Research article

New solutions for perturbed chiral nonlinear Schrödinger equation

  • Received: 24 February 2022 Revised: 02 April 2022 Accepted: 14 April 2022 Published: 25 April 2022
  • MSC : 35C07, 35Q40, 35Q55, 60H15, 81Q15

  • In this article, we extract stochastic solutions for the perturbed chiral nonlinear Schrödinger equation (PCNLSE) forced by multiplicative noise in Itô sense with the aid of exp$ [-\varphi(\xi)] $-expansion and unified solver methods. The PCNLSE meditate on the quantum behaviour, like quantum features are closely related to its particular features. The proposed techniques introduce the closed form structure of waves in explicit form. The behaviour of the gained solutions are of qualitatively different nature, based on the physical parameters. The acquired solutions are extremely viable in nonlinear optics, superfluid, plasma physics, electromagnetism, nuclear physics, industrial studies and in many other applied sciences. We also illustrate the profile pictures of some acquired solutions to show the physical dynamical representation of them, utilizing Matlab release. The proposed techniques in this article can be implemented to other complex equations arising in applied sciences.

    Citation: E. S. Aly, Mahmoud A. E. Abdelrahman, S. Bourazza, Abdullah Ali H. Ahmadini, Ahmed Hussein Msmali, Nadia A. Askar. New solutions for perturbed chiral nonlinear Schrödinger equation[J]. AIMS Mathematics, 2022, 7(7): 12289-12302. doi: 10.3934/math.2022682

    Related Papers:

  • In this article, we extract stochastic solutions for the perturbed chiral nonlinear Schrödinger equation (PCNLSE) forced by multiplicative noise in Itô sense with the aid of exp$ [-\varphi(\xi)] $-expansion and unified solver methods. The PCNLSE meditate on the quantum behaviour, like quantum features are closely related to its particular features. The proposed techniques introduce the closed form structure of waves in explicit form. The behaviour of the gained solutions are of qualitatively different nature, based on the physical parameters. The acquired solutions are extremely viable in nonlinear optics, superfluid, plasma physics, electromagnetism, nuclear physics, industrial studies and in many other applied sciences. We also illustrate the profile pictures of some acquired solutions to show the physical dynamical representation of them, utilizing Matlab release. The proposed techniques in this article can be implemented to other complex equations arising in applied sciences.



