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Abstract: This work investigated a piecewise immunosuppressive infection model that assessed
the effectiveness of implementing this therapeutic regimen once the effector cell count falls below
a specific threshold level by introducing a threshold strategy. The sliding mode dynamics, global
dynamics, and boundary equilibrium bifurcations of the Filippov system were examined based on
the global dynamics of the two subsystems. Our primary findings indicate that the HIV viral loads
and effector cell counts can be stabilized within the required predetermined level. This outcome
depends on the threshold level, immune intensity, and the initial values of the system. Therefore,
properly combining these key factors makes it possible to effectively curb the abnormal increase of
virus and keep the effector cells at a reliable level. This approach maximizes the controllable range
of the HIV. The proposed switching system incorporating pseudo-equilibrium exhibits three types of
equilibriums that could be bistable or tristable. It means there is a possibility of controlling the virus
after administering therapy if the immune intensity c is limited within the range of the post-treatment
control threshold and the elite control threshold when R0 > Rc1 > Rc2 > 1.
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1. Introduction

Epidemics have posed a significant threat to global public health over the years. The emergence
of COVID-19 in 2019 has had a profound impact on human health, the global economy, and
social behavior. Nevertheless, the effective addressing of disease transmission remains a challenge.
Mathematical modeling has emerged as a crucial tool in tackling this challenge. Numerous disease
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models have been developed in existing literature to study and control the spread of epidemics. It is
important to note that mathematical models based on ordinary differential equations (i.e., classical
derivatives) have their limitations and may not accurately capture biological phenomena. On the
other hand, fractional models can offer a relatively more accurate understanding of disease outbreaks.
Therefore, they are increasingly being used to simulate disease transmission with higher accuracy.
Relevant literature on fractional models can be found in [1–5]. In addition, as another epidemic that
endangers human health, the acute viral infection caused by the human immunodeficiency virus (HIV)
studied in this paper is also a hot issue in society. Many researchers aim to capture the dynamics
between viral and antiviral immune responses through mathematical modeling.

As we all know, HIV, which causes AIDS, can directly infect the immune system (mainly regulating
CD4+ T cells). The consequences of this impact are a continuous decrease in the number of CD4+

T cells, ultimately leading to the death of infected individuals due to immune system collapse. The
highly active antiretroviral therapy (HAART) currently in widespread use has been shown to improve
the survival probability of HIV patients and reduce the incidence rate [6, 7]. This therapy effectively
suppresses the plasma virus to levels below the standard detection for extended periods and even halts
viral evolution [8,9]. However, many complex problems arise after long-term use, such as obvious drug
resistance, and, due to the side effects of antiviral drugs, some AIDS patients have poor compliance
with antiviral therapy [10–12].

In fact, numerous mathematical models have been put forth to describe the dynamics of HIV
and elucidate various phenomena. The effect of antiviral therapy has been investigated by some
researchers [13–16]. In their work, Xiao et al. [13] analyzed the free terminal time optimal tracking
control problem to determine the optimal multidrug therapy for HIV, considering both the optimal time
frame and therapeutic strategies. The literature [17–24] incorporated the expansion delay of immune
cells to discuss the local and global stability of equilibrium solutions. In particular, [17] indicates that
such an unstable equilibrium will exhibit oscillatory solutions of increasing amplitude. In recent years,
realizing gradually the multiple effects of spatial heterogeneity and mobility, many scholars utilized
the reaction-diffusion equation to investigate the spatial effect of viral infection [23–25].

Several recent clinical studies have exhibited that structured treatment interruptions (STIs) can be
used for early treatment of HIV infection to achieve sustained specific immunity. For some chronically
infected individuals who may require lifelong medication, this may be a beneficial option as it can
help patients rebuild their immune system during periods of non-medication [26]. While numerous
mathematical models have been employed for simulating continuous therapy [27–29], there is scant
investigation on modeling structured interruptions in treatment.

To investigate strategies for STIs, Tang et al. [30] suggested a piecewise model for delineating
CD4 cell-guided STIs. The system provides an explanation for some controversial clinical research
results. In 2017, Tang et al. [31] proposed a mathematical model to describe the dynamics of the
interplay between the virus and the immune system. This model takes into consideration the structured
treatment guided by effector cells while also incorporating the use of combined antiretroviral therapy
and interleukin (IL)-2 treatment. However, they posit a linear growth pattern for the HIV virus [31],
which does not accurately reflect the true dynamics of the virus. Some clinical facts show that the
growth of HIV may have a saturation effect [32].

To better illustrate the non-linear evolutionary characteristics of the interplay between virus and
immune response, the immunosuppressive infection model was devised by Komarova et al. [33]. The
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model is given as follows: {
dy
dt = ry

(
1− y

K

)
−ay− pyz,

dz
dt =

cyz
1+ηy −bz−qyz,

(1.1)

The assumptions in model (1.1) are as follows:

h y and z represent the population sizes of the virus and immune cells, respectively. The virus
population is assumed to grow logistically: The replication rate at low viral loads, denoted as r,
is expected to decrease linearly with an increase in the viral load until it becomes zero at a viral
load K.

h c represents the immune intensity, while the proliferation term is denoted as cyz
/
(1+ηy). Thus,

the assessment of immune cell proliferation depends on both the immune cells and the virus. The
inhibitory effect of the virus on the proliferation of immune cells is represented by the variable η .

h The viral elimination rate, denoted as a, is a result of natural decay and antiretroviral therapy.
Immune cells, which have the ability to kill the virus at a rate pyz, also have a death rate b.
Furthermore, these immune cells can be inhibited by the virus at a rate qyz.

The study conducted in [33] aimed to investigate the optimal timing and duration of antiviral
treatment. The research elucidates the presence of bistability dynamics, wherein a stable state without
immunity coexists alongside a stable state with immunity. Meanwhile, this model demonstrates the
attainment of sustained immunity following the interruption of therapy. Additionally, Wang et al. [34]
expanded on this model and uncovered that bistability arises within the range delineated by the post-
treatment control threshold and the elite control threshold.

Following the pioneer works above [30–34], in this thesis, we extend model (1.1) by proposing
a Filippov immunosuppressive infection model with viral logistic growth and effector cell-guided
therapy. We have proposed the following model:

dy
dt = ry

(
1− y

K

)
−ay− pyz,

dz
dt =

cyz
1+ηy −bz−qyz,

}
z > ET ,

dy
dt = ry

(
1− y

K

)
−ay− pyz,

dz
dt =

cyz
1+ηy −bz−qyz+ εz,

}
z < ET .

(1.2)

We assume that the sole course of action is to administer antiretroviral therapy to the patient if the
number of effector cells exceeds the critical value ET . Conversely, when the count falls below the ET
threshold, a combination of antiretroviral therapy and immune therapy is concurrently implemented.
In this context, ε represents the rate at which effector cells grow as a result of immune therapy,
like the treatment of interleukin (IL)-2. As the interpretation of other parameters is consistent with
a model (1.1), all parameters in (1.2) remain nonnegative.

This paper presents a switching model with viral load logistic growth to analyze effector cell-guided
treatment and assess the threshold strategy’s effectiveness. The following section provides an overview
of the model, defining the switching system, and summarizing the dynamic behavior of the subsystems.
Additionally, in Section 3, there is a discussion on sliding mode and dynamics, exploring the presence
of a sliding domain and pseudo-equilibrium. The global dynamics of the proposed model are examined
in Section 4, while Section 5 focuses on the boundary equilibrium bifurcation of the system. Finally,
the paper concludes with discussions and biological implications.
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2. Filippov model and preliminaries

2.1. Model formulation

By rearranging the system (1.2), we can obtain a generic planar system in the form of Filippov
given by {

dy
dt = ry

(
1− y

K

)
−ay− pyz,

dz
dt =

cyz
1+ηy −bz−qyz+φεz,

(2.1)

with {
φ= 0, i f H (X) = z−ET > 0,
φ= 1, i f H (X) = z−ET < 0.

(2.2)

Systems (2.1) and (2.2) describe a Filippov immunosuppressive infection model where (2.1) is
considered a free system when φ = 0(i.e.,z > ET ), indicating that the patient receives antiretroviral
therapy. On the other hand, (2.1) as a control system when φ = 1(i.e.,z < ET ) reflects the simultaneous
utilization of antiretroviral therapy and immune therapy.

Let R2
+ =

{
X = (y,z)T

∣∣∣y > 0,z > 0
}
, S1 =

{
X ∈ R2

+

∣∣H(X)> 0
}
, and S2 =

{
X ∈ R2

+

∣∣H(X)< 0
}

with H(X) being a smooth scale function. For convenience, we further denote

FS1 (X) =
(

ry
(
1− y

K

)
−ay− pyz, cyz

1+ηy −bz−qyz
)T

,

FS2 (X) =
(

ry
(
1− y

K

)
−ay− pyz, cyz

1+ηy −bz−qyz+ εz
)T

.
(2.3)

We can rewrite model (1.2) to represent the Filippov system as follows:

Ẋ =

{
FS1(X), X ∈ S1,
FS2(X), X ∈ S2.

(2.4)

The discontinuous boundary Σ that separates the two areas can be represented as:

Σ =
{

X ∈ R2
+

∣∣H(X) = 0
}
. (2.5)

It is evident that R2
+ = S1 ∪ Σ ∪ S2. Henceforth, we shall designate the Filippov system (2.4) as

subsystem S1 when it is defined within region S1, and as subsystem S2 when defined within region S2.
Let

σ(X) = 〈HX(X),FS1(X)〉 · 〈HX(X),FS2(X)〉= FS1H(X) ·FS2H(X), (2.6)

where 〈·, ·〉 represents the standard scalar product and HX(X) denotes the gradient of H(X) that remains
nonvanishing on Σ. FSiH(X) = FSi ·gradH(X) is the Lie derivative of H with respect to the vector field
FSi (i = 1,2) at X . To analyze the direction of the vector field [FS1 (X) ,FS2 (X)], through a specific point
X ∈ Σ, we categorize the areas on Σ based on whether the vector field points towards it:

(a) Crossing region:
Σc = {X ∈ Σ|FS1H(X) ·FS2H(X)> 0} , (2.7)

(b) Sliding region:
Σs = {X ∈ Σ|FS1H(X)< 0,FS2H(X)> 0} , (2.8)
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(c) Escaping region:
Σe = {X ∈ Σ|FS1H(X)> 0,FS2H(X)< 0} . (2.9)

Throughout the paper, it is crucial to have a clear understanding of the definitions regarding all types
of equilibria in Filippov systems [35, 36].

Definition 2.1. If FS1(X∗) = 0,H(X∗) > 0, or FS2(X∗) = 0, H(X∗) < 0, then X∗ is defined as a real
equilibrium of the Filippov system (2.4). Analogously, if FS1(X∗) = 0, H(X∗) < 0, or FS2(X∗) =
0,H(X∗) > 0, then X∗ is a virtual equilibrium. Both the real and virtual equilibriums are named as
regular equilibria.

Definition 2.2. If X∗ is an equilibrium of the sliding mode of system (2.4), and satisfies (1−
λ )FS1(X∗)+λFS2(X∗) = 0,H(X∗) = 0 with 0 < λ < 1, then X∗ is a pseudo-equilibrium, where

λ =
〈HX(X∗),FS1 (X∗)〉

〈HX(X∗),FS1 (X∗)−FS2 (X∗)〉
. (2.10)

Definition 2.3. If FS1(X∗) = 0,H(X∗) = 0, or FS2(X∗) = 0,H(X∗) = 0, then X∗ is defined a boundary
equilibrium of Filippov system (2.4).

Definition 2.4. If FS1H(X∗) = 0 but F2
S1H(X∗) > 0

(
F2

S1H(X∗)< 0
)

, then X∗ is a visible (invisible)
Σ-fold point of FS1 . The same definition applies to FS2 .

Definition 2.5. If X∗ ∈ Σs and FS1H(X∗) = 0 or FS2H(X∗) = 0, then X∗ is defined a tangent point of
Filippov system (2.4).

2.2. Qualitative analysis of subsystems

The model equation for the free system S1 is as follows:{
dy
dt = ry

(
1− y

K

)
−ay− pyz,

dz
dt =

cyz
1+ηy −bz−qyz.

(2.11)

We can easily define a threshold R0 =
r
a . If R0 < 1, subsystem S1 has only one uninfected equilibrium

E1
0 = (0,0); if R0 > 1, then subsystem S1 also has an immune-free equilibrium E1

1 = (y1,0) =(
K
(
1− a

r

)
,0
)
.

We certainly get an equation for y

S1 (y) = qηy2− (c−q−bη)y+b = 0, (2.12)

It can be confirmed that S1 (y) = 0 has a sole solution when c = q+ bη ± 2
√

bqη . Denote c1 = q+
bη−2

√
bqη and c2 = q+bη +2

√
bqη . Thus, we have two possible positive roots

y11 =
B−

√
B2−4bqη

2qη
,y12 =

B+
√

B2−4bqη

2qη
, (2.13)

when c > c2, where B = c−q−bη . Substituting y11 or y12 into the first equation of (2.11), we get

z1i=
r
(
1− y1i

K

)
−a

p
=

a
[ r

a

(
1− y1i

K

)
−1
]

p
(i = 1,2) . (2.14)
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Let R1
i = r

a

(
1− y1i

K

)
(i = 1,2). Hence, the subsystem S1 has two immune equilibriums E11 =

(y11,z11) and E12 = (y12,z12) when R1
i > 1 and c > c2 are satisfied.

In fact, subsystem S1 has been extensively examined in a previous study. Therefore, we will provide
an overview of the main findings without delving into specific calculations. For more details on the
discussion of the stability analysis of this system, please consult [34]. Here, we define three thresholds
by referring [34], i.e., c∗=q+bη+2qηK

(
1− a

r

)
, c∗∗=q+bη+ b

K(1− a
r )
+qηK

(
1− a

r

)
, and threshold

Rc1 = 1+ r
√

bqη

aqηK . Moreover, we have the following

Lemma 2.1. If R0 < 1, the infection-free equilibrium E1
0 is globally asymptotically stable (GAS). If

R0 > 1, we have E1
1 as locally asymptotically stable (LAS) when 0 < c < c2 or c2 < c < c∗∗, and E1

1 is
unstable when c > c∗∗. The immune equilibrium E11 is LAS when Rc1 > R0 > 1 and c > c∗∗ or R0 > Rc1

and c2 < c. Suppose R0 > Rc1 > 1 and c2 < c < c∗, then positive equilibrium E11 is LAS and E12 is a
unstable saddle.

Remark 2.1. For R0 > Rc1 > 1 and c2 < c < c∗∗, subsystem S1 has bistable behavior, i.e., E1
1 and E11

are bistable but the equilibrium E12 is an unstable saddle. In other cases, subsystem S1 does not exhibit
bistable behavior. Note that the post-treatment control threshold is represented by c2, while the elite
control threshold is denoted as c∗∗. The range between c2 and c∗∗ is referred to as the bistable interval.

Dynamical analysis of the subsystem S1 is presented in Table 1.

Table 1. Dynamical analysis of the subsystem S1.

Condition E1
0 E1

1 E11 E12 subsystem S1

R0 < 1 GAS − − − Asymptotically tends to E1
0

R0 > 1,0 < c < c2 US LAS − − Asymptotically tends to E1
1

R0 > Rc1 > 1,c2 < c < c∗∗ US LAS LAS US Bistable
R0 > Rc1 > 1,c∗∗ < c < c∗ US US LAS US Asymptotically tends to E11

R0 > Rc1 > 1,c∗ < c US US LAS − Asymptotically tends to E11

Rc1 > R0 > 1,0 < c < c∗∗ US LAS − − Asymptotically tends to E1
1

Rc1 > R0 > 1,c∗∗ < c US US LAS − Asymptotically tends to E11

Control system S2 gives {
dy
dt = ry

(
1− y

K

)
−ay− pyz,

dz
dt =

cyz
1+ηy −bz−qyz+ εz.

(2.15)

The basic reproduction number is also R0 = r
a for subsystem S2. Similarly, we can get uninfected

equilibrium E2
0 = (0,0) and the immune-free equilibrium E2

1 =
(
K
(
1− a

r

)
,0
)
. Thus, we use E1

0 =
E2

0 = E0 and E2
1 = E1

1 = E1 in the following.
Using the same method as subsystem S1, we can derive the following quadratic equation for y

S2 (y) = qηy2− (c−q−bη + εη)y+b− ε = 0. (2.16)
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Let c3 = q+ (b− ε)η − 2
√

qη (b− ε) and c4 = q+ (b− ε)η+2
√

qη (b− ε), then there are two
possible positive roots

y2i =
D∓

√
D2−4qη (b− ε)

2qη
(i = 1,2) , (2.17)

when c > c4, where D = c−q−bη + εη . It follows that

z21 =
a
[ r

a

(
1− y21

K

)
−1
]

p
,z22 =

a
[ r

a

(
1− y22

K

)
−1
]

p
. (2.18)

In fact, we can obtain y21 < y11 < y12 < y22 by doing a simple calculation. Now, we define R2
i =

r
a

(
1− y2i

K

)
(i = 1,2). For subsystem S2, we have two positive equilibriums E21 = (y21,z21) and E22 =

(y22,z22) when c > c4, b > ε and R2
i > 1(i = 1,2) hold. Furthermore, following a similar approach to

subsystem S1, we can also define thresholds c† = q+(b− ε)η +2qηK
(
1− a

r

)
, c†† = q+(b− ε)η +

b−ε

K(1− a
r )
+qηK

(
1− a

r

)
, and Rc2 = 1+ r

√
qη(b−ε)
aqηK . Meanwhile, we have the following results about the

behaviors of subsystem S2 by using the consistent method with S1.

Lemma 2.2. Suppose R0 < 1, the equilibrium E2
0 is GAS. Suppose R0 > 1, then E2

1 is LAS when
0< c< c4 or c4 < c< c††, and E2

1 is unstable when c> c††. If Rc2 >R0 > 1 and c> c†† or R0 >Rc2 and
c4 < c, the subsystem S2 has a locally asymptotically stable immune equilibrium E21; if R0 > Rc2 > 1
and c4 < c < c†, then positive equilibrium E21 is LAS and E22 is an unstable saddle.

Dynamical analysis of the subsystem S2 is shown in Table 2.

Table 2. Dynamical analysis of the subsystem S2.

Condition E2
0 E2

1 E21 E22 subsystem S2

R0 < 1 GAS − − − Asymptotically tends to E2
0

R0 > 1,0 < c < c4 US LAS − − Asymptotically tends to E2
1

R0 > Rc2 > 1,c4 < c < c†† US LAS LAS US Bistable
R0 > Rc2 > 1,c†† < c < c† US US LAS US Asymptotically tends to E21

R0 > Rc2 > 1,c† < c US US LAS − Asymptotically tends to E21

Rc2 > R0 > 1,0 < c < c†† US LAS − − Asymptotically tends to E2
1

Rc2 > R0 > 1,c†† < c US US LAS − Asymptotically tends to E21

3. Sliding mode dynamics

In this section, we will provide a brief overview of the definitions pertaining to the sliding segment
and crossing segment discussed in Section 2. We have σ (X) = 〈HX(X),FS1(X)〉 · 〈HX(X),FS2(X)〉.
Here, HX(X) =

(
∂H
∂y ,

∂H
∂ z

)
is the non-vanishing gradient on the discontinuity boundary Σ, where H =

z−ET . Therefore, we denote

σ (X) =

(
cyz

1+ηy
−bz−qyz

)(
cyz

1+ηy
−bz−qyz+ εz

)
, (3.1)
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and calculating the inequality σ (X) < 0 obtains y21 < y < y11 and y12 < y < y22. Naturally, we can
verify that there are 〈FS1 ,HX(X)〉= cyz

1+ηy−bz−qyz < 0 and 〈FS2,HX(X)〉= cyz
1+ηy−bz−qyz+ εz > 0

for y21 < y < y11 or y12 < y < y22. Therefore, the Filippov system (2.4) always comprises two sliding
segments, which can be obtained as

Σ
1
s =

{
(y,z) ∈ R2

+

∣∣y21 < y < y11,z = ET
}
,Σ2

s =
{
(y,z) ∈ R2

+

∣∣y12 < y < y22,z = ET
}
. (3.2)

Naturally, the crossing region we can get is Σc =
{
(y,z) ∈ R2

+

∣∣0 < y < y21, or y11 < y < y12, or
y > y22, z = ET}. Notably, every trajectory within the segment

{
(y,z) ∈ R2

+

∣∣0 < y < y21 or y >
y22, z = ET}will intersect the z = ET line, moving from region S1 to S2. Similarly, the trajectory within
the segment

{
(y,z) ∈ R2

+

∣∣y11 < y < y12,z = ET
}

will cross the z = ET line, transitioning from region
S2 to S1.

The Filippov convex method is employed in this study to analyze the sliding domain and sliding
mode dynamics of the switching system (2.4). According to Definition 2.2, we have

dX
dt

= FS (X) = (1−λ )FS1 (X)+λFS2 (X) . (3.3)

By a straightforward calculation, one can get

〈HX ,FS1 (X)〉= cyz
1+ηy

−bz−qyz,〈HX ,FS1 (X)−FS2 (X)〉=−εz. (3.4)

It follows that

λ =

cyz
1+ηy −bz−qyz

−εz
=

qηy2− (c−q−bη)y+b
ε (1+ηy)

. (3.5)

Therefore, the dynamic equation of the switching system (2.4) on the sliding mode domain is{ dy
dt = ry

(
1− y

K

)
−ay− pyET ,

dz
dt = 0.

(3.6)

There exists one positive equilibrium Ec= (yc,ET ), where yc = K
(

1− a+pET
r

)
. We can easily obtain

that r > a+ pET . According to Definition 2.2, the equilibrium Ec is referred to as a pseudo-equilibrium.
When y21 < yc < y11, we have

y11− yc =
rB− r

√
B2−4qbη−2qηKr+2qηK (a+ pET )

2qηr
> 0, (3.7)

and

yc− y21 =
2qηK [r− (a+ pET )]− r

(
D−

√
D2−4qη (b− ε)

)
2qηr

> 0. (3.8)

Clearly, y21 < yc < y11 is equivalent to

r−a
p
−

r
(

B−
√

B2−4qbη

)
2qpηK

< ET <
r−a

p
−

r
(

D−
√

D2−4qη (b− ε)
)

2qpηK
, (3.9)
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(i.e.,z11 < ET < z21). Thus, the equilibrium Ec is located on the sliding segment Σ1
s when

z11 < ET < z21. It can be readily confirmed that dy
/

dt < 0 holds on the segment Σ2
s . Similariy, if

y12 < yc < y22, we conclude that

r−a
p
−

r
(

D+
√

D2−4qη (b− ε)
)

2qpηK
< ET <

r−a
p
−

r
(

B+
√

B2−4qbη

)
2qpηK

, (3.10)

(i.e.,z22 < ET < z12). Under this circumstance, the pseudo-equilibrium Ec is located on the sliding
segment Σ2

s = {(y,z)|y12 < y < y22,z = ET} for z22 < ET < z12, meanwhile, we can get dy
/

dt > 0
holds on the segment Σ1

s .

Theorem 3.1. If z11< ET < z21, system(2.4) has one pseudo-equilibrium Ec=
(

K
(

1− a+pET
r

)
,ET

)
on the sliding segment Σ1

s , which is always LAS when it exists; analogously, if z22 < ET < z12, then
pseudo-equilibrium Ec is LAS on the sliding segment Σ2

s .

Proof. Without loss of generality, we only consider the proof for the first case. Let y′=ry
(
1− y

K

)
−ay−

pyz .
= g(y). Substituting H = z−ET = 0 into the g(y), we will get g(y) = − r

K y2 +(r−a− pET )y.
Based on the function g(y), we know g(y21) > 0,g(y11) < 0. Further, we note that y′=g(y), then
g′ (y) = −2r

K y+(r−a− pET ). Naturally g′ (yc) = −2r
K ·K

(
1− a+pET

r

)
+(r−a− pET ) = −r + a+

pET < 0, which implies that Ec is LAS. Thus, the equilibrium Ec is locally stable provided it is feasible.
Likewise, we can use a similar method to prove Ec is LAS on the Σ2

s .

4. Global dynamics of system (2.3)

This part focuses on examining the global dynamics of a switching system. To certify the
global stability of the equilibrium of the system (2.4), it is necessary to rule out the presence of
limit cycles. Firstly, we let the Dulac function be V (y,z)=1

/
yz. For subsystem Si(i = 1,2), this

gives ∂

∂y

(
V (y,z) dy

dt

)
+ ∂

∂ z

(
V (y,z) dz

dt

)
=− r

zK < 0. Based on the Dulac-Bendixson criterion, it can be
concluded that there are no limit cycles present. Consequently, we can derive the following Lemma 4.1.
Lemma 4.1. There exists no limit cycle that is entirely situated within the region Si(i = 1,2).

Next, we will exclude limit cycles that intersect with the sliding segment or surrounding the whole
sliding segment. Note that this exclusion is necessary for us to follow up with better explanations.
Lemma 4.2. There does not exist a limit cycle that includes a portion of the sliding segment.
Proof. We need to establish the proofs of Lemma 4.2 for the cases ET > z21, z11 < ET < z21, z12 <

ET < z11, z22 < ET < z12, and 0 < ET < z22.
If ET > z21, the absence of pseudo-equilibrium is deduced from the demonstration of Theorem 3.1,

which indicates the presence of dy
/

dt < 0 on the sliding segments Σi
s (i = 1,2) under such

circumstances. Therefore, any trajectory reaching Σ1
s or Σ2

s will approach the boundary points (y21,ET ),
and E21 is a real stable node. Note that (y21,ET ) is visible Σ-fold points of subsystem S2 (see
Definition 2.4 in Section 2). Thus, the trajectory initiating at (y21,ET ) tends to either approach the
stable state E21 directly or in a spiral manner [shown in Figure 1(a)], without touching the switching
line again. Therefore, there are no closed orbits that include any part of the sliding segment.

If z11 < ET < z21, we know that the pseudo-equilibrium Ec is LAS on the segment Σ1
s (see

Theorem 3.1 in Section 3) under this scenario, which means the nonexistence of a limit cycle
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that contains part of the sliding segment Σ1
s . Beyond that, there is dy

/
dt < 0 on the segment

{(y,z)|y12 < y < y22,z = ET} when z11 < ET < z21. This implies that the orbits reaching sliding
segment Σ2

s firstly slide towards the boundary point (y12,ET ), which is a visible Σ-fold point as well,
enter into the S1, and then tend to Ec. Therefore, there exists no limit cycle incorporating any portion
of the sliding segment.

If z12 < ET < z11, there exists one real stable equilibrium E11 in region S1. Thus, we can employ a
way similar to that applied in the first case to demonstrate the conclusion [shown in Figure 1(b)].

If z22 < ET < z12, we have that pseudo-equilibrium Ec is LAS on the sliding segment Σ2
s . We get

dy
/

dt > 0 on the segment Σ1
s in this case. Clearly, the proof process is similar to the second case, so

we have omitted here.
If 0 < ET < z22, we know that there is no pseudo-equilibrium, and dy

/
dt > 0 holds on the sliding

segments Σi
s (i = 1,2), since there exists a stable equilibrium E1, and (y22,ET ) is visible Σ-fold point.

Thus, the orbits starting from segments Σi
s (i = 1,2) move from the left to the right along the sliding

line to the boundary point (y22,ET ). Then, they proceed into region S1 and eventually converge to
E1, without experiencing hitting the switching line z = ET again. Thus, the proof for Lemma 4.2 is
thereby completed.

Significantly, the following lemma is similar to previous studies [37, 38], which is obtained by
constructing a cycle around the sliding segment and then using the method of counter-evidence to
draw a contradiction.
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Figure 1. The blue lines represent possible closed tracks that contain a portion of the sliding segment.

Lemma 4.3. There exists no closed orbit containing the whole sliding segment.
Combined with analysis in Section 2, we obtain the two sets of key parameters, i.e., R0,Rc1,Rc2 ,

and c2,c4,c∗,c∗∗,c†,c††. They are the crucial elements that determine the dynamic behavior of the
system (2.4). Next, we will discuss the global dynamics of the proposed piecewise system based on
the relationships between the parameters mentioned earlier. Considering that there exists only one
uninfected equilibrium E0 for both subsystem S1 and S2 when R0 < 1, we will not delve further into it.
Here, we will focus on the following situations:
Case(a): R0 > Rc1 > Rc2 > 1,
Case(b): Rc1 > Rc2 > R0 > 1,
Case(c): Rc1 > R0 > Rc2 > 1.
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4.1. The global dynamics for Case (a)

The global dynamics for Case (a) are the main focus of this section. Note that the analysis methods
for the three cases are analogous, thus we have omitted detailed proofs for the other cases. According to
the results in Section 2, it can be seen that the relationship between immune intensity c and parameters
c2,c4,c∗,c∗∗,c†,c†† have a significant impact on the dynamics of the system (2.4). Through direct
analysis, we will consider the under situations:

c4 < c < c2;c2 < c < c††;c†† < c < c∗∗;c∗∗ < c < c†;c† < c < c∗;c > c∗. (4.1)

To understand the dynamics of the system (2.4) more comprehensively, we present the stabilities
of various equilibriums completely in Table 3, considering that the dynamics of the system also
depend on the relationship between threshold ET and z11,z12,z21, and z22. Thus, we have the following
threshold levels:

ET > z21;z11 < ET < z21;z12 < ET < z11;z22 < ET < z12;0 < ET < z22. (4.2)

Table 3. The stability of equilibrium points for subsystem S1 and S2 when R0>Rc1>Rc2> 1.

Condition E1
1 = E2

1 = E1 E11 E12 E21 E22

c4 < c < c2 LAS − − LAS US

c2 < c < c†† LAS LAS US LAS US

c†† < c < c∗∗ LAS LAS US LAS US

c∗∗ < c < c† US LAS US LAS US

c† < c < c∗ US LAS US LAS −

c∗ < c US LAS − LAS −

4.1.1. Case(a1) : ET > z21

In such a case, if equilibriums E11,E12,E21, and E22 exist, it can be noted that E11 and E12 are
virtual, whereas E21 and E22 are real, with E21 being LAS. We will examine the following six cases in
the light of the connections between c and c4,c2,c††,c∗∗,c†,c∗.

Subcase (i): Assume c4 < c < c2, here we know E1 is LAS. Note that equilibria E11 and E12 do
not exist under this scenario. All the orbits in S1 will reach the switching line z = ET within a finite
amount of time, then firstly enter S2 and ultimately approach either E21 or E1 [shown in Figure 2(a)],
contingent upon their initial positions. Thus, the E21 and E1 are bistable in this particular scenario.

Subcase (ii): Assume c2 < c < c††, we have immune-free equilibrium E1 is LAS in subsystem S2.
According to Lemma 4.2, there exists dy

/
dt < 0 on the Σi

s (i = 1,2) when ET exceeds z21. Therefore,
all the orbits of subsystem S1 will slide from right to left to the (y21,ET ) or (y12,ET ) when they reach
the sliding segments, and finally tend to E21. Hence, E21 and E1 are bistable [illustrated in Figure 2(b)].
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Figure 2. Dynamical behavior of the system (2.4) for Case(a1).

Note: The purple and blue lines represent trajectories that finally tend to the equilibriums E21 and E1, respectively.
Parameters are: r = 6, K = 6, p = 1, q = 1, b = 1 and (a)η = 0.55, a = 3, ε = 0.12, c = 2.9, ET = 2.5; (b)η = 0.5,
a = 3, ε = 0.12, c = 2.92, ET = 2.8; (c)η = 0.57, a = 3, ε = 0.13, c = 3.4, ET = 2.8; (d)η = 0.75, a = 2.68, ε = 0.1,
c = 4.55, ET = 3.3; (e)η = 0.75, a = 2.67, ε = 0.1, c = 6.68, ET = 4; ( f )η = 0.9, a = 3, ε = 0.1, c = 6.97, ET = 4.

Subcase (iii): Assume c†† < c < c∗∗, here we have equilibrium E1, real equilibrium E21 are LAS. In
this subcase, system (2.4) has the same bistable behavior as the previous case [shown in Figure 2(c)].

Subcase (iv): Assume c∗∗ < c < c†, we get that E1 is US, and there is only one stable
equilibrium E21. Thus, any orbit starting from region S1 firstly crosses the switching line z = ET and
enters S2, following the dynamics of S2 tends to E21. Additionally, Lemmas 4.1–4.3 confirms the
absence of a limit cycle, implying that all trajectories ultimately converge to E21. Therefore, it can be
concluded that the equilibrium E21 is GAS [shown in Figure 2(d)].

Subcase (v): Assume c† < c < c∗. In such a subcase, we know equilibrium E22 does not exist. In
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consideration of the nonexistence of the limit cycle, E21 becomes a glocally stable equilibrium [shown
in Figure 2(e)].

Subcase (vi): Assume c > c∗. Under this scenario, we know equilibria E12 and E22 do not exist.
That is, there exists not any other stable equilibrium other than E21. Considering that the existence of
the limit cycle is excluded, endemic equilibrium E21 is GAS [shown in Figure 2(f)]. The dynamics of
the system (2.4) can be summarized below when ET > z21.
Theorem 4.1. Suppose ET > z21, it can be deduced that both E21 and E1 are bistable for c4 < c <
c2,c2 < c < c††,c†† < c < c∗∗; positive equilibrium E21 is GAS for c∗∗ < c < c†, c† < c < c∗ and
c > c∗.

4.1.2. Case(a2): z11 < ET < z21

In such a case, if equilibriums E11,E12,E21, and E22 exist, we have E11, E12, E21 are virtual,
while E22 is real but US. Meanwhile, our analysis reveals the occurrence of sliding mode and the
emergence of pseudo-equilibrium within the sliding segment Σ1

s = {(y,z)|y21 < y < y11,z = ET}. By
Theorem 3.1, we know that the pseudo-equilibrium Ec is LAS when it exists. Likewise, we will analyze
the following six scenarios.

Subcase (i): Assume c4 < c< c2. We know equilibria E11 and E12 do not exist, then we have omitted
the description for this case.

Subcase (ii): Assume c2 < c < c††. In such a subcase, E1 is LAS in the subsystem S2 and the
pseudo-equilibrium will appear on the sliding segment Σ1

s . Thus, the partial orbits starting from region
S1 will follow the dynamics of S1 to the sliding segment {(y,z)|y21 < y < yc,z = ET}, whereas partial
trajectories starting from subsystem S2 will arrive at the segment {(y,z)|yc < y < y11,z = ET} along
the S2, depending on the initial point, and both types of orbits will eventually converge toward pseudo-
equilibrium Ec. Therefore, we conclude that Ec and E1 are bistable [shown in Figure 3(a)].

Subcase (iii): Assume c†† < c < c∗∗. In such a subcase, we get that both pseudo-equilibrium Ec
on the sliding segment Σ1

s and equilibrium E1 are LAS. Thus, we can obtain the coincident conclusion
by using similar ways of discussion. That is, the orbits will either go to Ec or tend to E1 along the
subsystem S1 and S2, respectively [shown in Figure 3(b)].

Subcase (iv): Assume c∗∗ < c < c†. In such a subcase, Ec is the only stable equilibrium for the
system (2.4). Our findings reveal that all trajectories intersecting with the line z = ET and following
the sliding segment Σ1

s reach the pseudo-equilibrium Ec. Considering that a limit cycle does not exist
for the entire system, we can conclude that Ec is GAS [illustrated in Figure 3(c)].

Subcase (v): Assume c† < c < c∗. In such a subcase, we know E22 does not exist and the pseudo-
equilibrium Ec is LAS. Here, we have immune-free equilibrium E1 is US. Equally, system (2.4) does
not exist any limit cycle. Then the equilibrium Ec is GAS [shown in Figure 3(d)].

Subcase (vi): Assume c > c∗. Under this condition, equilibria E12 and E22 do not exist. There
is only one stable equilibrium Ec in the switching system (2.4). Considering the exclusion of closed
orbit, then Ec is GAS [illustrated in Figure 3(e)]. Hence, we summarize the aforementioned conclusion
of system (2.4) to the following when z11 < ET < z21.
Theorem 4.2. Suppose z11 < ET < z21, we can conclude that system (2.4) has bistable behavior,
i.e., immune-free equilibrium E1 and pseudo-equilibrium Ec are LAS for c2 < c < c††,c†† < c < c∗∗;
equilibrium Ec is GAS for c∗∗ < c < c†, c† < c < c∗ and c > c∗.
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Figure 3. Dynamical behavior of the system (2.4) for Case(a2).

Note: The purple and blue lines represent trajectories that finally tend to the equilibriums Ec and E1, respectively.
Parameters are: r = 6, K = 6, p = 1, q = 1, b = 1 and (a)η = 0.5, a = 3, ε = 0.12, c = 3, ET = 2.1; (b)η = 0.75,
a = 3, ε = 0.32, c = 3.9, ET = 2.5; (c)η = 0.75, a = 2.78, ε = 0.11, c = 4.48, ET = 2.8; (d)η = 0.75, a = 2.67, ε = 0.1,
c = 6.7, ET = 2.95; (e)η = 0.85, a = 3.02, ε = 0.15, c = 6.96, ET = 2.8.

4.1.3. Case(a3): z12 < ET < z11

In such a case, if equilibriums E11,E12,E21,E22 exist, we get E12 and E21 are virtual, but E11 and
E22 are real, where E11 is LAS in the S1. We prove the existence of sliding mode but there is no pseudo-
equilibrium. Next, we will analyze the stability of equilibria based on the connections between c and
c4,c2,c††,c∗∗,c†,c∗.

Subcase (i): Assume c4 < c < c2. Under this scenario, it follows from Section 2 that the two
equilibria E11 and E12 are not feasible. So we can omit the description for this case.

Subcase (ii): Assume c2 < c < c††. In such a subcase, E1 is LAS and E11 is a real and stable
equilibrium, since subsystem S1 has only one stable endemic state. Thus, trajectories initiating from
S1 will intend to approach the equilibrium E11. In this scenario, the endemic equilibrium E11 can
coexist with the immune-free equilibrium E1. That is, system (2.4) has bistable behavior [shown in
Figure 4(a)].

Subcase (iii): Assume c†† < c < c∗∗. Regarding the presence and stability of the equilibriums,
the dynamics exhibited by subsystems S1 and S2 resemble those of the former scenario [shown in
Figure 4(b)]. Thus, we get that E11 and E1 are bistable for the Filippov system (2.4).

Subcase (iv): Assume c∗∗ < c < c†. In this subcase, the equilibrium E21 is virtual and the
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system (2.4) only exhibits one stable endemic equilibrium E11. As there is no limit cycle, then E11
is GAS [shown in Figure 4(c)].

Subcase (v): Assume c† < c < c∗. Analogously, there exists only one stable equilibrium point E11
in subsystem S1. It should be noted that the endemic equilibrium E11 functions as an attractor. We
have excluded the existence of limit cycles. Consequently, any orbit starting from region S1 or S2 will
approach the equilibrium point E11 [shown in Figure 4(d)]. Thus, the equilibrium E11 is GAS.

Subcase (vi): Assume c > c∗. In this scenario, since the equilibria E12 and E22 do not exist, we
have omitted the description for this case and we get the following conclusion.
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Figure 4. Dynamical behavior of the system (2.4) for Case(a3).

Note: The purple and blue lines represent trajectories that finally tend to the equilibriums E11 and E1, respectively.
Parameters are: r = 6, K = 6, p = 1, q = 1, b = 1 and (a)η = 0.85, a = 3.02, ε = 0.15, c = 3.96, ET = 1.6; (b)η = 0.65,
a = 3, ε = 0.12, c = 3.7, ET = 1; (c)η = 0.75, a = 2.78, ε = 0.13, c = 4.48, ET = 1.1; (d)η = 0.75, a = 2.67, ε = 0.1,
c = 6.7, ET = 2.

Theorem 4.3. Suppose z12 < ET < z11, we can conclude that immune-free equilibrium E1 and endemic
equilibrium E11 are bistable for c2 < c< c†† and c†† < c< c∗∗; equilibrium E11 is GAS for c∗∗< c< c†

and c† < c < c∗.

4.1.4. Case(a4): z22 < ET < z12

In such a case, if equilibriums E11,E12,E21, and E22 exist, we have E21 is virtual, while E11, E12,
and E22 are real. Note that both equilibriums E12 and E22 are US. Furthermore, the sliding mode does
exist, and the pseudo-equilibrium Ec is LAS on the Σ2

s . A similar discussion works for z22 < ET < z12.
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Subcase (i): Assume c4 < c < c2, we know equilibria E11 and E12 do not exist according to
Section 2. Therefore, we can ignore the explanation of this situation.

Subcase (ii): Assume c2 < c < c††. In such a subcase, E1 is LAS and E11 is real and stable in S1. As
mentioned above, the pseudo-equilibrium Ec is LAS. From the dynamics of subsystems S2 and S1, it
can be deduced that the orbits will either directly reach the E11, E1 or firstly arrive at the line z = ET on
the segment {(y,z)|y12 < y < y22,z = ET}, then slide to the Ec along sliding segment Σ2

s , depending on
the initiating points. Hence, as is shown in Figure 5(a), the equilibriums E11, Ec, and E1 are tristable.

Subcase (iii): Assume c†† < c < c∗∗. In such a subcase, we get that the equilibrium E1 is LAS, and
there exist two equilibria E11 and Ec, which are locally stable in their respective regions. Thus, we can
conclude that the dynamic behaviors in this scenario are consistent with the former subcase. That is,
system (2.4) has tristable behavior in this case [shown in Figure 5(b)].

Subcase (iv): Assume c∗∗ < c < c†. Note that the locally stable equilibrium E21 is virtual, then
cannot be attained. Part of the trajectories starting from subsystem S1 will approach the equilibrium
E11, while certain trajectories will collide on the switching line at finite time, and the locally stable
pseudo-equilibrium Ec appears ultimately on the segment Σ2

s = {(y,z)|y12 < y < y22,z = ET}. Hence,
they are bistable for the switching system (2.4) [shown in Figure 5(c)].

Subcase (v): Assume c† < c < c∗. We know equilibrium E22 does not exist, then we rule this out.
Subcase (vi): Assume c > c∗. In such a subcase, we know equilibria E12 and E22 do not exist, so we

have omitted the description in this case as well. To sum up, we can derive the conclusion as follows.
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Figure 5. Dynamical behavior of the system (2.4) for Case(a4).

Note: The trajectories represented by the purple, green, and blue lines finally tend to the equilibrium points E11, Ec, and E1,
respectively. Parameters are: r = 6, K = 6, p = 1, q = 1, b = 1, and (a)η = 0.85, a = 3.02, ε = 0.15, c = 3.96, ET = 0.9;
(b)η = 0.75, a = 3, ε = 0.32, c = 3.6, ET = 1; (c)η = 0.85, a = 2.78, ε = 0.12, c = 4.9, ET = 0.2.

Theorem 4.4. Suppose z22 < ET < z12, we can conclude that the real equilibrium E11, pseudo-
equilibrium Ec, and the immune-free equilibrium E1 are tristable for c2 < c < c†† and c†† < c < c∗∗;
immune-free equilibrium E11 and pseudo-equilibrium Ec are bistable for c∗∗ < c < c†.

4.1.5. Case(a5): 0 < ET < z22

In such a case, if equilibriums E11,E12,E21, and E22 exist, we have E21 and E22 are virtual, but E11,
E12 are real, where E11 is LAS in the S1. Under this scenario, there is no pseudo-equilibrium for the
Filippov system (2.3). Subsequently, we will analyze the following situations based on the relationships
between immune intensity c and c4,c2,c††,c∗∗,c†,c∗.
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Subcase (i): Assume c4 < c < c2. In this condition, we get that equilibria E11 and E12 do not exist
on the basis of the discussion of Section 2. Note that the locally stable equilibrium E21 is virtual. Thus,
there is not any other stable equilibrium besides E1, as all the possible limit cycles have been excluded.
Hence, we have E1 is GAS [shown in Figure 6(a)].

Subcase (ii): Assume c2 < c < c††. In such a subcase, E1 is LAS and E11 is a real and
stable equilibrium. However, E21 is virtual in S1. Thus, positive equilibrium E11 and immune-free
equilibrium E1 are bistable for c2 < c < c†† being satisfied [shown in Figure 6(b)].

Subcase (iii): Assume c†† < c < c∗∗. We know that equilibria E11 and E1 are LAS as well. Thus, the
dynamics of this case are similar to the former, i.e., the bistable behavior occurs [shown in Figure 6(c)].

Subcase (iv): Assume c∗∗ < c < c†. In such a subcase, note that locally stable equilibrium E21 is
virtual and then cannot be attained. There exists only one stable equilibrium point E11 in subsystem
S1. As there is no limit cycle, we obtain that the equilibrium E11 is GAS [illustrated in Figure 6(d)].

Subcase (v): Assume c† < c < c∗. In such a subcase, we know that equilibrium E22 does not exist,
so we have ignored the description of this situation.

Subcase (vi): Assume c > c∗. In such a subcase, both E12 and E22 do not exist, therefore, the
explanation for this case is omitted. Consequently, we arrive at the subsequent conclusion.
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Figure 6. Dynamical behavior of the system (2.4) for Case(a5).

Note: The purple and blue lines represent trajectories that finally tend to the equilibriums E11 and E1, respectively.
Parameters are: r = 6, K = 6, p = 1, q = 1, b = 1, and (a)η = 0.65, a = 3.02, ε = 0.15, c = 3.1, ET = 0.6; (b)η = 0.85,
a = 3.02, ε = 0.15, c = 3.7, ET = 0.8; (c)η = 0.65, a = 3.02, ε = 0.15, c = 3.7, ET = 0.08; (d)η = 0.75, a = 2.78,
ε = 0.13, c = 4.5, ET = 0.04.

Theorem 4.5. Suppose 0 < ET < z22, we can conclude that immune-free equilibrium E1 is GAS for
c4 < c < c2; the real equilibrium E11 and immune-free equilibrium E1 are bistable for c2 < c < c††

and c†† < c < c∗∗; the equilibrium E11 is GAS for c∗∗ < c < c†.
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In fact, extensive discussions have been conducted on the stability of various equilibriums for the
switching system (2.4) under Case(a). Furthermore, Table 4 provides a comprehensive summary of the
global dynamics associated with these specific cases.

5. Boundary equilibrium bifurcation

Notably, the collision of pseudo-equilibrium, tangent point, and regular equilibrium (or tangent
point and regular equilibrium) in switching systems occurs when ET reaches a critical value, leading
to boundary equilibrium bifurcations on the discontinuity surface [as shown in Figure 7]. The
understanding and analysis of these boundary equilibrium bifurcations are crucial in studying the
dynamical behavior of the Filippov system. To verify the boundary equilibrium bifurcation, we select
ET as the bifurcation parameter while keeping all other parameters constant. Detailed explanations of
the boundary equilibrium and the tangent point are shown in Definitions 2.3 and 2.5.

Boundary equilibrium of the Filippov system (2.4) satisfies

ry
(

1− y
K

)
−ay− pyz = 0,

cyz
1+ηy

−bz−qyz+φεz = 0,z−ET = 0, (5.1)

where φ = 0 or φ = 1. By solving the equations provided in (5.1), it is possible to obtain four potential
boundary equilibria

E11
B = (y11,ET ) ,E12

B = (y12,ET ) ,E21
B = (y21,ET ) ,E22

B = (y22,ET ) . (5.2)

Tangent points of the Filippov system (2.4) satisfy

cyz
1+ηy

−bz−qyz+φεz = 0,z−ET = 0. (5.3)

Thus, the potential tangent points can be denoted as

T11 = (y11,ET ) ,T12 = (y12,ET ) ,T21 = (y21,ET ) ,T22 = (y22,ET ) , (5.4)

which are the solutions of (5.4) corresponding to φ = 0 and φ = 1.
Figure 7 examines a series of boundary equilibrium bifurcations when c2 < c< c††. In this case, both

subsystems have two positive equilibria. The real and stable equilibrium E21 coexists simultaneously
with the visible tangent point T21 when ET > z21 [shown in Figure 7(a)]. As ET decreases from ET > z21
to z21, E21 collides with T21 [shown in Figure 7(b)]. With the threshold ET decreasing further to z11 <
ET < z21, a stable pseudo-equilibrium Ec emerges and T21 transforms into an invisible tangent point
[as depicted in Figure 7(c)]. This bifurcation exhibits the progress of the formation of Ec. Furthermore,
boundary bifurcation takes place again when ET through the critical value z11. This case results in the
collision of the tangent point T11, the equilibrium point E11 with the pseudo-equilibrium point Ec [as
depicted in Figure 7(d)]. Subsequently, the Ec vanishes, and the stable point E11 transforms into the
local attractor [as illustrated in Figure 7(e)]. When ET drops consistently until z12, the third boundary
bifurcation takes place, leading to the collision of the visible tangent point T12 with the equilibriums
E12 [as depicted in Figure 7(f)].
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Table 4. Existence and stability of the equilibria for the Filippov system (2.4) when R0 >
Rc1 > Rc2 > 1.

Threshold
Immune E1 E11 E12 E21 E22 Ec Global

value intensity stability

ET > z21

c4 < c < c2 LAS − − LAS(R) US − Bistable

c2 < c < c†† LAS LAS(V ) US LAS(R) US − Bistable

c†† < c < c∗∗ LAS LAS(V ) US LAS(R) US − Bistable

c∗∗ < c < c† US LAS(V ) US LAS(R) US − E21 GAS

c† < c < c∗ US LAS(V ) US LAS(R) − − E21 GAS

c∗ < c US LAS(V ) − LAS(R) − − E21 GAS

z11 < ET < z21

c2 < c < c†† LAS LAS(V ) US LAS(V ) US LAS Bistable

c†† < c < c∗∗ LAS LAS(V ) US LAS(V ) US LAS Bistable

c∗∗ < c < c† US LAS(V ) US LAS(V ) US LAS Ec GAS

c† < c < c∗ US LAS(V ) US LAS(V ) − LAS Ec GAS

c∗ < c US LAS(V ) − LAS(V ) − LAS Ec GAS

z12 < ET < z11

c2 < c < c†† LAS LAS(R) US LAS(V ) US − Bistable

c†† < c < c∗∗ LAS LAS(R) US LAS(V ) US − Bistable

c∗∗ < c < c† US LAS(R) US LAS(V ) US − E11 GAS

c† < c < c∗ US LAS(R) US LAS(V ) − − E11 GAS

z22 < ET < z12

c2 < c < c†† LAS LAS(R) US LAS(V ) US LAS Tristable

c†† < c < c∗∗ LAS LAS(R) US LAS(V ) US LAS Tristable

c∗∗ < c < c† US LAS(R) US LAS(V ) US LAS Bistable

0 < ET < z22

c4 < c < c2 LAS − − LAS(V ) US − E1 GAS

c2 < c < c†† LAS LAS(R) US LAS(V ) US − Bistable

c∗∗ < c < c† US LAS(R) US LAS(V ) US − E11 GAS

The real equilibrium and virtual equilibrium are represented by R and V , respectively.
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Figure 7. Boundary equilibrium bifurcations for the switching system (2.4).

Note: Here, we choose ET as a bifurcation parameter and other parameter values are fixed as r = 6, K = 6, p = 1, q = 1,
b = 1, η = 0.5, a = 3, ε = 0.12, c = 2.92 and (a) ET = 2.5; (b) ET = 2.176; (c) ET = 1.9; (d) ET = 1.7081; (e) ET = 1.55;
( f ) ET = 1.4519; (g) ET = 0.98; (h) ET = 0.864; (i) ET = 0.64.

Provided ET continues to decrease until z22 < ET < z12, a locally stable pseudo-equilibrium
Ec appears [as shown in Figure 7(g)] and a tristable phenomenon (Ec, E11, and the immune-free
equilibrium E1) occurs. When ET passes E22, the fourth boundary equilibrium bifurcation occurs.
In this scenario, the pseudo-equilibrium Ec will collide with the equilibrium point E22 and tangent
point T22 if ET = z22 [illustrated in Figure 7(h)]. However, as the threshold ET continues to decrease,
the equilibrium Ec disappears, and the tangent point T22 becomes invisible [illustrated in Figure 7(i)].
Here, the equilibriums E1 and E11 exhibit bistability under this scenario.

6. The influence of the pivotal parameters of the system (2.4)

In order to stabilize the HIV viral loads and effector cell counts within the required predetermined
level, it is crucial to implement a control strategy for the switching system (2.4) by setting an
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appropriate threshold ET . The dynamics of the system are influenced by two key parameters: The
immune intensity c and the inhibition of the virus on the proliferation of immune cells η . Therefore, it
is important to study the impact of these parameters on the system’s dynamics. Note that the parameters
in this study are based on the findings of Komarova [33] and colleagues. A direct calculation reveals
that the bistable interval is (2.7666,3.2333) [shown in Figure 8(a)]. From this figure, it is evident that
system (2.4) has the potential to have either one or two nontrivial LAS equilibria depending on the
value of c. In detail, two stable equilibriums E2

1 and E21 coexist when c4 < c < c††. As established in
Section 2, there is a unique LAS equilibrium E21 if c > c††. It is important to note that a saddle-node
bifurcation occurs at c = c4. Generally, a longer bistable interval implies a wider range of variation
for the proliferation coefficient c of immune cells. In this context, a lower viral inhibition intensity
η [shown in Figure 8(b)] is more advantageous for immune control. This indicates the necessity of
developing medications aimed at diminishing the viral inhibitory effect on immune cells. The phase
portrait of this system reveals that both variables y and z will gradually tend to a stable value over time
t changed [shown in Figures 8(c) and (d)]. In subsystem S2, the combination of antiretroviral therapy
and immunotherapy not only controlled the number of viruses better but also stabilized the immune
cell count at a more reliable level than the free system, as can be seen in Figures 8(e) and (f).
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Figure 8. (a) Saddle–node bifurcation diagram and bistable of the subsystem S2, where r = 6, K =

6, p = 1, q = 1, b = 1, η = 0.5, a = 3, ε = 0.12 such that c2 = 2.7666, c†† = 3.2333, where the
LAS equilibrium of viral load is depicted by the solid line, while the dashed line illustrates the US
equilibrium; (b) The impact of the intensity of virus inhibition (η) on the duration of the bistable
interval; (c) and (d) Parameters are η = 0.55, a = 3, ε = 0.12, c = 2.9, the other parameter values
are the same to those of (a). At this point, the system will gradually tend to stabilize; (e) and (f) The
dynamic behaviors of virus and immune cells in the system (2.4) within time.
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7. Conclusions

Given the immunosuppressive HIV infection model [32–34], it is suggested that the threshold
policy control (TPC) method for treating infected patients should be based on the number of immune
cells. Thus, we propose a piecewise immunosuppressive infection system. We call model (2.4)
a discontinuous right-hand side dynamical system under TPC, which consists of two subsystems.
Specifically, it is recommended to initiate a combination of antiretroviral therapy and immune therapy
when the value drops below a certain threshold ET , which includes the usage of antiretroviral
medications and interleukin (IL)-2. This leads to the emergence of a nonsmooth system. Unlike [31],
we consider the logical growth of HIV rather than linear growth in this paper. Some clinical facts
indicate that the saturated growth of HIV is reasonable.

Initially, we provide a concise overview of the dynamics exhibited by the two subsystems. Through
the subsystems Si(i = 1,2), we derive the thresholds R0, Rc1 , and Rc2 . It becomes evident that R0
plays a pivotal part in determining the eradication of the virus. We also obtain the post-treatment
control thresholds c2(c4) and the elite control threshold c∗∗(c††) for subsystems S1 (S2). According
to [34], there exists a bistable behavior between these two threshold intervals. The sliding dynamics
and sliding domain of the system (2.4) are studied in the subsequent analysis. Our purpose is to
demonstrate the existence of two sliding segments Σi

s (i = 1,2). By employing the Filippov convex
approach, we investigate the possibility and local asymptotic stability of the pseudo-equilibrium Ec on
the sliding segment Σ1

s under the z11 < ET < z21, or on the sliding segment Σ2
s under the z22 < ET < z12.

Significantly, we have primarily focused on Case (a) and discussed the global dynamics of the system
in this paper. To investigate the global dynamic behavior of the system, we have excluded the existence
of three types of limit cycles. It is important to understand the relationship not only among R0,Rc1,Rc2 ,
and 1 but also among immune intensity c and c4,c2,c††,c∗∗,c†,c∗. Subsequently, the bifurcation
theories were utilized to address the dynamics of sliding mode and local sliding bifurcations.

The analysis reveals that the system can demonstrate diverse and complex dynamic behaviors:
(i) One of the equilibria in the system is GAS, which can manifest as the immune-free equilibrium
E1, pseudo-equilibrium Ec, or even as the positive equilibrium E11 or E21 within subsystems S1 or
S2; (ii) There are two possible equilibria in this system that exhibit bistability, namely the immune-
free equilibrium E1 and equilibrium E21 (or Ec or E11), or the positive equilibrium E11, which is
bistable alongside the pseudo-equilibrium Ec; (iii) Three equilibria are tristable, i.e., immune-free
equilibrium E1, positive equilibrium E11, and the pseudo-equilibrium Ec are stable for z22 < ET < z12
and c2 < c < c∗∗. Our work demonstrates that the utilization of effector cell-guided therapy leads to
an expansion of the controllable area of initial values for patients, generating a more complex Filippov
dynamics system when compared with [35]. Interestingly, we find that there exists an optimal threshold
interval for immune intensity that can maximize the controllable area of initial values. This highlights
the importance of considering the effects of effector cell-guided therapy and immune intensity when
studying the dynamics of the switching system. It suggests that maximizing the controllable area of
initial values can potentially improve the effectiveness of treatment strategies for patients.

In this paper, the existence of three types of equilibria including pseudo-equilibrium is explored.
These equilibria can exhibit bistability or tristability, meaning that the HIV viral loads and effector
cell counts can be stabilized at a preset level. Achieving these stable states depends on factors such as
the threshold level, immune intensity, and the initial values of the system. Consequently, determining
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the optimal strategy for immune intensity and the threshold conditions should still take into account
the individual characteristics of the patients. In the case of boundary H (X), the selection of parameter
values is crucial in stabilizing different equilibria within the system. From a biological standpoint,
employing rational control intensity and intervention is highly effective in ensuring the control and
management of diseases.

Although our research has an impact on HIV disease control, it is still insufficient. We only consider
the relationship between the number of effector cells and the threshold level to construct switching
conditions. The actual disease control strategy should also take into account the change rate of effector
cell count, which will be our next work. By considering these factors, we aim to further provide insights
into the effectiveness and impact of this treatment approach on the virus-immune system dynamics.
This mathematical model could potentially contribute to the improvement of treatment strategies for
viral infections.
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