Research article Special Issues

Breather patterns and other soliton dynamics in (2+1)-dimensional conformable Broer-Kaup-Kupershmit system

  • Received: 31 January 2024 Revised: 17 March 2024 Accepted: 27 March 2024 Published: 15 April 2024
  • In this work, the Extended Direct Algebraic Method (EDAM) is utilized to analyze and solve the fractional (2+1)-dimensional Conformable Broer-Kaup-Kupershmit System (CBKKS) and investigate different types of traveling wave solutions and study the soliton like-solutions. Using the suggested method, the fractional nonlinear partial differential equation (FNPDE) is primarily reduced to an integer-order nonlinear ordinary differential equation (NODE) under the traveling wave transformation, yielding an algebraic system of nonlinear equations. The ensuing algebraic systems are then solved to construct some families of soliton-like solutions and many other physical solutions. Some derived solutions are numerically analyzed using suitable values for the related parameters. The discovered soliton solutions grasp vital importance in fluid mechanics as they offer significant insight into the nonlinear behavior of the targeted model, opening the way for a deeper comprehension of complex physical phenomena and offering valuable applications in the associated areas.

    Citation: Mohammad Alqudah, Safyan Mukhtar, Albandari W. Alrowaily, Sherif. M. E. Ismaeel, S. A. El-Tantawy, Fazal Ghani. Breather patterns and other soliton dynamics in (2+1)-dimensional conformable Broer-Kaup-Kupershmit system[J]. AIMS Mathematics, 2024, 9(6): 13712-13749. doi: 10.3934/math.2024669

    Related Papers:

  • In this work, the Extended Direct Algebraic Method (EDAM) is utilized to analyze and solve the fractional (2+1)-dimensional Conformable Broer-Kaup-Kupershmit System (CBKKS) and investigate different types of traveling wave solutions and study the soliton like-solutions. Using the suggested method, the fractional nonlinear partial differential equation (FNPDE) is primarily reduced to an integer-order nonlinear ordinary differential equation (NODE) under the traveling wave transformation, yielding an algebraic system of nonlinear equations. The ensuing algebraic systems are then solved to construct some families of soliton-like solutions and many other physical solutions. Some derived solutions are numerically analyzed using suitable values for the related parameters. The discovered soliton solutions grasp vital importance in fluid mechanics as they offer significant insight into the nonlinear behavior of the targeted model, opening the way for a deeper comprehension of complex physical phenomena and offering valuable applications in the associated areas.



    加载中


    [1] M. B. Kochanov, N. A. Kudryashov, D. I. Sinel'Shchikov, Non-linear waves on shallow water under an ice cover. Higher order expansions, J. Appl. Math. Mech., 77 (2013), 25–32.
    [2] Y. Chen, Z. Yan, H. Zhang, New explicit solitary wave solutions for (2+ 1)-dimensional Boussinesq equation] and (3+ 1)-dimensional KP equation, Phys. Lett. A, 307 (2003), 107–113.
    [3] S. A. El-Tantawy, A. H Salas, Haifa A. Alyousef, M. R. Alharthi, Novel approximations to a nonplanar nonlinear Schrödinger equation and modeling nonplanar rogue waves/breathers in a complex plasma, Chaos Soliton. Fract., 1635 (2022), 112612. https://doi.org/10.1016/j.chaos.2022.112612 doi: 10.1016/j.chaos.2022.112612
    [4] X. La, F. Lin, Soliton excitations and shape-changing collisions in alpha helical proteins with interspine coupling at higher order, Commun. Nonlinear Sci. Numer. Simul., 32 (2016), 241–261.
    [5] S. Mukhtar, R. Shah, S. Noor, The numerical investigation of a fractional-order multi-dimensional Model of Navier-Stokes equation via novel techniques, Symmetry, 14 (2022), 1102. https://doi.org/10.3390/sym14061102 doi: 10.3390/sym14061102
    [6] S. A. El-Tantawy, R. A. Alharbey, A. H Salas, Novel approximate analytical and numerical cylindrical rogue wave and breathers solutions: An application to electronegative plasma, Chaos Soliton. Fract., 155 (2022), 111776. https://doi.org/10.1016/j.chaos.2021.111776 doi: 10.1016/j.chaos.2021.111776
    [7] S. Noor, A. S. Alshehry, A. Shafee, R. Shah, Families of propagating soliton solutions for (3+ 1)-fractional Wazwaz-BenjaminBona-Mahony equation through a novel modification of modified extended direct algebraic method, Phys. Scripta, 99 (2024), 045230. https://doi.org/10.1088/1402-4896/ad23b0 doi: 10.1088/1402-4896/ad23b0
    [8] H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, Perturbed Gerdjikov-Ivanov equation: Soliton solutions via Backlund transformation, Optik, 298 (2024), 171576. https://doi.org/10.1016/j.ijleo.2023.171576 doi: 10.1016/j.ijleo.2023.171576
    [9] S. Alshammari, K. Moaddy, M. Alshammari, Z. Alsheekhhussain, M. M. Al-Sawalha, M. Yar, Analysis of solitary wave solutions in the fractional-order Kundu-Eckhaus system, Sci. Rep., 14 (2024), 3688. https://doi.org/10.1038/s41598-024-53330-7 doi: 10.1038/s41598-024-53330-7
    [10] Z. Alsheekhhussain, K. Moaddy, S. Alshammari, M. Alshammari, M. M. Al-Sawalha, A. A. Alderremy, Extension of the Optimal Auxiliary Function Method to Solve the System of a Fractional-Order Whitham-Broer-Kaup Equation., Fractal Fract., 8 (2023), 1. https://doi.org/10.3390/fractalfract8010001 doi: 10.3390/fractalfract8010001
    [11] M. M. Al-Sawalha, S. Mukhtar, A.H. Ganie, K. Moaddy, Solitary Waves Propagation Analysis in Nonlinear Dynamical System of Fractional Coupled Boussinesq-Whitham-Broer-Kaup Equation, Fractal Fract., 7 (2023), 889. https://doi.org/10.3390/fractalfract7120889 doi: 10.3390/fractalfract7120889
    [12] M. Alqhtani, K. M. Saad, W. M. Hamanah, Discovering novel soliton solutions for (3+ 1)-modified fractional Zakharov-Kuznetsov equation in electrical engineering through an analytical approach, Opt. Quantum Electron., 55 (2023), 1149. https://doi.org/10.1007/s11082-023-05407-2 doi: 10.1007/s11082-023-05407-2
    [13] H. Yasmin, N.H. Aljahdaly, A. M. Saeed, Probing families of optical soliton solutions in fractional perturbed Radhakrishnan-Kundu-Lakshmanan model with improved versions of extended direct algebraic method, Fractal Fract., 7 (2023), 512. https://doi.org/10.3390/fractalfract7070512 doi: 10.3390/fractalfract7070512
    [14] S. Meng, F. Meng, F. Zhang, Q. Li, Y. Zhang, A. Zemouche, Observer design method for nonlinear generalized systems with nonlinear algebraic constraints with applications, Automatica, 162 (2024), 111512. https://doi.org/10.1016/j.automatica.2024.111512 doi: 10.1016/j.automatica.2024.111512
    [15] X. Cai, R. Tang, H. Zhou, Q. Li, S. Ma, D. Wang, L. Zhou, Dynamically controlling terahertz wavefronts with cascaded metasurfaces, Adv. Photonics, 3 (2021), 036003. https://doi.org/10.1117/1.AP.3.3.036003 doi: 10.1117/1.AP.3.3.036003
    [16] C. Guo, J. Hu, Y. Wu, S. Celikovsky, Non-Singular Fixed-Time Tracking Control of Uncertain Nonlinear Pure-Feedback Systems With Practical State Constraints, IEEE Trans. Circ. Syst. I, 70 (2024), 3746–3758. https://doi.org/10.1109/TCSI.2023.3291700 doi: 10.1109/TCSI.2023.3291700
    [17] C. Guo, J. Hu, J. Hao, S. Celikovsky, X. Hu, Fixed-time safe tracking control of uncertain high-order nonlinear pure-feedback systems via unified transformation functions, Kybernetika, 59 (2023), 342–364. https://doi.org/10.14736/kyb-2023-3-0342 doi: 10.14736/kyb-2023-3-0342
    [18] Y. Kai, J. Ji, Z. Yin, Study of the generalization of regularized long-wave equation, Nonlinear Dyn., 107 (2022), 2745–2752. https://doi.org/10.1007/s11071-021-07115-6 doi: 10.1007/s11071-021-07115-6
    [19] Y. Kai, Z. Yin, Linear structure and soliton molecules of Sharma-Tasso-Olver-Burgers equation, Phys. Lett. A, 452 (2022), 128430. https://doi.org/10.1016/j.physleta.2022.128430 doi: 10.1016/j.physleta.2022.128430
    [20] X. Zhou, X. Liu, G. Zhang, L. Jia, X. Wang, Z. Zhao, An Iterative Threshold Algorithm of Log-Sum Regularization for Sparse Problem, IEEE Trans. Circ. Syst. Vid. Technol., 33 (2023), 4728–4740. https://doi.org/10.1109/TCSVT.2023.3247944
    [21] G. Xu, Z. Li, Exact travelling wave solutions of the Whitham-Broer-Kaup and Broer-Kaup-Kupershmidt equations, Chaos Soliton. Fract., 24 (2005), 549–556.
    [22] X. Zeng, D. S. Wang, A generalized extended rational expansion method and its application to (1+ 1)-dimensional dispersive long wave equation, Appl. Math. Comput., 212 (2009), 296–304.
    [23] R. Ali, E. Tag-eldin, A comparative analysis of generalized and extended (C G)-Expansion methods for travelling wave solutions of fractional Maccari's system with complex structure, Alex. Eng. J., 79 (2023), 508–530.
    [24] S. Zhang, T. Xia, Further improved extended Fan sub-equation method and new exact solutions of the (2+ 1)-dimensional Broer-Kaup-Kupershmidt equations, Appl. Math. Comput., 182 (2006), 1651–1660.
    [25] S. Haq, M. Ishaq, Solution of coupled Whitham-Broer-Kaup equations using optimal homotopy asymptotic method, Ocean Eng., 84 (2014), 81–88.
    [26] X. Y. Wen, N-soliton solutions and localized structures for the (2+ 1)-dimensional Broer-Kaup-Kupershmidt system, Nonlinear Anal.: Real World Appl., 12 (2011), 3346–3355.
    [27] A. K. Gupta, S. S. Ray, Comparison between homotopy perturbation method and optimal homotopy asymptotic method for the soliton solutions of Boussinesq-Burger equations, Comput. Fluids, 103 (2014), 34–41.
    [28] V. B. Matveev, M. A. Salle, Darboux transformations and solitons, Berlin-Heidelberg: Springer, 1991.
    [29] H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, R. Shah, Perturbed Gerdjikov-Ivanov equation: Soliton solutions via Backlund transformation, Optik, 298 (2023), 171576.
    [30] P. A. Clarkson, The Painlev property and a partial differential equation with an essential singularity, Phys. Lett. A, 109 (1985), 205–208.
    [31] M. A. Abdou, The extended tanh method and its applications for solving nonlinear physical models, Appl. Math. Comput., 190 (2007), 988–996.
    [32] E. Fan, J. Zhang, Applications of the Jacobi elliptic function method to special-type nonlinear equations, Phys. Lett. A, 305 (2002), 383–392.
    [33] I. Ahmad, H. Seno, An epidemic dynamics model with limited isolation capacity, Theory Biosci., 142 (2023), 259–273.
    [34] M. M. Al-Sawalha, H. Yasmin, R. Shah, A. H. Ganie, K. Moaddy, Unraveling the Dynamics of Singular Stochastic Solitons in Stochastic Fractional Kuramoto-Sivashinsky Equation, Fractal Fract., 7 (2023), 753.
    [35] Y. Xie, I. Ahmad, T. I. Ikpe, E. F. Sofia, H. Seno, What Influence Could the Acceptance of Visitors Cause on the Epidemic Dynamics of a Reinfectious Disease: A Mathematical Model, Acta Biotheor., 72 (2024), 3.
    [36] R. Ali, A. S. Hendy, M. R. Ali, A. M. Hassan, F. A. Awwad, E. A. Ismail, Exploring Propagating Soliton Solutions for the Fractional Kudryashov-Sinelshchikov Equation in a Mixture of Liquid-Gas Bubbles under the Consideration of Heat Transfer and Viscosity, Fractal Fract., 7 (2023), 773.
    [37] H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Investigating symmetric soliton solutions for the fractional coupled konno-onno system using improved versions of a novel analytical technique, Mathematics, 11 (2023), 2686. https://doi.org/10.3390/math11122686 doi: 10.3390/math11122686
    [38] A. Shafee, Y. Alkhezi, R. Shah, Efficient solution of fractional system partial differential equations using Laplace residual power series method, Fractal Fract., 7 (2023), 429. https://doi.org/10.3390/fractalfract7060429 doi: 10.3390/fractalfract7060429
    [39] A. A. Alderremy, N. Iqbal, S. Aly, K. Nonlaopon, Fractional Series Solution Construction for Nonlinear Fractional Reaction-Diffusion Brusselator Model Utilizing Laplace Residual Power Series, Symmetry, 14 (2022), 1944. https://doi.org/10.3390/sym14091944 doi: 10.3390/sym14091944
    [40] H. M. Srivastava, H. Khan, M. Arif, Some analytical and numerical investigation of a family of fractional-order Helmholtz equations in two space dimensions, Math. Methods Appl. Sci., 43 (2020), 199–212. https://doi.org/10.1002/mma.5846 doi: 10.1002/mma.5846
    [41] A. Saad Alshehry, M. Imran, A. Khan, W. Weera, Fractional View Analysis of Kuramoto-Sivashinsky Equations with Non-Singular Kernel Operators, Symmetry, 14 (2022), 1463. https://doi.org/10.3390/sym14071463 doi: 10.3390/sym14071463
    [42] M. Arshad, A. R. Seadawy, D. Lu, J. Wang, Travelling wave solutions of Drinfel'd-Sokolov-Wilson, Whitham-Broer-Kaup and (2+ 1)-dimensional Broer-Kaup-Kupershmit equations and their applications, Chin. J. Phys., 55 (2017), 780–797.
    [43] T. Demiray, S. S. Duman, The modified trial equation method to the (2+ 1)-dimensional Broer-Kaup-Kupershmidt equation and Kolmogorov-Petrovskii-Piskunov equation, Balakesir niversitesi Fen Bilimleri Enstit Dergisi, 23 (2021), 673–684.
    [44] A. M. Wazwaz, Kadomtsev-Petviashvili hierarchy: N-soliton solutions and distinct dispersion relations, Appl. Math. Lett., 52 (2016), 74–79.
    [45] G. B. Whitham, Variational methods and applications to water waves, Ser. A. Math. Phys. Sci., 299 (1967), 6–25.
    [46] L. J. F. Broer, Approximate equations for long water waves, Appl. Sci. Res., 31 (1975), 377–395.
    [47] D. Kaup, A higher-order water-wave equation and the method for solving it, Prog. Theor. Phys., 54 (1975), 396–408.
    [48] V. E. Tarasov, On chain rule for fractional derivatives, Commun. Nonlinear Sci. Numer. Simul., 30 (2016), 1–4.
    [49] J. H. He, S. K. Elagan, Z. B. Li, Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus, Phys. Lett. A, 376 (2012), 257–259.
    [50] M. Z. Sarikaya, H. Budak, H. Usta, On generalized the conformable fractional calculus, TWMS J. Appl. Eng. Math., 9 (2019), 792–799.
    [51] S. A. El-Tantawy, Nonlinear dynamics of soliton collisions in electronegative plasmas: The phase shifts of the planar KdV-and mkdV-soliton collisions, Chaos Soliton. Fract., 93 (2016), 162.
    [52] M. Shan Tariq, W. Masood, M. Siddiq, S. Asghar, B. M, Alotaibi, M. E. Sherif, et al., Backlund transformation for analyzing a cylindrical Korteweg-de Vries equation and investigating multiple soliton solutions in a plasma, Phys. Fluids, 35 (2023), 103105.
    [53] A. M. Wazwaz, W. Alhejaili, S. A. El-Tantawy, Study on extensions of (modified) Korteweg–de Vries equations: Painlev integrability and multiple soliton solutions in fluid mediums, Phys. Fluids, 35 (2023), 093110.
    [54] R. A. Alharbey, W. R. Alrefae, H. Malaikah, E. Tag-Eldin, S. A. El-Tantawy, Novel approximate analytical solutions to the nonplanar modified Kawahara equation and modeling nonlinear structures in electronegative plasmas, Symmetry, 15 (2023), 97.
    [55] M. R. Alharthi, R. A. Alharbey, S. A. El-Tantawy, Novel analytical approximations to the nonplanar Kawahara equation and its plasma applications, Eur. Phys. J. Plus, 137, 1172 (2022).
    [56] S. A. El-Tantawy, L. S. El-Sherif, A. M. Bakry, W. Alhejaili, A.-M. Wazwaz, On the analytical approximations to the nonplanar damped Kawahara equation: Cnoidal and solitary waves and their energy, Phys. Fluids, 34 (2022), 113103.
    [57] M. Irshad, Ata-ur-Rahman, M. Khalid, S. Khan, B. M. Alotaibi, L. S. El-Sherif, et al., Effect of I-deformed Kaniadakis distribution on the modulational instability of electron-acoustic waves in a non-Maxwellian plasma, Phys. Fluids 35 (2023), 105116.
    [58] S. A. El-Tantawy, T. Aboelenen, Simulation study of planar and nonplanar super rogue waves in an electronegative plasma: Local discontinuous Galerkin method, Phys. Plasmas, 24 (2017), 052118.
    [59] S. A. El-Tantawy, A. H Salas, M. R. Alharthi, On the Analytical and Numerical Solutions of the Linear Damped NLSE for Modeling Dissipative Freak Waves and Breathers in Nonlinear and Dispersive Mediums: An Application to a Pair-Ion Plasma, Front. Phys., 9 (2021), 580224.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(644) PDF downloads(47) Cited by(0)

Article outline

Figures and Tables

Figures(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog