Citation: Luca Capogna, Giovanna Citti, Nicola Garofalo. Regularity for a class of quasilinear degenerate parabolic equations in the Heisenberg group[J]. Mathematics in Engineering, 2021, 3(1): 1-31. doi: 10.3934/mine.2021008
[1] | Aronson DG, Serrin J (1967) Local behavior of solutions of quasilinear parabolic equations. Arch Ration Mech Anal 25: 81-122. |
[2] | Avelin B, Capogna L, Citti G, et al. (2014) Harnack estimates for degenerate parabolic equations modeled on the subelliptic p-Laplacian. Adv Math 257: 25-65. |
[3] | Bieske T (2005) Comparison principle for parabolic equations in the Heisenberg group. Electron J Differ Eq 95: 1-11. |
[4] | Bieske T (2006) Equivalence of weak and viscosity solutions to the p-Laplace equation in the Heisenberg group. Ann Acad Sci Fenn Math 31: 363-379. |
[5] | Bramanti M, Brandolini L (2007) Schauder estimates for parabolic nondivergence operators of Hörmander type. J Differ Equations 234: 177-245. |
[6] | Capogna L (1999) Regularity for quasilinear equations and 1-quasiconformal mappings in Carnot groups. Math Ann 313: 263-295. |
[7] | Capogna L, Citti G (2016) Regularity for subelliptic PDE through uniform estimates in multiscale geometries. B Math Sci 6: 173-230. |
[8] | Capogna L, Citti G, Ottazzi A, et al. (2019) Conformality and Q-harmonicity in sub-Riemannian manifolds. J Math Pure Appl 122: 67-124. |
[9] | Capogna L, Citti G, Rea G (2013) A subelliptic analogue of Aronson-Serrin's Harnack inequality. Math Ann 357: 1175-1198. |
[10] | Citti G, Manfredini M (2006) Uniform estimates of the fundamental solution for a family of hypoelliptic operators. Potential Anal 25: 147-164. |
[11] | Citti G, Lanconelli E, Montanari A (2002) Smoothness of Lipschitz-continuous graphs with nonvanishing Levi curvature. Acta Math 188: 87-128. |
[12] | Da Prato G (1964) Spazi Lp, θ(?, δ) e loro proprietà. Annali di Matematica 69: 383-392. |
[13] | Di Benedetto E (1993) Degenerate Parabolic Equations, Springer, Universitext. |
[14] | Domokos A (2004) Differentiability of solutions for the non-degenerate p-Laplacian in the Heisenberg group. J Differ Equations 204: 439-470. |
[15] | Domokos A, Manfredi JJ (2020) C1, α-subelliptic regularity on S U(3) and compact, semi-simple Lie groups. Anal Math Phys 10: 4. |
[16] | Folland GB, Stein EM (1982) Hardy Spaces on Homogeneous Groups, Princeton: Princeton University Press. |
[17] | Grigor'yan AA (1992) The heat equation on noncompact Riemannian manifolds. Sb Math 72: 47-77. |
[18] | Hörmander L (1967) Hypoelliptic second order differential equations. Acta Math 119: 147-171. |
[19] | Koranyi A (1983) Geometric aspects of analysis on the Heisenberg group, In: Topics in Modern Harmonic Analysis, Vol. I, II (Turin/Milan, 1982), Francesco Severi, Rome: Ist. Naz. Alta Mat., 209-258. |
[20] | Ladyzhenskaya O, Solonnikov VA, Ural'tseva NN (1967) Linear and Quasilinear Parabolic Equations, Moskow: Nauka. |
[21] | Manfredi JJ, Mingione G (2007) Regularity results for quasilinear elliptic equations in the Heisenberg group. Math Ann 339: 485-544. |
[22] | Mingione G, Zatorska-Goldstein A, Zhong X (2009) Gradient regularity for elliptic equations in the Heisenberg group. Adv Math 222: 62-129. |
[23] | Morrey Jr CB (1959) Second order elliptic equations in several variables and Hölder continuity. Math Z 72: 146-164. |
[24] | Moser J (1964) A Harnack inequality for parabolic differential equations. Commun Pure Appl Math 17: 101-134. |
[25] | Mukherjee S (2019) On local Lipschitz regularity for quasilinear equations in the Heisenberg group. arXiv: 1804.00751. |
[26] | Ricciotti D (2015) p-Laplace Equation in the Heisenberg Group, Cham: Springer. |
[27] | Ricciotti D (2018) On the C1, α regularity of p-harmonic functions in the Heisenberg group. P Am Math Soc 146: 2937-2952. |
[28] | Saloff-Coste L (1992) A note on Poincaré, Sobolev, and Harnack inequalities. Int Math Res Notices 1992: 27-38. |
[29] | Stein EM (1993) Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton: Princeton University Press. |
[30] | Xu CJ (1992) Regularity for quasilinear second-order subelliptic equations. Commun Pure Appl Math 45: 77-96. |
[31] | Zhong X (2009) Regularity for variational problems in the Heisenberg group. arXiv: 1711.03284. |