    加载中


    [1] H. G. Abdelwahed, Nonlinearity contributions on critical MKP equation, J. Taibah Univ. Sci., 14 (2020), 777–782. https://doi.org/10.1080/16583655.2020.1774136 doi: 10.1080/16583655.2020.1774136
    [2] M. Inc, A. I. Aliyu, A. Yusuf, M. Bayram, D. Baleanu, Optical solitons to the (n+1)-dimensional nonlinear Schrödinger's equation with Kerr law and power law nonlinearities using two integration schemes, Mod. Phys. Lett. B, 33 (2019), 1950223. https://doi.org/10.1142/S0217984919502245 doi: 10.1142/S0217984919502245
    [3] M. Younis, S. Ali, S. A. Mahmood, Solitons for compound KdV Burgers equation with variable coefficients and power law nonlinearity, Nonlinear Dyn., 81 (2015), 1191–1196. https://doi.org/10.1007/s11071-015-2060-y doi: 10.1007/s11071-015-2060-y
    [4] C. K. Kuo, B. Ghanbari, Resonant multi-soliton solutions to new (3+1)-dimensional Jimbo-Miwa equations by applying the linear superposition principle, Nonlinear Dyn., 96 (2019), 459–464. https://doi.org/10.1007/s11071-019-04799-9 doi: 10.1007/s11071-019-04799-9
    [5] M. A. E. Abdelrahman, G. M. Bahaa, Elementary waves, Riemann problem, Riemann invariants and new conservation laws for the pressure gradient model, Eur. Phys. J. Plus, 134 (2019), 187. https://doi.org/10.1140/epjp/i2019-12580-7 doi: 10.1140/epjp/i2019-12580-7
    [6] A. Biswas, D. Milovic, D. Milic, Solitons in alpha-helix proteins by he's variational principle, Int. J. Biomath., 4 (2011), 423–429. https://doi.org/10.1142/S1793524511001325 doi: 10.1142/S1793524511001325
    [7] A. Biswas, A. H. Kara, M. Savescu, A. H. Bokhari, F. D. Zaman, Solitons and conservation laws in neurosciences, Int. J. Biomath., 6 (2019), 1350017. https://doi.org/10.1142/S1793524513500174 doi: 10.1142/S1793524513500174
    [8] A. Zubair, N. Raza, M. Mirzazadeh, W. Liu, Q. Zhou, Analytic study on optical solitons in parity-time-symmetric mixed linear and nonlinear modulation lattices with non-Kerr nonlinearities, Optik, 173 (2018), 249–262. https://doi.org/10.1016/j.ijleo.2018.08.023 doi: 10.1016/j.ijleo.2018.08.023
    [9] N. Raza, A. Zubair, Optical dark and singular solitons of generalized nonlinear Schrödinger's equation with anti-cubic law of nonlinearity, Mod. Phys. Lett. B, 65 (2019), 1950158. https://doi.org/10.1142/S0217984919501586 doi: 10.1142/S0217984919501586
    [10] N. Raza, A. Javid, Generalization of optical solitons with dual dispersion in the presence of Kerr and quadratic-cubic law nonlinearities, Mod. Phys. Lett. B, 33 (2019), 1850427. https://doi.org/10.1142/S0217984918504274 doi: 10.1142/S0217984918504274
    [11] S. F. Tian, J. M. Tu, T. T. Zhang, Y. R. Chen, Integrable discretizations and soliton solutions of an Eckhaus-Kundu equation, Appl. Math. Lett., 122 (2021), 107507. https://doi.org/10.1016/j.aml.2021.107507 doi: 10.1016/j.aml.2021.107507
    [12] S. F. Tian, M. J. Xu, T. T. Zhang, A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation, Proc. R. Soc. A, 477 (2021), 20210455. https://doi.org/10.1098/rspa.2021.0455 doi: 10.1098/rspa.2021.0455
    [13] S. F. Tian, Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation, Appl. Math. Lett., 100 (2020), 106056. https://doi.org/10.1016/j.aml.2019.106056 doi: 10.1016/j.aml.2019.106056
    [14] Z. Y. Yin, S. F. Tian, Nonlinear wave transitions and their mechanisms of (2+1)-dimensional Sawada-Kotera equation, Physica D, 427 (2021), 133002. https://doi.org/10.1016/j.physd.2021.133002 doi: 10.1016/j.physd.2021.133002
    [15] Z. J. Yang, S. M. Zhang, X. L. Li, Z. G. Pang, Variable sinh-Gaussian solitons in nonlocal nonlinear Schrödinger equation, Appl. Math. Lett., 82 (2018), 64–70. https://doi.org/10.1016/j.aml.2018.02.018 doi: 10.1016/j.aml.2018.02.018
    [16] L. M. Song, Z. J. Yang, Z. G. Pang, X. L. Li, S. M. Zhang, Interaction theory of mirror-symmetry soliton pairs in nonlocal nonlinear Schrödinger equation, Appl. Math. Lett., 90 (2019), 42–48. https://doi.org/10.1016/j.aml.2018.10.008 doi: 10.1016/j.aml.2018.10.008
    [17] L. Song, Z. Yang, S. Zhang, X. Li, Spiraling anomalous vortex beam arrays in strongly nonlocal nonlinear media, Phys. Rev. A, 99 (2019), 063817. https://doi.org/10.1103/PhysRevA.99.063817 doi: 10.1103/PhysRevA.99.063817
    [18] L. Song, Z. Yang, X. Li, S. Zhang, Controllable Gaussian-shaped soliton clusters in strongly nonlocal media, Opt. Express, 26 (2018), 19182–19198. https://doi.org/10.1364/OE.26.019182 doi: 10.1364/OE.26.019182
    [19] H. G. Abdelwahed, E. K. El-Shewy, M. A. E.Abdelrahman, A. F. Alsarhana, On the physical nonlinear (n+1)-dimensional Schrödinger equation applications, Results Phys., 21 (2021), 103798. https://doi.org/10.1016/j.rinp.2020.103798 doi: 10.1016/j.rinp.2020.103798
    [20] H. G. Abdelwahed, M. A. E. Abdelrahman, S. Alghanim, N. F. Abdo, Higher-order Kerr nonlinear and dispersion effects on fiber optics, Results Phys., 26 (2021), 104268. https://doi.org/10.1016/j.rinp.2021.104268 doi: 10.1016/j.rinp.2021.104268
    [21] H. X. Jia, D. W. Zuo, X. H. Li, X. S. Xiang, Breather, soliton and rogue wave of a two-component derivative nonlinear Schrödinger equation, Phys. Lett. A, 405 (2021), 127426. https://doi.org/10.1016/j.physleta.2021.127426 doi: 10.1016/j.physleta.2021.127426
    [22] M. A. E. Abdelrahman, N. F. Abdo, On the nonlinear new wave solutions in unstable dispersive environments, Phys. Scr., 95 (2020), 045220. https://doi.org/10.1088/1402-4896/ab62d7 doi: 10.1088/1402-4896/ab62d7
    [23] H. Triki, A. M. Wazwaz, Soliton solutions of the cubic-quintic nonlinear Schrödinger equation with variable coefficients, Rom. J. Phys., 61 (2016), 360–366.
    [24] A. M. Wazwaz, Bright and dark optical solitons for (2+1)-dimensional Schrödinger (NLS) equations in the anomalous dispersion regimes and the normal dispersive regimes, Optik, 192 (2019), 162948. https://doi.org/10.1016/j.ijleo.2019.162948 doi: 10.1016/j.ijleo.2019.162948
    [25] M. Eslami, Solitary wave solutions for perturbed equation nonlinear Schrödinger's with Kerr law nonlinearity under the DAM, Optik, 126 (2015), 1312–1317. https://doi.org/10.1016/j.ijleo.2015.02.075 doi: 10.1016/j.ijleo.2015.02.075
    [26] T. Cazenave, P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys., 85 (1982), 549–561. https://doi.org/10.1007/BF01403504 doi: 10.1007/BF01403504
    [27] B. Feng, H. Zhang, Stability of standing waves for the fractional Schrödinger-Choquard equation, Comput. Math. Appl., 75 (2018), 2499–2507. https://doi.org/10.1016/j.camwa.2017.12.025 doi: 10.1016/j.camwa.2017.12.025
    [28] B. Feng, H. Zhang, Stability of standing waves for the fractional Schrödinger-Hartree equation, J. Math. Anal. Appl., 460 (2018), 352–364. https://doi.org/10.1016/j.jmaa.2017.11.060 doi: 10.1016/j.jmaa.2017.11.060
    [29] M. A. E. Abdelrahman, M. A. Sohaly, The development of the deterministic nonlinear PDEs in particle physics to stochastic case, Results Phys., 9 (2018), 344–350. https://doi.org/10.1016/j.rinp.2018.02.032 doi: 10.1016/j.rinp.2018.02.032
    [30] Y. F. Alharbi, M. A. E. Abdelrahman, M. A. Sohaly, S. I. Ammar, Disturbance solutions for the long–short-wave interaction system using bi-random Riccati-Bernoulli sub-ODE method, J. Taibah Univ. Sci., 14 (2020), 500–506. https://doi.org/10.1080/16583655.2020.1747242 doi: 10.1080/16583655.2020.1747242
    [31] Y. F. Alharbi, M. A. E. Abdelrahman, M. A. Sohaly, M. Inc, Stochastic treatment of the solutions for the resonant nonlinear Schrödinger equation with spatio-temporal dispersions and inter-modal using beta distribution, Eur. Phys. J. Plus, 135 (2020), 368. https://doi.org/10.1140/epjp/s13360-020-00371-2 doi: 10.1140/epjp/s13360-020-00371-2
    [32] Y. F. Alharbi, M. A. Sohaly, M. A. E. Abdelrahman, New stochastic solutions for a new extension of nonlinear Schrödinger equation, Pramana-J. Phys., 95 (2021), 157. https://doi.org/10.1007/s12043-021-02189-8 doi: 10.1007/s12043-021-02189-8
    [33] Y. F. Alharbi, M. A. Sohaly, M. A. E. Abdelrahman, Fundamental solutions to the stochastic perturbed nonlinear Schrödinger's equation via gamma distribution, Results Phys., 25 (2021), 104249. https://doi.org/10.1016/j.rinp.2021.104249 doi: 10.1016/j.rinp.2021.104249
    [34] T. Ueda, W. L. Kath, Dynamics of optical pulses in randomly birefrengent fiers, Physica D, 55 (1992), 166–181. https://doi.org/10.1016/0167-2789(92)90195-S doi: 10.1016/0167-2789(92)90195-S
    [35] C. Sulem, P. L. Sulem, The nonlinear Schrödinger equation, self-focusing and wave collapse, New York, NY: Springer, 1999. https://doi.org/10.1007/b98958
    [36] O. Bang, P. L. Christiansen, F. If, K. O. Rasmussen, Y. B. Gaididei, Temperature effects in a nonlinear model of monolayer Scheibe aggregates, Phys. Rev. E, 49 (1994), 4627–4636. https://doi.org/10.1103/PhysRevE.49.4627 doi: 10.1103/PhysRevE.49.4627
    [37] M. A. E. Abdelrahman, M. A. Sohaly, Solitary waves for the nonlinear Schrödinger problem with the probability distribution function in stochastic input case, Eur. Phys. J. Plus, 132 (2017), 339. https://doi.org/10.1140/epjp/i2017-11607-5 doi: 10.1140/epjp/i2017-11607-5
    [38] A. Nishino, Y. Umeno, M. Wadati, Chiral nonlinear Schrödinger equation, Chaos Soliton. Fract., 9 (1998), 1063–1069. https://doi.org/10.1016/S0960-0779(97)00184-7 doi: 10.1016/S0960-0779(97)00184-7
    [39] A. Biswas, Perturbation of chiral solitons, Nucl. Phys. B, 806 (2009), 457–461. https://doi.org/10.1016/j.nuclphysb.2008.05.023 doi: 10.1016/j.nuclphysb.2008.05.023
    [40] G. Ebadi, A. Yildirim, A. Biswas, Chiral solitons with Bohm potential using $(\frac{G^{'}}{G})$ method and exp-function method, Rom. Rep. Phys., 64 (2012), 357–366.
    [41] J. H. He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Soliton. Fract., 30 (2006), 700–708. https://doi.org/10.1016/j.chaos.2006.03.020 doi: 10.1016/j.chaos.2006.03.020
    [42] H. Aminikhad, H. Moosaei, M. Hajipour, Exact solutions for nonlinear partial differential equations via Exp-function method, Numer. Methods Partial Differential Equations, 26 (2009), 1427–1433. https://doi.org/10.1002/num.20497 doi: 10.1002/num.20497
    [43] M. A. E. Abdelrahman, H. AlKhidhr, A robust and accurate solver for some nonlinear partial differential equations and tow applications, Phys. Scr., 95 (2020), 065212. https://doi.org/10.1088/1402-4896/ab80e7 doi: 10.1088/1402-4896/ab80e7
    [44] H. G. Abdelwahed, M. A. E. Abdelrahman, New nonlinear periodic, solitonic, dissipative waveforms for modified-Kadomstev-Petviashvili-equation in nonthermal positron plasma, Results Phys., 19 (2020), 103393. https://doi.org/10.1016/j.rinp.2020.103393 doi: 10.1016/j.rinp.2020.103393
    [45] M. A. E. Abdelrahman, H. AlKhidhr, Closed-form solutions to the conformable space-time fractional simplified MCH equation and time fractional Phi-4 equation, Results Phys., 18 (2020), 103294. https://doi.org/10.1016/j.rinp.2020.103294 doi: 10.1016/j.rinp.2020.103294
    [46] M. A. E. Abdelrahman, M. A. Sohaly, On the new wave solutions to the MCH equation, Indian J. Phys., 93 (2019), 903–911. https://doi.org/10.1007/s12648-018-1354-6 doi: 10.1007/s12648-018-1354-6
    [47] M. Younis, N. Cheemaa, S. A. Mahmood, S. T. R. Rizvi, On optical solitons: the chiral nonlinear Schrödinger equation with perturbation and Bohm potential, Opt. Quant. Electron., 48 (2016), 542. https://doi.org/10.1007/s11082-016-0809-2 doi: 10.1007/s11082-016-0809-2
    [48] L. Griguolo, D. Seminara, Chiral solitons from dimensional reduction of Chern–Simons gauged nonlinear Schrödinger equation: classical and quantum aspects, Nucl. Phys. B, 516 (1998), 467–498. https://doi.org/10.1016/S0550-3213(97)00810-9 doi: 10.1016/S0550-3213(97)00810-9
    [49] J. H. Lee, C. K. Lin, O. K. Pashev, Shock waves, chiral solitons and semi-classical limit of one-dimensional anyons, Chaos Soliton. Fract., 19 (2004), 109–128. https://doi.org/10.1016/S0960-0779(03)00084-5 doi: 10.1016/S0960-0779(03)00084-5
    [50] H. Ikezi, K. Schwarzenegger, A. L. Simsons, Y. Ohsawa, T. Kamimura, Nonlinear self‐modulation of ion-acoustic waves, The Physics of Fluids, 21 (1978), 239. https://doi.org/10.1063/1.862198 doi: 10.1063/1.862198
    [51] V. E. Zakharov, L. A. Ostrovsky, Modulation instability: The beginning, Physica D, 238 (2009), 540–548. https://doi.org/10.1016/j.physd.2008.12.002 doi: 10.1016/j.physd.2008.12.002
    [52] W. Liu, K. Chen, The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations, Pramana-J. Phys., 81 (2013), 377–384. https://doi.org/10.1007/s12043-013-0583-7 doi: 10.1007/s12043-013-0583-7
    [53] K. Hosseini, A. Bekir, R. Ansari, Exact solutions of nonlinear conformable time-fractional Boussinesq equations using the-expansion method, Opt. Quant. Electron., 49 (2017), 131. https://doi.org/10.1007/s11082-017-0968-9 doi: 10.1007/s11082-017-0968-9
    [54] M. A. E. Abdelrahman, A note on Riccati-Bernoulli sub-ODE method combined with complex transform method applied to fractional differential equations, Nonlinear Engineering, 7 (2018), 279–285. https://doi.org/10.1515/nleng-2017-0145 doi: 10.1515/nleng-2017-0145
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1702) PDF downloads(121) Cited by(2)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog