Research article

A new $ H_{\infty} $ control method of switched nonlinear systems with persistent dwell time: $ H_{\infty} $ fuzzy control criterion with convergence rate constraints

  • Received: 14 July 2024 Revised: 11 August 2024 Accepted: 19 August 2024 Published: 10 September 2024
  • MSC : 34D20, 93B36, 93C42, 93D09, 93D20

  • This study aims to explore the problem of $ H_{\infty} $ fuzzy control with an adjustable convergence rate for switched nonlinear systems with time-varying delays under the persistent dwell time (PDT) switching. Compared to the widely studied dwell time (DT) switching or average dwell time (ADT) switching in existing literature, PDT switching provides a more comprehensive consideration of the switching frequency and has a broader range of applicability. Subsequently, by combining the interval stability definition, T-S fuzzy model, PDT technique, and Lyapunov-Krasovskii (L-K) functional, a new $ H_{\infty} $ fuzzy control criterion for adjusting the convergence rate of switched nonlinear systems with time-varying delays is proposed. This criterion enables the development of a novel method for constructing $ H_{\infty} $ fuzzy controllers, which can regulate the system's convergence rate and achieve the specified $ H_{\infty} $ performance. Combining the above methods, an algorithm is introduced to precisely control the convergence rate of the target system. Finally, the effectiveness of this method is validated through a control example of a single-link robot arm.

    Citation: Han Geng, Huasheng Zhang. A new $ H_{\infty} $ control method of switched nonlinear systems with persistent dwell time: $ H_{\infty} $ fuzzy control criterion with convergence rate constraints[J]. AIMS Mathematics, 2024, 9(9): 26092-26113. doi: 10.3934/math.20241275

    Related Papers:

  • This study aims to explore the problem of $ H_{\infty} $ fuzzy control with an adjustable convergence rate for switched nonlinear systems with time-varying delays under the persistent dwell time (PDT) switching. Compared to the widely studied dwell time (DT) switching or average dwell time (ADT) switching in existing literature, PDT switching provides a more comprehensive consideration of the switching frequency and has a broader range of applicability. Subsequently, by combining the interval stability definition, T-S fuzzy model, PDT technique, and Lyapunov-Krasovskii (L-K) functional, a new $ H_{\infty} $ fuzzy control criterion for adjusting the convergence rate of switched nonlinear systems with time-varying delays is proposed. This criterion enables the development of a novel method for constructing $ H_{\infty} $ fuzzy controllers, which can regulate the system's convergence rate and achieve the specified $ H_{\infty} $ performance. Combining the above methods, an algorithm is introduced to precisely control the convergence rate of the target system. Finally, the effectiveness of this method is validated through a control example of a single-link robot arm.



    加载中


    [1] E. Skafidas, R. J. Evans, A. V. Savkin, I. R. Petersen, Stability results for switched controller systems, Automatica, 35 (1999), 553–564. https://doi.org/10.1016/S0005-1098(98)00167-8 doi: 10.1016/S0005-1098(98)00167-8
    [2] L. Zhang, K. Xu, J. Yang, M. Han, S. Yuan, Transition-dependent bumpless transfer control synthesis of switched linear systems, IEEE Trans. Automat. Control, 68 (2023), 1678–1684. https://doi.org/10.1109/TAC.2022.3152721 doi: 10.1109/TAC.2022.3152721
    [3] H. Li, Input-to-state stability for discrete-time switched systems by using Lyapunov functions with relaxed constraints, AIMS Math., 8 (2023), 30827–30845. http://dx.doi.org/10.3934/math.20231576 doi: 10.3934/math.20231576
    [4] T. C. Lee, Z. P. Jiang, Uniform asymptotic stability of nonlinear switched systems with an application to mobile robots, IEEE Trans. Automat. Control, 53 (2008), 1235–1252. https://doi.org/10.1109/TAC.2008.923688 doi: 10.1109/TAC.2008.923688
    [5] B. Niu, X. Zhao, X. Fan, Y. Cheng, A new control method for state-constrained nonlinear switched systems with application to chemical process, Int. J. Control, 88 (2015), 1693–1701. https://doi.org/10.1080/00207179.2015.1013062 doi: 10.1080/00207179.2015.1013062
    [6] U. Ali, M. Egerstedt, Hybrid optimal control under mode switching constraints with applications to pesticide scheduling, ACM Trans. Cyber-Phys. Syst., 2 (2018), 1–17. https://doi.org/10.1145/3047411 doi: 10.1145/3047411
    [7] G. Zhang, D. Tong, Q. Chen, W. Zhou, Sliding mode control against false data injection attacks in DC microgrid systems, IEEE Syst. J., 17 (2023), 6159–6168. https://doi.org/10.1109/JSYST.2023.3280185 doi: 10.1109/JSYST.2023.3280185
    [8] T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Syst. Man Cybern., 15 (1985), 116–132. https://doi.org/10.1109/TSMC.1985.6313399 doi: 10.1109/TSMC.1985.6313399
    [9] X. Xie, L. Wan, Z. Gu, D. Yue, J. Sun, Enhanced resilient fuzzy stabilization of discrete-time Takagi-Sugeno systems based on augmented time-variant matrix approach, IEEE Trans. Cybern., 54 (2022), 929–934. https://doi.org/10.1109/TCYB.2022.3179048 doi: 10.1109/TCYB.2022.3179048
    [10] X. Xie, Z. Zhang, D. Yue, J. Xia, Relaxed observer design of discrete-time Takagi-Sugeno fuzzy systems based on a lightweight gain-scheduling law, IEEE Trans. Fuzzy Syst., 30 (2022), 5544–5550. https://doi.org/10.1109/TFUZZ.2022.3179598 doi: 10.1109/TFUZZ.2022.3179598
    [11] W. Xiang, J. Xiao, M. N. Iqbal, $H_{\infty}$ control for switched fuzzy systems via dynamic output feedback: hybrid and switched approaches, Commun. Nonli. Sci., 18 (2013), 1499–1514. https://doi.org/10.1016/j.cnsns.2012.10.003 doi: 10.1016/j.cnsns.2012.10.003
    [12] X. Zhao, Y. Yin, L. Zhang, H. Yang, Control of switched nonlinear systems via T-S fuzzy modeling, IEEE Trans. Fuzzy Syst., 24 (2016), 235–241. https://doi.org/10.1109/TFUZZ.2015.2450834 doi: 10.1109/TFUZZ.2015.2450834
    [13] S. Sun, Y. Wang, H. Zhang, J. Sun, Multiple intermittent fault estimation and tolerant control for switched TS fuzzy stochastic systems with multiple time-varying delays, Appl. Math. Comput., 377 (2020), 125114. https://doi.org/10.1016/j.amc.2020.125114 doi: 10.1016/j.amc.2020.125114
    [14] L. Cao, Y. Pan, H. Liang, T. Huang, Observer-based dynamic event-triggered control for multiagent systems with time-varying delay, IEEE Trans. Cybern., 53 (2023), 3376–3387. https://doi.org/10.1109/TCYB.2022.3226873 doi: 10.1109/TCYB.2022.3226873
    [15] M. Shi, D. Tong, Q. Chen, W. Zhou, $P$th moment exponential synchronization for delayed multi-agent systems with Livy noise and Markov switching, IEEE Trans. Circuits Syst. II, Exp Briefs, 71 (2024), 697–701. https://doi.org/10.1109/TCSII.2023.3304635 doi: 10.1109/TCSII.2023.3304635
    [16] D. Tong, B. Ma, Q. Chen, Y. Wei, P. Shi, Finite-time synchronization and energy consumption prediction for multilayer fractional-order networks, IEEE Trans. Circuits Syst. II, Exp Briefs, 70 (2023), 2176–2180. https://doi.org/10.1109/TCSII.2022.3233420 doi: 10.1109/TCSII.2022.3233420
    [17] J. Chen, J. H. Park, S. Xu, Stability analysis for neural networks with time-varying delay via improved techniques, IEEE Trans. Cybern., 49 (2019), 4495–4500. https://doi.org/10.1109/TCYB.2018.2868136 doi: 10.1109/TCYB.2018.2868136
    [18] X. Wang, J. Xia, J. H. Park, X. Xie, G. Chen, Event-triggered adaptive tracking with guaranteed transient performance for switched nonlinear systems under asynchronous switching, IEEE Trans. Cybern., 54 (2024), 496–505. https://doi.org/10.1109/TCYB.2022.3223983 doi: 10.1109/TCYB.2022.3223983
    [19] A. S. Morse, Supervisory control of families of linear set-point controllers-Part Ⅰ. Exact matching, IEEE Trans. Automat. Control, 41 (1996), 1413–1431. https://doi.org/10.1109/9.539424 doi: 10.1109/9.539424
    [20] Q. Yu, Y. Feng, Stability analysis of switching systems with all modes unstable based on a $\Phi$-dependent max-minimum dwell time method, AIMS Math., 9 (2024), 4863–4881. http://dx.doi.org/10.3934/math.2024236 doi: 10.3934/math.2024236
    [21] J. P. Hespanha, Uniform stability of switched linear systems: Extensions of LaSalle's invariance principle, IEEE Trans. Automat. Control, 49 (2004), 470–482. https://doi.org/10.1109/TAC.2004.825641 doi: 10.1109/TAC.2004.825641
    [22] C. Edwards, T. Lombaerts, H. Smaili, Fault tolerant flight control, LNCIS, 399 (2010), 1–560. https://doi.org/10.1007/978-3-642-11690-2 doi: 10.1007/978-3-642-11690-2
    [23] J. Zhou, X. Ma, Z. Yan, S. Arik, Non-fragile output-feedback control for time-delay neural networks with persistent dwell time switching: a system mode and time scheduler dual-dependent design, Neural Networks, 169 (2024), 733–743. https://doi.org/10.1016/j.neunet.2023.11.007 doi: 10.1016/j.neunet.2023.11.007
    [24] H. Shen, M. Xing, Z. Wu, S. Xu, J. Cao, Multiobjective fault-tolerant control for fuzzy switched systems with persistent dwell time and its application in electric circuits, IEEE Trans. Fuzzy Syst., 28 (2020), 2335–2347. https://doi.org/10.1109/TFUZZ.2019.2935685 doi: 10.1109/TFUZZ.2019.2935685
    [25] J. Dong, X. Ma, L. He, S. Arik, Energy-to-peak control for switched systems with PDT switching, Elect. Res. Arch., 31 (2023), 5267–5285. http://doi.org/10.3934/era.2023268 doi: 10.3934/era.2023268
    [26] W. Zhang, L. Xie, Interval stability and stabilization of linear stochastic systems, IEEE Trans. Automat. Control, 54 (2009), 810–815. https://doi.org/10.1109/TAC.2008.2009613 doi: 10.1109/TAC.2008.2009613
    [27] H. Zhang, J. Xia, J. H. Park, W. Sun, G. Zhuang, Interval stability and interval stabilization of linear stochastic systems with time-varying delay, Int. J. Robust. Nonli. Control., 31 (2021), 2334–2347. https://doi.org/10.1002/rnc.5408 doi: 10.1002/rnc.5408
    [28] X. Wang, H. Zhang, J. Xia, W. Sun, G. Zhuang, Interval stability/stabilization of impulsive positive systems, Sci. China Inform. Sci., 66 (2023), 112203. https://doi.org/10.1007/s11432-021-3426-1 doi: 10.1007/s11432-021-3426-1
    [29] Y. Deng, H. Zhang, J. Xia, $H_{\infty}$ control With convergence rate constraint for time-varying delay switched systems, IEEE Trans. Syst. Man. Cybern. Syst., 53 (2023), 7354–7363. https://doi.org/10.1109/TSMC.2023.3298813 doi: 10.1109/TSMC.2023.3298813
    [30] H. Zhang, Y. Dai, C. Zhu, Region stability analysis and precise tracking control of linear stochastic systems, Appl. Math. Comput., 465 (2024), 128402. https://doi.org/10.1016/j.amc.2023.128402 doi: 10.1016/j.amc.2023.128402
    [31] L. Zhang, S. Zhuang, P. Shi, Non-weighted quasi-time-dependent $H_{\infty}$ filtering for switched linear systems with persistent dwell-time, Automatica, 54 (2015), 201–209. https://doi.org/10.1016/j.automatica.2015.02.010 doi: 10.1016/j.automatica.2015.02.010
    [32] D. Liberzon, Switching in systems and control, Boston: Birkhauser, 2003.
    [33] J. P. Hespanha, Root-mean-square gains of switched linear systems, IEEE Trans. Automat. Control, 48 (2003), 2040–2045. https://doi.org/10.1109/TAC.2003.819300 doi: 10.1109/TAC.2003.819300
    [34] Y. Chen, Z. Wang, B. Shen, Q. L. Han, Local stabilization for multiple input-delay systems subject to saturating actuators: The continuous-time case, IEEE Trans. Automat. Control, 67 (2022), 3090–3097. https://doi.org/10.1109/TAC.2021.3092556 doi: 10.1109/TAC.2021.3092556
    [35] Y. Mao, H. Zhang, Exponential stability and robust $H_{\infty}$ control of a class of discrete-time switched non-linear systems with time-varying delays via TS fuzzy model, Int. J. Syst. Sci., 45 (2014), 1112–1127. https://doi.org/10.1080/00207721.2012.745025 doi: 10.1080/00207721.2012.745025
    [36] H. N. Wu, K. Y. Cai, Mode-independent robust stabilization for uncertain Markovian jump nonlinear systems via fuzzy control, IEEE Trans. Syst. Man. Cybern., 36 (2006), 509–519. https://doi.org/10.1109/TSMCB.2005.862486 doi: 10.1109/TSMCB.2005.862486
    [37] B. Wang, J. Cheng, J. Zhan, A sojourn probability approach to fuzzy-model-based reliable control for switched systems with mode-dependent time-varying delays, Nonlinear Anal. Hybri. Syst., 26 (2017), 239–253. https://doi.org/10.1016/j.nahs.2017.05.006 doi: 10.1016/j.nahs.2017.05.006
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(223) PDF downloads(22) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog