Research article Special Issues

New solitary waveforms and their dynamics in the stochastic generalized Chen–Lee–Liu model

  • Received: 14 December 2024 Revised: 19 February 2025 Accepted: 25 February 2025 Published: 10 March 2025
  • MSC : 35Q55, 35Q60, 35Q61

  • This paper explores the dynamics of the generalized Chen-Lee-Liu equation, a fundamental model in nonlinear optics, extended to incorporate multiplicative white noise. By employing Itô calculus, the stochastic behavior of the system was is rigorously analyzed, providing insights into the effects of perturbations on soliton dynamics. The improved extended modified tanh-function approach was utilized to derive a variety of soliton solutions, including singular, dark, and bright solitons, as well as newly identified straddled solitons. This analytical approach highlights the transformative relationships between soliton types under specific conditions, expanding the spectrum of known solutions. The incorporation of multiplicative white noise reveals intricate changes in soliton stability, amplitude, and velocity, illustrating the interplay between deterministic and stochastic influences. These findings offer theoretical advancements in the understanding of soliton behavior in noisy environments and have practical implications for optical communication systems and nonlinear wave modeling. This study enriches the theoretical landscape of soliton dynamics and sets the stage for future research into stochastic soliton systems.

    Citation: Ahmed M. Elsherbeny, Taher A. Nofal, Yakup Yıldırım, Ahmed H. Arnous. New solitary waveforms and their dynamics in the stochastic generalized Chen–Lee–Liu model[J]. AIMS Mathematics, 2025, 10(3): 5197-5235. doi: 10.3934/math.2025239

    Related Papers:

  • This paper explores the dynamics of the generalized Chen-Lee-Liu equation, a fundamental model in nonlinear optics, extended to incorporate multiplicative white noise. By employing Itô calculus, the stochastic behavior of the system was is rigorously analyzed, providing insights into the effects of perturbations on soliton dynamics. The improved extended modified tanh-function approach was utilized to derive a variety of soliton solutions, including singular, dark, and bright solitons, as well as newly identified straddled solitons. This analytical approach highlights the transformative relationships between soliton types under specific conditions, expanding the spectrum of known solutions. The incorporation of multiplicative white noise reveals intricate changes in soliton stability, amplitude, and velocity, illustrating the interplay between deterministic and stochastic influences. These findings offer theoretical advancements in the understanding of soliton behavior in noisy environments and have practical implications for optical communication systems and nonlinear wave modeling. This study enriches the theoretical landscape of soliton dynamics and sets the stage for future research into stochastic soliton systems.



    加载中


    [1] A. Biswas, Topological 1-soliton solution of the nonlinear schrodinger's equation with Kerr law nonlinearity in 1+2 dimensions, Commun. Nonlinear Sci., 14 (2009), 2845–2847. https://doi.org/10.1016/j.cnsns.2008.09.025 doi: 10.1016/j.cnsns.2008.09.025
    [2] A. Biswas, H. Triki, 1-Soliton solution of the Klein–Gordon–Schrodinger's equation with power law nonlinearity, Appl. Math. Comput., 217 (2010), 3869–3874. https://doi.org/10.1016/j.amc.2010.09.046 doi: 10.1016/j.amc.2010.09.046
    [3] A. A. Al Qarni, M. A Banaja, H. O Bakodah, M. Mirzazadeh, A. Biswas, Optical solitons with coupled nonlinear Schrodinger's equation in birefringent nano-fibers by Adomian decomposition method, J. Comput. Theor. Nanosci., 13 (2016), 5493–5498. https://doi.org/10.1166/jctn.2016.5444 doi: 10.1166/jctn.2016.5444
    [4] N. A. Kudryashov, Conservation Laws of the Complex Ginzburg-Landau equation, Phys. Lett. A, 481 (2023), 128994. https://doi.org/10.1016/j.physleta.2023.128994 doi: 10.1016/j.physleta.2023.128994
    [5] M. Y. Wang, Optical solitons with perturbed complex Ginzburg-Landau equation in Kerr and Cubic-Quintic-Septic nonlinearity, Results Phys., 33 (2022), 105077. https://doi.org/10.1016/j.rinp.2021.105077 doi: 10.1016/j.rinp.2021.105077
    [6] A. H. Arnous, A. R. Seadawy, R. T. Alqahtani, A. Biswas, Optical solitons with complex Ginzburg–Landau equation by modified simple equation method, Optik, 144 (2017), 475–480. https://doi.org/10.1016/j.ijleo.2017.07.013 doi: 10.1016/j.ijleo.2017.07.013
    [7] N. A. Kudryashov, The Lakshmanan–Porsezian–Daniel Model with arbitrary refractive index and its solution, Optik, 241 (2021), 167043. https://doi.org/10.1016/j.ijleo.2021.167043 doi: 10.1016/j.ijleo.2021.167043
    [8] Y. Yıldırım, Optical soliton molecules of Lakshmanan–Porsezian–Daniel model in birefringent fibers by trial equation technique, Optik, 203 (2020), 162690. https://doi.org/10.1016/j.ijleo.2019.04.037 doi: 10.1016/j.ijleo.2019.04.037
    [9] R. T. Alqahtani, M. M. Babatin, A. Biswas, Bright optical solitons for Lakshmanan-Porsezian-Daniel model by semi-inverse variational principle, Optik, 154 (2018), 109–114. https://doi.org/10.1016/j.ijleo.2017.09.112 doi: 10.1016/j.ijleo.2017.09.112
    [10] H. H. Chen, Y. C. Lee, C. S. Liu, Integrability of nonlinear Hamiltonian systems by inverse scattering method, Phys. Scr., 20 (1979), 490. https://doi.org/10.1088/0031-8949/20/3-4/026 doi: 10.1088/0031-8949/20/3-4/026
    [11] Y. Yıldırım, Optical solitons to Chen–Lee–Liu model with trial equation approach, Optik, 183 (2019), 849–853. https://doi.org/10.1016/j.ijleo.2019.02.022 doi: 10.1016/j.ijleo.2019.02.022
    [12] N. A. Kudryashov, Optical solitons of the Chen–Lee–Liu equation with arbitrary refractive index, Optik, 247 (2021), 167935. https://doi.org/10.1016/j.ijleo.2021.167935 doi: 10.1016/j.ijleo.2021.167935
    [13] A. Biswas, M. Ekici, A. Sonmezoglu, A. S. Alshomrani, Q. Zhou, S. P. Moshokoa, et al., Chirped optical solitons of Chen–Lee–Liu equation by extended trial equation scheme, Optik, 156 (2018), 999–1006. https://doi.org/10.1016/j.ijleo.2017.12.094 doi: 10.1016/j.ijleo.2017.12.094
    [14] A. H. Arnous, M. Mirzazadeh, A. Akbulut, L. Akinyemi, Optical solutions and conservation laws of the Chen–Lee–Liu equation with Kudryashov's refractive index via two integrable techniques, Wave. Random Complex, 2022. https://doi.org/10.1080/17455030.2022.2045044 doi: 10.1080/17455030.2022.2045044
    [15] E. M. E. Zayed, A. H. Arnous, A. Secer, M. Ozisik, M. Bayram, N. A. Shah, et al., Highly dispersive optical solitons in fiber Bragg gratings for stochastic Lakshmanan–Porsezian–Daniel equation with spatio-temporal dispersion and multiplicative white noise, Results Phys., 55 (2023), 107177. https://doi.org/10.1016/j.rinp.2023.107177 doi: 10.1016/j.rinp.2023.107177
    [16] E. M. E. Zayed, A. H. Arnous, A. Biswas, Y. Yıldırım, A. Asiri, Optical solitons for the concatenation model with multiplicative white noisee, J. Opt., 53 (2024), 3098–3107. https://doi.org/10.1007/s12596-023-01381-w doi: 10.1007/s12596-023-01381-w
    [17] A. Secer, Stochastic optical solitons with multiplicative white noise via Itô calculus, Optik, 268 (2022), 169831. https://doi.org/10.1016/j.ijleo.2022.169831 doi: 10.1016/j.ijleo.2022.169831
    [18] Z. Li, C. Peng, Dynamics and embedded solitons of stochastic quadratic and cubic nonlinear susceptibilities with multiplicative white noise in the Itô sense, Mathematics, 11 (2023), 3185. https://doi.org/10.3390/math11143185 doi: 10.3390/math11143185
    [19] H. Cakicioglu, M. Ozisik, A. Secer, M. Bayram, Stochastic dispersive Schrödinger–Hirota equation having parabolic law nonlinearity with multiplicative white noise via Ito calculus, Optik, 279 (2023), 170776. https://doi.org/10.1016/j.ijleo.2023.170776 doi: 10.1016/j.ijleo.2023.170776
    [20] K. Zhang, J. Cao, J. Lvu, Dynamic behavior and modulation instability for a generalized nonlinear Schrödinger equation with nonlocal nonlinearity, Phys. Scr., 100 (2025), 015262. https://doi.org/10.1088/1402-4896/ad9cfa doi: 10.1088/1402-4896/ad9cfa
    [21] S. Zhao, Z. Li, The analysis of traveling wave solutions and dynamical behavior for the stochastic coupled Maccari's system via Brownian motion, Ain Shams Eng. J., 15 (2024), 103037. https://doi.org/10.1016/j.asej.2024.103037 doi: 10.1016/j.asej.2024.103037
    [22] W. W. Mohammed, S. Albosaily, N. Iqbal, M. El-Morshedy, The effect of multiplicative noise on the exact solutions of the stochastic Burgers' equation, Wave. Random Complex, 34 (2024), 274–286. https://doi.org/10.1080/17455030.2021.1905914 doi: 10.1080/17455030.2021.1905914
    [23] W. W. Mohammed, M. El-Morshedy, The influence of multiplicative noise on the stochastic exact solutions of the Nizhnik–Novikov–Veselov system, Math. Comput. Simulat., 190 (2021), 192–202. https://doi.org/10.1016/j.matcom.2021.05.022 doi: 10.1016/j.matcom.2021.05.022
    [24] K. Itô, Stochastic integral, Proc. Imp. Acad., 20 (1944), 519–524. https://doi.org/10.3792/pia/1195572786 doi: 10.3792/pia/1195572786
    [25] Z. Yang, B. Y. C. Hon, An improved modified extended Tanh-function method, Zeitschrift für Naturforschung A, 61 (2006), 103–115. https://doi.org/10.1515/zna-2006-3-401 doi: 10.1515/zna-2006-3-401
    [26] L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Experimental observation of picosecond pulse narrowing and solitons in optical fibers, Phys. Rev. Lett., 45 (1980), 1095–1098. https://doi.org/10.1103/PhysRevLett.45.1095 doi: 10.1103/PhysRevLett.45.1095
    [27] A. Hasegawa, F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. Ⅰ. Anomalous dispersion, Appl. Phys. Lett., 23 (1973), 142–144. https://doi.org/10.1063/1.1654836 doi: 10.1063/1.1654836
    [28] R. Grimshaw, The solitary wave in water of finite depth, J. Fluid Mech., 42 (1970), 639–656. https://doi.org/10.1017/S0022112070001520 doi: 10.1017/S0022112070001520
    [29] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, et al., Temporal solitons in optical microresonators, Nature Photon., 8 (2014), 145–152. https://doi.org/10.1038/nphoton.2013.343 doi: 10.1038/nphoton.2013.343
    [30] T. J. Kippenberg, R. Holzwarth, S. A. Diddams, Microresonator-based optical frequency combs, Science, 332 (2011), 555–559. https://doi.org/10.1126/science.1193968 doi: 10.1126/science.1193968
    [31] F. Chabchoub, N. P. Hoffmann, N. Akhmediev, Rogue wave observation in a water wave tank, Phys. Rev. Lett., 106 (2011), 204502. https://doi.org/10.1103/PhysRevLett.106.204502 doi: 10.1103/PhysRevLett.106.204502
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(72) PDF downloads(15) Cited by(0)

Article outline

Figures and Tables

Figures(40)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog