z. Zhang, Y. Wu, Some further refinements and extensions of the Hermite-Hadamard and Jensen inequalities in several variables, Math. Comput. Model., 54 (2001), 2709–2717. http://dx.doi.org/10.1016/j.mcm.2011.06.057 doi: 10.1016/j.mcm.2011.06.057
    [43] S. Butt, S. Yousaf, A. Akdemir, M. Dokuyucu, New Hadamard-type integral inequalities via a general form of fractional integral operators, Chaos Soliton. Fract., 148 (2021), 111025. http://dx.doi.org/10.1016/j.chaos.2021.111025 doi: 10.1016/j.chaos.2021.111025
    [44] S. Butt, E. Set, S. Yousaf, T. Abdeljawad, W. Shatanawi, Generalized integral inequalities for ABK-fractional integral operators, AIMS Mathematics, 6 (2021), 10164–10191. http://dx.doi.org/10.3934/math.2021589 doi: 10.3934/math.2021589
    [45] İ. İşcan, S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238 (2014), 237–244. http://dx.doi.org/10.1016/j.amc.2014.04.020 doi: 10.1016/j.amc.2014.04.020
    [46] S. Özcan, İ. İşcan, Some new Hermite-Hadamard type inequalities for s-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 201. http://dx.doi.org/10.1186/s13660-019-2151-2 doi: 10.1186/s13660-019-2151-2
    [47] M. Sababheh, Convex functions and means of matrices, arXiv: 1606.08099v1. http://dx.doi.org/10.48550/arXiv.1606.08099
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1709) PDF downloads(100) Cited by(9)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog