Research article

Piecewise immunosuppressive infection model with viral logistic growth and effector cell-guided therapy

  • Received: 07 January 2024 Revised: 05 February 2024 Accepted: 01 March 2024 Published: 25 March 2024
  • MSC : 34D05, 34D23, 92C60

  • This work investigated a piecewise immunosuppressive infection model that assessed the effectiveness of implementing this therapeutic regimen once the effector cell count falls below a specific threshold level by introducing a threshold strategy. The sliding mode dynamics, global dynamics, and boundary equilibrium bifurcations of the Filippov system were examined based on the global dynamics of the two subsystems. Our primary findings indicate that the HIV viral loads and effector cell counts can be stabilized within the required predetermined level. This outcome depends on the threshold level, immune intensity, and the initial values of the system. Therefore, properly combining these key factors makes it possible to effectively curb the abnormal increase of virus and keep the effector cells at a reliable level. This approach maximizes the controllable range of the HIV. The proposed switching system incorporating pseudo-equilibrium exhibits three types of equilibriums that could be bistable or tristable. It means there is a possibility of controlling the virus after administering therapy if the immune intensity $ c $ is limited within the range of the post-treatment control threshold and the elite control threshold when $ {R_0} > {R_{{c_1}}} > {R_{{c_2}}} > 1 $.

    Citation: Xiong Zhang, Zhongyi Xiang. Piecewise immunosuppressive infection model with viral logistic growth and effector cell-guided therapy[J]. AIMS Mathematics, 2024, 9(5): 11596-11621. doi: 10.3934/math.2024569

    Related Papers:

  • This work investigated a piecewise immunosuppressive infection model that assessed the effectiveness of implementing this therapeutic regimen once the effector cell count falls below a specific threshold level by introducing a threshold strategy. The sliding mode dynamics, global dynamics, and boundary equilibrium bifurcations of the Filippov system were examined based on the global dynamics of the two subsystems. Our primary findings indicate that the HIV viral loads and effector cell counts can be stabilized within the required predetermined level. This outcome depends on the threshold level, immune intensity, and the initial values of the system. Therefore, properly combining these key factors makes it possible to effectively curb the abnormal increase of virus and keep the effector cells at a reliable level. This approach maximizes the controllable range of the HIV. The proposed switching system incorporating pseudo-equilibrium exhibits three types of equilibriums that could be bistable or tristable. It means there is a possibility of controlling the virus after administering therapy if the immune intensity $ c $ is limited within the range of the post-treatment control threshold and the elite control threshold when $ {R_0} > {R_{{c_1}}} > {R_{{c_2}}} > 1 $.



    加载中


    [1] A. A. Alderremy, J. F. Gómez-Aguilar, S. Aly, K. M. Saad, A fuzzy fractional model of coronavirus (COVID-19) and its study with Legendre spectral method, Results. Phys., 21 (2021), 103773. http://dx.doi.org/10.1016/j.rinp.2020.103773 doi: 10.1016/j.rinp.2020.103773
    [2] P. Pandey, Y. M. Chu, J. F. Gómez-Aguilar, H. Jahanshahi, A. A. Aly, A novel fractional mathematical model of COVID-19 epidemic considering quarantine and latent time, Results. Phys., 26 (2021), 104286. http://dx.doi.org/10.1016/j.rinp.2021.104286 doi: 10.1016/j.rinp.2021.104286
    [3] A. A. Khan, R. Amin, S. Ullah, W. Sumelka, M. Altanji, Numerical simulation of a Caputo fractional epidemic model for the novel coronavirus with the impact of environmental transmission, Alex. Eng. J., 61 (2022), 5083–5095. http://dx.doi.org/10.1016/j.aej.2021.10.008 doi: 10.1016/j.aej.2021.10.008
    [4] S. Kumar, A. Ahmadian, R. Kumar, D. Kumar, J. Singh, D. Baleanu, et al., An efficient numerical method for fractional SIR epidemic model of infectious disease by using Bernstein wavelets, Mathematics, 8 (2020), 558. http://dx.doi.org/10.3390/math8040558 doi: 10.3390/math8040558
    [5] M. S. Abdo, K. Shah, H. A. Wahash, Sa. K. Panchal, On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative, Chaos. Solition. Fract., 135 (2020), 109867. http://dx.doi.org/10.1016/j.chaos.2020.109867 doi: 10.1016/j.chaos.2020.109867
    [6] F. J. Palella, K. M. Delaney, A. C. Moorman, M. O. Loveless, J. Fuhrer, G. A. Satten, et al., Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection, N. Engl. J. Med., 338 (1998), 853–860. http://dx.doi.org/10.1056/nejm199803263381301 doi: 10.1056/nejm199803263381301
    [7] A. Mocroft, S. Vella, T. L. Benfield, A. Chiesi, V. Miller, P. Gargalianos, et al., Changing patterns of mortality across Europe in patients infected with HIV-1, The Lancet, 352 (1998), 1725–1730. http://dx.doi.org/10.1016/s0140-6736(98)03201-2 doi: 10.1016/s0140-6736(98)03201-2
    [8] M. P. Davenport, D. S. Khoury, D. Cromer, S. R. Lewin, A. D. Kelleher, S. J. Kent, Functional cure of HIV: The scale of the challenge, Nat. Rev. Immunol., 19 (2019), 45–54. http://dx.doi.org/10.1038/S41577-018-0085-4 doi: 10.1038/S41577-018-0085-4
    [9] Z. Meng, Y. Chen, M. Lu, Advances in targeting the innate and adaptive immune systems to cure chronic hepatitis B virus infection, Front. Immunol., 10 (2020), 3127. http://dx.doi.org/10.3389/fimmu.2019.03127 doi: 10.3389/fimmu.2019.03127
    [10] L. Zhang, B. Ramratnam, K.Tenner-Racz, Y. He, M. Vesanen, S. Lewin, et al., Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy, N. Engl. J. Med., 340 (1999), 1605–1613. http://dx.doi.org/10.1056/NEJM199905273402101 doi: 10.1056/NEJM199905273402101
    [11] A. Carr, K. Samaras, A. Thorisdottir, G. R. Kaufmann, D. J. Chisholm, D. A. Cooper, diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: a cohort study, The Lanc., 353 (1999), 2093–2099. http://dx.doi.org/10.1016/S0140-6736(98)08468-2 doi: 10.1016/S0140-6736(98)08468-2
    [12] M. Shahzad, H. Chen, T. Akhtar, A. Rafi, M. S. Zafar, Y. T. Zheng, Human immunodeficiency virus: The potential of medicinal plants as antiretroviral therapy, J. Med. Virol, 94 (2022), 2669–2674. http://dx.doi.org/10.1002/jmv.27648 doi: 10.1002/jmv.27648
    [13] Y. Xiao, S. Tang, Y. Zhou, R. J. Smith, J. Wu, N. Wang, Predicting the HIV/AIDS epidemic and measuring the effect of mobility in mainland China, J. Theor. Biol., 317 (2013), 271–285. http://dx.doi.org/10.1016/j.jtbi.2012.09.037 doi: 10.1016/j.jtbi.2012.09.037
    [14] Z. Wang, X. Q. Zhao, A Within-Host virus model with periodic multidrug therapy, B. Math. Biol., 75 (2013), 543–563. http://dx.doi.org/10.1007/s11538-013-9820-y doi: 10.1007/s11538-013-9820-y
    [15] A. Jarne, D. Commenges, L. Villain, M. Prague, Y. Lévy, R. Thiébaut, Modeling CD4 + T cells dynamics in HIV-infected patients receiving repeated cycles of exogenous Interleukin 7, Ann. Appl. Stat., 11 (2017), 1593–1616. http://dx.doi.org/10.1214/17-AOAS1047 doi: 10.1214/17-AOAS1047
    [16] C. C. Espitia, M. A. Botina, M. A. Solarte, I. Hernandez, R. A. Riascos, J. F. Meyer, Mathematical model of HIV/AIDS considering sexual preferences under antiretroviral therapy, a case study in san juan de pasto, colombia, J. Comput. Biol., 29 (2022), 483–493. http://dx.doi.org/10.1089/cmb.2021.0323 doi: 10.1089/cmb.2021.0323
    [17] P. K. Roy, A. N. Chatterjee, D. Greenhalgh, Q. J. A. Khan, Long term dynamics in a mathematical model of HIV-1 infection with delay in different variants of the basic drug therapy model, Nonlinear Anal. RWA, 14 (2013), 1621–1633. http://dx.doi.org/10.1016/j.nonrwa.2012.10.021 doi: 10.1016/j.nonrwa.2012.10.021
    [18] Y. Jao, N. Erawaty, Dynamic study of the pathogen-immune system interaction with natural delaying effects and protein therapy, AIMS Math., 7 (2022), 7471–7488. http://dx.doi.org/10.3934/math.2022419 doi: 10.3934/math.2022419
    [19] N. Erawaty, N. Aris, A mathematical study of effects of delays arising from the interaction of anti-drug antibody and therapeutic protein in the immune response system, AIMS Math., 5 (2020), 7191–7213. http://dx.doi.org/10.3934/math.2020460 doi: 10.3934/math.2020460
    [20] Y. C. Yan, W. D. Wang, Global stability of a five-dimensional model with immune responses and delay, Discrete Cont. Dyn.-B, 17 (2017), 401–416. http://dx.doi.org/10.3934/dcdsb.2012.17.401 doi: 10.3934/dcdsb.2012.17.401
    [21] W. L. Duan, L. Lin, Noise and delay enhanced stability in tumor-immune responses to chemotherapy system, Chaos, Soliton. Fract., 148 (2021), 111019. http://dx.doi.org/10.1016/j.chaos.2021.111019 doi: 10.1016/j.chaos.2021.111019
    [22] H. Shu, L. Wang, Joint impacts of therapy duration, drug efficacy and time lag in immune expansion on immunity boosting by antiviral therapy, J. Biol. Syst., 25 (2017), 105–117. http://dx.doi.org/10.1142/s0218339017500061 doi: 10.1142/s0218339017500061
    [23] K. F. Wang, W. D. Wang, S. P. Song, Dynamics of an HBV model with diffusion and delay, J. Theor. Biol., 253 (2008), 36–44. http://dx.doi.org/10.1016/j.jtbi.2007.11.007 doi: 10.1016/j.jtbi.2007.11.007
    [24] W. Wang, X. N. Wang, Z. S. Feng, Time periodic reaction–diffusion equations for modeling 2-LTR dynamics in HIV-infected patients, Nonlinear Anal. RWA, 57 (2021), 103184. http://dx.doi.org/10.1016/j.nonrwa.2020.103184 doi: 10.1016/j.nonrwa.2020.103184
    [25] Q. Ge, X. Wang, L. Rong, A delayed reaction-diffusion viral infection model with nonlinear incidences and cell-to-cell transmission, Int. J. Biomath., 8 (2021), 14. http://dx.doi.org/10.1142/S179352452150100X doi: 10.1142/S179352452150100X
    [26] F. Maggiolo, M. Airoldi, A. Callegaro, C. Martinelli, A. Dolara, T. Bini, et al., CD4 cell-guided scheduled treatment interruptions in HIV-infected patients with sustained immunologic response to HAART, AIDS, 23 (2009), 799–807. http://dx.doi.org/10.1097/qad.0b013e328321b75e doi: 10.1097/qad.0b013e328321b75e
    [27] S. Arshad, D. Baleanu, J. Huang, Y. Tang, M. M. Al Qurashi, Dynamical analysis of fractional order model of immunogenic tumors, Adv. Mech. Eng., 8 (2016). http://dx.doi.org/10.1177/1687814016656704 doi: 10.1177/1687814016656704
    [28] Y. N. Xiao, H. Y. Miao, S. Y. Tang, H. L. Wu, Modeling antiretroviral drug responses for HIV-1 infected patients using differential equation models, Adv. Drug. Deliv. Rev., 65 (2013), 940–953. http://dx.doi.org/10.1016/j.addr.2013.04.005 doi: 10.1016/j.addr.2013.04.005
    [29] L. B. Rong, Z. L. Feng, A. S. Perelson, Emergence of HIV-1 drug resistance during antiretroviral treatment, B. Math. Biol., 69 (2007), 2027–2060. http://dx.doi.org/10.1007/s11538-007-9203-3 doi: 10.1007/s11538-007-9203-3
    [30] S. Tang, Y. Xiao, N. Wang, H. Wu, Piecewise HIV virus dynamic model with CD4+ T cell count-guided therapy: I, J. Theor. Biol., 308 (2012), 123–134. http://dx.doi.org/10.1016/j.jtbi.2012.05.022 doi: 10.1016/j.jtbi.2012.05.022
    [31] B. Tang, Y. N. Xiao, S. Sivaloganathan, J. H. Wu, A piecewise model of virus-immune system with effector cell-guided therapy, Appl. Math. Model., 47 (2017), 227–248. http://dx.doi.org/10.1016/j.apm.2017.03.023 doi: 10.1016/j.apm.2017.03.023
    [32] H. Shu, L. Wang, J. Watmough, Sustained and transient oscillations and chaos induced by delayed antiviral immune response in an immunosuppressive infection model, J. Math. Biol., 68 (2013), 477–503. http://dx.doi.org/10.1007/s00285-012-0639-1 doi: 10.1007/s00285-012-0639-1
    [33] N. L. Komarova, E. Barnes, P. Klenerman, D. Wodarz, Boosting immunity by antiviral drug therapy: A simple relationship among timing, efficacy, and success, Proc. Natl. Acad. Sci., 100 (2003), 1855–1860. http://dx.doi.org/10.1073/pnas.0337483100 doi: 10.1073/pnas.0337483100
    [34] S. L. Wang, F. Xu, Thresholds and bistability in virus-immune dynamics, Appl. Math. Lett., 78 (2018), 105–111. http://dx.doi.org/10.1016/j.aml.2017.11.002 doi: 10.1016/j.aml.2017.11.002
    [35] M. D. Bernardo, C. J. Budd, A. R. Champneys, P. Kowalczyk, A. B. Nordmark, G. O. Tost, et al., Bifurcations in nonsmooth dynamical systems, SIAM Rev., 50 (2008), 629–701. http://dx.doi.org/10.1137/050625060 doi: 10.1137/050625060
    [36] M. Guardia, T. M. Seara, M. A. Teixeira, Generic bifurcations of low codimension of planar Filippov systems, J. Differ. Equ., 250 (2011), 1967–2023. http://dx.doi.org/10.1016/j.jde.2010.11.016 doi: 10.1016/j.jde.2010.11.016
    [37] W. Qin, S. Tang, The selection pressures induced non-smooth infectious disease model and bifurcation analysis, Chaos. Solition. Fract., 69 (2014), 160–171. http://dx.doi.org/10.1016/j.chaos.2014.09.014 doi: 10.1016/j.chaos.2014.09.014
    [38] Y. Zhang, Y. Xiao, Global dynamics for a Filippov epidemic system with imperfect vaccination, Nonlinear Anal. Hybri., 38 (2020), 100932. http://dx.doi.org/10.1016/j.nahs.2020.100932 doi: 10.1016/j.nahs.2020.100932
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(601) PDF downloads(62) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog