Citation: Guido De Philippis, Filip Rindler. Fine properties of functions of bounded deformation-an approach via linear PDEs[J]. Mathematics in Engineering, 2020, 2(3): 386-422. doi: 10.3934/mine.2020018
[1] | Alberti G (1993) Rank one property for derivatives of functions with bounded variation. Proc Roy Soc Edinburgh Sect A 123: 239-274. doi: 10.1017/S030821050002566X |
[2] | Alibert JJ, Bouchitté G (1997) Non-uniform integrability and generalized Young measures. J Convex Anal 4: 129-147. |
[3] | Ambrosio L, Coscia A, Dal Maso G (1997) Fine properties of functions with bounded deformation. Arch Ration Mech Anal 139: 201-238. doi: 10.1007/s002050050051 |
[4] | Ambrosio L, Dal Maso G (1992) On the relaxation in ${\rm BV}(\Omega;{\bf R}^m)$ of quasi-convex integrals. J Funct Anal 109: 76-97. doi: 10.1016/0022-1236(92)90012-8 |
[5] | Ambrosio L, Fusco N, Pallara D (2000) Functions of Bounded Variation and Free-Discontinuity Problems, Oxford University Press. |
[6] | Amrouche C, Ciarlet PG, Gratie L, et al. (2006) On Saint Venant's compatibility conditions and Poincaré's lemma. C R Math Acad Sci Paris 342: 887-891. doi: 10.1016/j.crma.2006.03.026 |
[7] | Arroyo-Rabasa A, De Philippis G, Hirsch J, et al. (2019) Dimensional estimates and rectifiability for measures satisfying linear PDE constraints. Geom Funct Anal 29: 639-658. doi: 10.1007/s00039-019-00497-1 |
[8] | Arroyo-Rabasa A, De Philippis G, Rindler F (2017) Lower semicontinuity and relaxation of linear-growth integral functionals under PDE constraints. Adv Calc Var arXiv:1701.02230. |
[9] | Auslender A, Teboulle M (2003) Asymptotic Cones and Functions in Optimization and Variational Inequalities, Springer. |
[10] | Babadjian JF (2015) Traces of functions of bounded deformation. Indiana Univ Math J 64: 1271-1290. doi: 10.1512/iumj.2015.64.5601 |
[11] | Ball JM, James RD (1987) Fine phase mixtures as minimizers of energy. Arch Ration Mech Anal 100: 13-52. doi: 10.1007/BF00281246 |
[12] | Ball JM, Kirchheim B, Kristensen J (2000) Regularity of quasiconvex envelopes. Calc Var Partial Dif 11: 333-359. doi: 10.1007/s005260000041 |
[13] | Barroso AC, Fonseca I, Toader R (2000) A relaxation theorem in the space of functions of bounded deformation. Ann Sc Norm Super Pisa Cl Sci 29: 19-49. |
[14] | Bellettini G, Coscia A, Dal Maso G (1998) Compactness and lower semicontinuity properties in SBD(Ω). Math Z 228: 337-351. doi: 10.1007/PL00004617 |
[15] | Boussaid O, Kreisbeck C, Schlömerkemper A (2019) Characterizations of symmetric polyconvexity. Arch Ration Mech Anal 234: 417-451. doi: 10.1007/s00205-019-01395-4 |
[16] | Breit D, Diening L, Gmeineder F (2017) On the trace operator for functions of bounded Avariation. arXiv:1707.06804. |
[17] | Caroccia M, Focardi M, Van Goethem N (2019) On the integral representation of variational functionals on bd. ArXiv:1907.11478. |
[18] | Chambolle A, Conti S, Iurlano F (2019) Approximation of functions with small jump sets and existence of strong minimizers of Griffith's energy. J Math Pure Appl 128: 119-139. doi: 10.1016/j.matpur.2019.02.001 |
[19] | Chiodaroli E, Feireisl E, Kreml O, et al. (2017) A-free rigidity and applications to the compressible Euler system. Ann Mat Pur Appl 196: 1557-1572. doi: 10.1007/s10231-016-0629-9 |
[20] | Conti S, Faraco D, Maggi F (2005) A new approach to counterexamples to L1 estimates: Korn's inequality, geometric rigidity, and regularity for gradients of separately convex functions. Arch Ration Mech Anal 175: 287-300. doi: 10.1007/s00205-004-0350-5 |
[21] | Conti S, Focardi M, Iurlano F (2017) Integral representation for functionals defined on sbdp in dimension two. Arch Ration Mech Anal 223: 1337-1374. doi: 10.1007/s00205-016-1059-y |
[22] | Conti S, Focardi M, Iurlano F (2018) Which special functions of bounded deformation have bounded variation?. Proc Roy Soc Edinburgh Sect A 148: 33-50. doi: 10.1017/S030821051700004X |
[23] | De Giorgi E (1954), Su una teoria generale della misura (r - 1)-dimensionale in uno spazio ad r dimensioni. Ann Mat Pur Appl 36: 191-213. |
[24] | De Lellis C (2008) A note on Alberti's rank-one theorem, In: Transport Equations and Multi-D Hyperbolic Conservation Laws, Springer, 61-74. |
[25] | De Philippis G (2008) On the singular part of measures constrained by linear PDEs and applications, In: European Congress of Mathematics, 833-845. |
[26] | De Philippis G, Marchese A, Rindler F (2017) On a conjecture of Cheeger, In: Measure Theory in Non-Smooth Spaces, De Gruyter, 145-155. |
[27] | De Philippis G, Palmieri L, Rindler F (2018) On the two-state problem for general differential operators. Nonlinear Anal 177: 387-396. doi: 10.1016/j.na.2018.03.015 |
[28] | De Philippis G, Rindler F (2016) On the structure of $\mathcal{A}$-free measures and applications. Ann Math 184: 1017-1039. doi: 10.4007/annals.2016.184.3.10 |
[29] | De Philippis G, Rindler F (2017) Characterization of generalized Young measures generated by symmetric gradients. Arch Ration Mech Anal 224: 1087-1125. doi: 10.1007/s00205-017-1096-1 |
[30] | De Philippis G, Rindler F (2018) On the structure of measures constrained by linear PDEs, In: Proceedings of the International Congress of Mathematicians (ICM 2018), 2215-2239. |
[31] | Ebobisse F (2000) On lower semicontinuity of integral functionals in LD(Ω). Ricerche Mat 49: 65-76. |
[32] | Ebobisse F (2005) A lower semicontinuity result for some integral functionals in the space SBD. Nonlinear Anal 62: 1333-1351. doi: 10.1016/j.na.2005.04.036 |
[33] | Federer H (1969) Geometric Measure Theory, Springer. |
[34] | Fleming WH, Rishel R (1960) An integral formula for total gradient variation. Arch Math 11: 218-222. doi: 10.1007/BF01236935 |
[35] | Fonseca I, Müller S (1992) Quasi-convex integrands and lower semicontinuity in L1. SIAM J Math Anal 23: 1081-1098. doi: 10.1137/0523060 |
[36] | Fonseca I, Müller S (1993) Relaxation of quasiconvex functionals in ${\rm BV}(\Omega,{\bf R}^p)$ for integrands f (x, u, ▽u). Arch Ration Mech Anal 123: 1-49. doi: 10.1007/BF00386367 |
[37] | Fonseca I, Müller S (1999) $\mathcal{A}$-quasiconvexity, lower semicontinuity, and Young measures. SIAM J Math Anal 30: 1355-1390. doi: 10.1137/S0036141098339885 |
[38] | Friedrich M (2017) A Korn-type inequality in SBD for functions with small jump sets. Math Mod Meth AppL S 27: 2461-2484. doi: 10.1142/S021820251750049X |
[39] | Friedrich M (2018) A piecewise Korn inequality in S BD and applications to embedding and density results. SIAM J Math Anal 50: 3842-3918. doi: 10.1137/17M1129982 |
[40] | Friedrich M, Solombrino F (2019) Functionals defined on piecewise rigid functions: Integral representation and Γ-convergence. ArXiv:1904.06305. |
[41] | Fuchs M, Seregin G (2000) Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids, Springer. |
[42] | Gargiulo G, Zappale E (2008) A lower semicontinuity result in SBD. J Convex Anal 15: 191-200. |
[43] | Gmeineder F, Raita B (2018) On critical Lp-differentiability of BD-maps. arXiv:1802.10364. |
[44] | Grafakos L (2014) Classical Fourier Analysis, 3 Eds., Springer. |
[45] | Kinderlehrer D, Pedregal P (1991) Characterizations of Young measures generated by gradients. Arch Ration Mech Anal 115: 329-365. doi: 10.1007/BF00375279 |
[46] | Kinderlehrer D, Pedregal P (1994) Gradient Young measures generated by sequences in Sobolev spaces. J Geom Anal 4: 59-90. doi: 10.1007/BF02921593 |
[47] | Kirchheim B, Kristensen J (2011) Automatic convexity of rank-1 convex functions. C R Math Acad Sci Paris 349: 407-409. doi: 10.1016/j.crma.2011.03.013 |
[48] | Kirchheim B, Kristensen J (2016) On rank-one convex functions that are homogeneous of degree one. Arch Ration Mech Anal 221: 527-558. doi: 10.1007/s00205-016-0967-1 |
[49] | Kohn RV (1979) New estimates for deformations in terms of their strains. PhD thesis of Princeton University. |
[50] | Kohn RV (1982) New integral estimates for deformations in terms of their nonlinear strains. Arch Ration Mech Anal 78: 131-172. doi: 10.1007/BF00250837 |
[51] | Kosiba K, Rindler F (2019) On the relaxation of integral functionals depending on the symmetrized gradient. ArXiv:1903.05771. |
[52] | Kristensen J, Rindler F (2010), Characterization of generalized gradient Young measures generated by sequences in W1,1 and BV. Arch Ration Mech Anal 197: 539-598. |
[53] | Maggi F (2012) Sets of Finite Perimeter and Geometric Variational Problems, Cambridge: Cambridge University Press. |
[54] | Massaccesi A, Vittone D (2019) An elementary proof of the rank-one theorem for BV functions. J Eur Math Soc 21: 3255-3258. doi: 10.4171/JEMS/903 |
[55] | Matthies H, Strang G, Christiansen E (1979) The saddle point of a differential program, In: Energy Methods in Finite Element Analysis, Wiley, 309-318. |
[56] | Mattila P (1995) Geometry of Sets and Measures in Euclidean Spaces, Cambridge: Cambridge University Press. |
[57] | Müller S (1992) On quasiconvex functions which are homogeneous of degree 1. Indiana U Math J 41: 295-301. doi: 10.1512/iumj.1992.41.41017 |
[58] | Müller S (1999) Variational models for microstructure and phase transitions, In: Calculus of Variations and Geometric Evolution Problems, Springer, 85-210. |
[59] | Murat F (1978) Compacité par compensation, Ann Sc Norm Super Pisa Cl Sci 5: 489-507. |
[60] | Murat F (1979) Compacité par compensation. II, In: Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), Pitagora Editrice Bologna, 245-256. |
[61] | Ornstein D (1962) A non-inequality for differential operators in the L1 norm. Arch Ration Mech Anal 11: 40-49. doi: 10.1007/BF00253928 |
[62] | Preiss D (1987) Geometry of measures in ${\bf R}^n$: distribution, rectifiability, and densities. Ann Math 125: 537-643. doi: 10.2307/1971410 |
[63] | Rindler F (2011) Lower Semicontinuity and Young Measures for Integral Functionals with Linear Growth, PhD thesis of University of Oxford. |
[64] | Rindler F (2011) Lower semicontinuity for integral functionals in the space of functions of bounded deformation via rigidity and Young measures. Arch Ration Mech Anal 202: 63-113. doi: 10.1007/s00205-011-0408-0 |
[65] | Rindler F (2012) Lower semicontinuity and Young measures in BV without Alberti's Rank-One Theorem. Adv Calc Var 5: 127-159. |
[66] | Rindler F (2014) A local proof for the characterization of Young measures generated by sequences in BV. J Funct Anal 266: 6335-6371. doi: 10.1016/j.jfa.2014.03.010 |
[67] | Rindler F (2018) Calculus of Variations, Springer. |
[68] | Spector D, Van Schaftingen J (2018) Optimal embeddings into lorentz spaces for some vector differential operators via gagliardo's lemma. ArXiv:1811.02691. |
[69] | Stein EM (1993) Harmonic Analysis, Princeton University Press. |
[70] | Suquet PM (1978) Existence et régularité des solutions des équations de la plasticité. C R Acad Sci Paris Sér A 286: 1201-1204. |
[71] | Suquet PM (1979) Un espace fonctionnel pour les équations de la plasticité. Ann Fac Sci Toulouse Math 1: 77-87. doi: 10.5802/afst.531 |
[72] | Tartar L (1979) Compensated compactness and applications to partial differential equations, In: Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. IV, Pitman, 136-212. |
[73] | Tartar L (1983) The compensated compactness method applied to systems of conservation laws, In: Systems of Nonlinear Partial Differential Equations, Reidel, 263-285. |
[74] | Temam R (1983) Problèmes Mathématiques en Plasticité, Montrouge: Gauthier-Villars. |
[75] | Temam R, Strang G (1980) Functions of bounded deformation. Arch Ration Mech Anal 75: 7-21. doi: 10.1007/BF00284617 |