
Citation: Mustafa Inc, Mamun Miah, Akher Chowdhury, Shahadat Ali, Hadi Rezazadeh, Mehmet Ali Akinlar, Yu-Ming Chu. New exact solutions for the Kaup-Kupershmidt equation[J]. AIMS Mathematics, 2020, 5(6): 6726-6738. doi: 10.3934/math.2020432
[1] | M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque . New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative. AIMS Mathematics, 2019, 4(2): 199-214. doi: 10.3934/math.2019.2.199 |
[2] | Weiping Gao, Yanxia Hu . The exact traveling wave solutions of a class of generalized Black-Scholes equation. AIMS Mathematics, 2017, 2(3): 385-399. doi: 10.3934/Math.2017.3.385 |
[3] | Huaji Cheng, Yanxia Hu . Exact solutions of the generalized (2+1)-dimensional BKP equation by the G'/G-expansion method and the first integral method. AIMS Mathematics, 2017, 2(3): 562-579. doi: 10.3934/Math.2017.2.562 |
[4] | M. Mossa Al-Sawalha, Rasool Shah, Kamsing Nonlaopon, Imran Khan, Osama Y. Ababneh . Fractional evaluation of Kaup-Kupershmidt equation with the exponential-decay kernel. AIMS Mathematics, 2023, 8(2): 3730-3746. doi: 10.3934/math.2023186 |
[5] | Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264 |
[6] | M. Ali Akbar, Norhashidah Hj. Mohd. Ali, M. Tarikul Islam . Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Mathematics, 2019, 4(3): 397-411. doi: 10.3934/math.2019.3.397 |
[7] | Guowei Zhang, Jianming Qi, Qinghao Zhu . On the study of solutions of Bogoyavlenskii equation via improved $ G'/G^2 $ method and simplified $ \tan(\phi(\xi)/2) $ method. AIMS Mathematics, 2022, 7(11): 19649-19663. doi: 10.3934/math.20221078 |
[8] | Harivan R. Nabi, Hajar F. Ismael, Nehad Ali Shah, Wajaree Weera . W-shaped soliton solutions to the modified Zakharov-Kuznetsov equation of ion-acoustic waves in (3+1)-dimensions arise in a magnetized plasma. AIMS Mathematics, 2023, 8(2): 4467-4486. doi: 10.3934/math.2023222 |
[9] | Jalil Manafian, Onur Alp Ilhan, Sizar Abid Mohammed . Forming localized waves of the nonlinearity of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model. AIMS Mathematics, 2020, 5(3): 2461-2483. doi: 10.3934/math.2020163 |
[10] | M. TarikulIslam, M. AliAkbar, M. Abul Kalam Azad . Traveling wave solutions in closed form for some nonlinear fractional evolution equations related to conformable fractional derivative. AIMS Mathematics, 2018, 3(4): 625-646. doi: 10.3934/Math.2018.4.625 |
Nonlinear evolution equations (NLEEs) model many complex phenomena in physics including plasma, solid state, chemical and optical fibers, nonlinear optics, fluid mechanics, etc. Exploring exact traveling wave solutions plays a significant role in nonlinear physics. For this purpose, a number of techniques were developed including method of modified Khater [1,2], first integral [3,4], functional variable [5], expansions [6,7] of new generalized (G′/G) [8,9,10], new Φ6-model [11], Jacobi elliptic function [12,13], sine-Gordon [14], bifurcation [15,16], exp-function [17,18], new auxiliary equation [19], exp(-ϕ(ξ))-expansion [20,21], fan sub-equation [22,23], inverse scattering [24], generalized Kudryshov [25,26,27], Hirota's bilinear [28,29], extended direct algebraic [30], Lie group [31].
Consider the (2+1)-dimensional KK equations [32]
9ut+u5x+15uuxxx+752uxuxx+45u2ux+5σuxxy−5σ∂−1xuyy+15σuuy+15σux∂−1xuy=0. | (1.1) |
where σ2=1,∂−1x=∫dx. This equation has been widely applied in many branches of physics like plasma physics, fluid dynamics, nonlinear optics, and so forth. If we take u(x,y,t)=u(x,t), Eq (1.1) becomes the (1+1)-dimensional KK equation [32]
9ut+u5x+15uuxxx+752uxuxx+45u2ux=0, | (1.2) |
In [33], method of exp-function was applied to Eq (1.2). In [32], symmetric method was applied to the nonlinear (2+1)-KK equation.
The method of the present paper, a candid, succinct and efficient technique, considered as a generalization of (G′/G)-expansion technique [34,35,36,37] was developed in [38,39,40,41,42,43,44,45]. Main purpose of this paper is to investigate the applicability of the method to (1+1)-dimensional KK equation which was not considered in the history of research so far.
We shortly overview the method in such a fashion that maintains four remarks and five basic postulates:
Remark I. If we set up
ϕ=G′/G,ψ=1/G, | (2.1) |
in
G″(ξ)+λG(ξ)=β, | (2.2) |
then we must have the relations
ϕ′=−ϕ2+βψ−λ,φ′=−φψ, | (2.3) |
wherein λ and β are parameters.
Remark II. If λ is negative, general solution of (2.2) is:
G(ξ)=D1sinh(ξ√−λ)+D2cosh(ξ√−λ)+βλ. | (2.4) |
and we receive the following relation
ψ2=−λλ2α1+β2(φ2−2βψ+λ), | (2.5) |
wherein D1 and D2 are arbitrary constants and α1=D21−D22.
Remark III. If λ is positive, general solution of (2.2) is:
G(ξ)=D1sin(ξ√λ)+D2cos(ξ√λ)+βλ, | (2.6) |
consequently, we obtain
ψ2=λλ2α2−β2(φ2−2βψ+λ), | (2.7) |
wherein α2=D21+D22.
Remark IV. If λ=0, the general solution of (2.2),
G(ξ)=β2ξ2+D1ξ+D2, | (2.8) |
and therefore we get,
ψ2=φ2−2βψD21−2βD2. | (2.9) |
Now let us consider:
R(u,ut,ux,uy,utt,uxx,uyy,uxt,⋯)=0, | (2.10) |
wherein R is a polynomial function in u and ut=∂u∂t, ux=∂u∂x, uy=∂u∂y, uxx=∂2u∂x2, uyy=∂2u∂y2, uxy=∂2u∂x∂y and so on.
Postulate 1. Consider:
u(x,y,t)=u(ξ),andξ=ηx+ωy+ct, | (2.11) |
wherein η, ω and c are parameters. By traveling wave transformations (2.11), the Eq.(2.10) can be reduced to:
T(u,cu′,ηu′,ωu′,c2u″,η2u″,ω2u″,ηωu″,cηu″,⋯)=0, | (2.12) |
wherein T is a polynomial.
Postulate 2. Let us assume that the following relation is the general solution expressed by a polynomial:
u(ξ)=a0+∑Ni=1(aiφi(ξ)+biφi−1(ξ)ψ(ξ)), | (2.13) |
wherein a0, ai and bi(i=1,2,3,...,N) are the constant coefficients such that a2N+b2N≠0.
Postulate 3. By homogeneous balance, we determine N in Eq (2.13).
Postulate 4. To convert the left-hand-side of Eq (2.12) into a polynomial function in ψ and ϕ, we write Eq (2.13) into Eq (2.12) with Eq (2.3) and Eq (2.5). By solving polynomial, we obtain the system: in a0, ai, bi(i=1,2,3,...,N), λ(<0), β, η, ω, c, D1 and D2. We solve this system with Mathematica. Setting values of above algebraic constants in Eq (2.13), solutions by hyperbolic functions in Eq (2.12) are obtained.
Postulate 5. Similar to Postulate 4, substituting Eq (2.13) into Eq (2.12), using Eq (2.3) and Eq (2.5) (or Eq (2.3) and Eq (2.7)), we obtain the exact traveling wave solutions of Eq (2.12) demonstrated by trigonometric functions.
Let us consider transformation:
u(x,t)=u(ξ),ξ=x+ct, | (3.1) |
wherein c is a parameter, which reduces Eq (1.2) to:
9cu′+u(5)+15uu‴+752u′u″+45u2u′=0. | (3.2) |
According to postulate 2, the positive number N=2 is obtained by balancing between u(5) and u2u′, thus general solutions of Eq (3.2) is:
u(ξ)=a0+a1φ(ξ)+a2φ2(ξ)+b1ψ(ξ)+b2φ(ξ)ψ(ξ), | (3.3) |
whereina0, ai and bi(i=1,2) are constant coefficients such thata2N+b2N≠0(N=1,2), ϕ(ξ) and ψ(ξ) are satisfied by the Eq (2.3). Now, there are three categories of solutions of Eq (3.2):
Category 1: When λ<0 (solutions by hyperbolic functions):
Writing Eq (3.3) with Eq (2.3) and Eq (2.5) into Eq (3.2), Eq (3.2) forms a polynomial in ψ(ξ) and ϕ(ξ). Solving this polynomial, we obtain a system: a0, a1, a2, b1, b2, λ(<0), β, c and α1. Solving this system with Mathematica, we obtain the values of a0 a1, a2, b1, b2, β and c as:
Result 1:
a0=−10λ3,a1=0,a2=−4,b1=4β,b2=±4√β2+λ2α1√−λ,c=−11λ29,β=β. | (3.4) |
Writing these constants from Eq (3.4) into (3.3) and by Eq (2.1) and Eq (2.4), we obtain explicit solutions of Eq (1.2):
u(ξ)=−10λ3+4λ{D1cosh(ξ√−λ)D2sinh(ξ√−λ)}2{D1sinh(ξ√−λ+D2cosh(ξ√−λ)+βλ}2+4β{D1sinh(ξ√−λ+D2cosh(ξ√−λ)+βλ}±4√β2+λ2α1λ{D1cosh(ξ√−λ)D2sinh(ξ√−λ)}2{D1sinh(ξ√−λ+D2cosh(ξ√−λ)+βλ}2 | (3.5) |
wherein ξ=x−11λ2t9 and α1=D21−D22.
In particular, if we choose D1≠0, D2=0 and β=0 in Eq (3.5), we get:
u(x,t)=−10λ3+4λcoth(√−λ(x−11λ2t9)){coth(√−λ(x−11λ2t9))±csch(√−λ(x−11λ2t9))}. | (3.6) |
Similarly, if we choose D2≠0, D1=0 and β=0 in Eq (3.5), we get:
u(x,t)=−10λ3+4λtanh(√−λ(x−11λ2t9)){tanh(√−λ(x−11λ2t9))±isech(√−λ(x−11λ2t9))}, | (3.7) |
wherein i=√−1.
Result 2:
a0=−5λ12,a1=0,a2=−12, b1=β2,b2=±√β2+λ2α12√−λ,c=−λ2144,β=β. | (3.8) |
Explicit solutions of Eq (1.2) are given by:
u(ξ)=−5λ12+λ{D1cosh(ξ√−λ)+D2sinh(ξ√−λ)}22{D1sinh(ξ√−λ)+D2cosh(ξ√−λ)+βλ}2+β2{D1sinh(ξ√−λ)+D2cosh(ξ√−λ)+βλ}±√β2+λ2α1{D1cosh(ξ√−λ)+D2sinh(ξ√−λ)}2{D1sinh(ξ√−λ)+D2cosh(ξ√−λ)+βλ}2, | (3.9) |
wherein ξ=x−λ2t144 and α1=D21−D22.
In particular, if we choose D1≠0, D2=0 and β=0 in Eq (3.9), we get:
u(x,t)=−5λ12+λ2coth(√−λ(x−λ2t144)){coth(√−λ(x−λ2t144))±csch(√−λ(x−λ2t144))}. | (3.10) |
Similarly, if we choose D2≠0, D1=0 and β=0 in Eq (3.9), we get:
u(x,t)=−5λ12+λ2tanh(√−λ(x−λ2t144)){tanh(√−λ(x−λ2t144))±isech(√−λ(x−λ2t144))}, | (3.11) |
wherein i=√−1.
Result3:
a0=−11λβ2+8λ3α112(β2+λ2α1),a1=0,a2=−1,b1=β,b2=0,c=−λ2(β4−28λ2β2α1+16λ4α21)144(β2+λ2α1)2,β=β. | (3.12) |
wherein β2+λ2α1≠0.
We get explicit solutions of Eq (1.2) as:
u(ξ)=−11λβ2+8λ3α112(β2+λ2α1)+λ{D1cosh(ξ√−λ)+D2sinh(ξ√−λ)}2{D1sinh(ξ√−λ)+D2cosh(ξ√−λ)+βλ}2+β{D1sinh(ξ√−λ)+D2cosh(ξ√−λ)+βλ}, | (3.13) |
wherein ξ=x−λ2t(β4−28λ2β2α1+16λ4α21)144(β2+λ2α1)2 and α1=D21−D22.
In particular, if we choose D1≠0, D2=0 and β=0 in Eq (3.13), we get:
u(x,t)=−2λ3+λcoth2(√−λ(x−λ2t9)). | (3.14) |
Similarly, if we choose D2≠0, D1=0 and β=0 in Eq (3.14), we get:
u(x,t)=−2λ3+λtanh2(√−λ(x−λ2t9)). | (3.15) |
Category 2: For λ>0, (i.e. trigonometric functions),
According to Postulate 5, if we execute as the category 1, we attain the values of a0, a1, a2, b1, b2, β and c as the following results:
Result 1:
a0=−10λ3,a1=0,a2=−4,b1=4β,b2=±4√−β2+λ2α1√λ,c=−11λ29,β=β. | (3.16) |
Writing constants in Eq (3.16) into Eq (3.3) and by Eq (2.1) and Eq (2.6), we get explicit solutions of Eq (1.2):
u(ξ)=−10λ3−4λ{D1cos(ξ√λ)−D2sin(ξ√λ)}2{D1sin(ξ√λ)+D2cos(ξ√λ)+βλ}2+4βD1sin(ξ√λ)+D2cos(ξ√λ)+βλ±4√−β2+λ2α2{D1cos(ξ√λ)−D2sin(ξ√λ)}{D1sin(ξ√λ)+D2cos(ξ√λ)+βλ}2, | (3.17) |
wherein ξ=x−11λ2t9 and α2=D21+D22.
Result 2:
a0=−5λ12,a1=0,a2=−12,b1=β2,b2=±√−β2+λ2α12√λ,c=−λ2144,β=β. | (3.18) |
We get explicit solutions of Eq (1.2) as:
u(ξ)=−5λ12−λ{D1cos(ξ√λ)−D2sin(ξ√λ)}22{D1sin(ξ√λ)+D2cos(ξ√λ)+βλ}2+β2{D1sin(ξ√λ)+D2cos(ξ√λ)+βλ}±√−β2+λ2α2{D1cos(ξ√λ)−D2sin(ξ√λ)}2{D1sin(ξ√λ)+D2cos(ξ√λ)+βλ}2,. | (3.19) |
wherein ξ=x−λ2t144 and α2=D21+D22.
Result 3:
a0=11λβ2−8λ3α212(−β2+λ2α2),a1=0,a2=−1,b1=β,b2=0,c=−λ2(β4+28λ2β2α2+16λ4α22)144(−β2+λ2α2)2,β=β. | (3.20) |
wherein −β2+λ2α2≠0.
We get explicit solutions of Eq (1.2) as:
u(ξ)=11λβ2−8λ3α212(−β2+λ2α2)−λ{D1cos(ξ√λ)−D2sin(ξ√λ)}2{D1sin(ξ√λ)+D2cos(ξ√λ)+βλ}2+β{D1sin(ξ√λ)+D2cos(ξ√λ)+βλ}, | (3.21) |
wherein ξ=x−λ2t(β4+28λ2β2α2+16λ4α22)144(−β2+λ2α2)2 and α2=D21+D22.
Category 3: For λ=0, (i.e.rational functions),
According to Postulate 5, if we execute as the category 1, we attain the values of a0, a1, a2, b1, b2, β and c as the following results:
a0=−β24(−D21+2βD2),a1=0,a2=−1,b1=β,b2=0,c=−5β416(−D21+2βD)2,β=β. | (3.22) |
We get explicit solutions of Eq (1.2) as:
u(ξ)=−β24(−D21+2βD2)−(βξ+D1)2(β2ξ2+D1ξ+D2)2+β(β2ξ2+D1ξ+D2), | (3.23) |
wherein ξ=x−5β4t16(−D21+2βD)2 and −D21+2βD≠0.
If we set up the particular values of the arbitrary constants if we choose D1, D2 and βin the above Eq (3.17), Eq (3.19), Eq (3.21) and Eq (3.23), we attain abundant new explicit wave solutions of KK equation which are unexposed for minimalism of length of the paper.
We obtained new explicit solutions for the (1+1)-dimensional KK equation. We achieved solitary wave solutions for analogous traveling wave solutions of Eq (1.2). These affluent solutions including bell and anti-bell solitons, kink and anti-kink solitons, periodic and rational functions of KK equation indicate that double (G′/G,1/G)-expansion technique is more powerful than the method of (G′/G,1/G)-expansion. Comparing the solutions with the ones in [33], we presume that all the solutions are renewed which are un-indicted elsewhere. Our mentioned method is more powerful and also an offering method to demonstrate many higher order nonlinear PDEs. We will investigate the applicability of the method to (2+1)-dimensional KK equation in a future extension of the present work.
The work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11301127, 11701176, 11626101, 11601485).
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
[1] | C. Yue, D. Lu, M. M. A. Khater, et al. On explicit wave solutions of the fractional nonlinear DSW system via the modified Khater method, Fractals, 2020. |
[2] | C. Yue, M. M. A. Khater, M. Inc, et al. Abundant analytical solutions of the fractional nonlinear (2+1)-dimensional BLMP equation arising in incompressible fluid, Int. J. Mod. Phys. B, 34 (2020), 1-13. |
[3] | N. Mahak, G. Akram, Exact solitary wave solutions of the (1+1)-dimensional Fokas-Lenells equation, Optik, 208 (2020), 1-9. |
[4] |
H. Rezazadeh, J. Manafian, F. S. Khodadad, et al. Traveling wave solutions for density-dependent conformable fractional diffusion-reaction equation by the first integral method and the improvedtan(1/2φ(ξ))-expansion method, Opt. Quant. Electron., 50 (2018), 1-15. doi: 10.1007/s11082-017-1266-2
![]() |
[5] | H. Rezazadeh, J. Vahidi, A. Zafar, et al. The functional variable method to find new exact solutions of the nonlinear evolution equations with dual-power-law nonlinearity, Int. J. Nonlin. Sci. Num., 21 (2019), 249-257. |
[6] | B. Soltanalizadeh, H. Esmalifalak, R. Hekmati, et al. Numerical analysis of the one-demential wave equation subject to a boundary integral specification, WJST., 15 (2018), 421-437. |
[7] | Z. Sarmast, B. Soltanalizadeh, K. Boubaker, A new numerical method to study a Second-order hyperbolic equation, South Asian Journal of Mathematics, 4 (2014), 285-296. |
[8] |
M. D. Hossain, M. K. Alam, M. A. Akbar, Abundant wave solutions of the Boussinesq equation and the (2+1)-dimensional extended shallow water wave equation, Ocean Engineering, 165 (2018), 69-76. doi: 10.1016/j.oceaneng.2018.07.025
![]() |
[9] | M. D. Hossain, U. Kulsum, M. K. Alam, et al. Kink and periodic solutions to the Jimbo-Miwa equation and the Calogero-Bogoyavlenskii-Schiff equation, J. Mech. Cont. Math. Sci., 13 (2018), 50-66. |
[10] | S. T. A. Siddique, M. D. Hossain, M. A. Akbar, Exact wave solutions to the (2+1)-dimensional Klein-Gordon equation with special types of nonlinearity, J. Mech. Cont. Math. Sci., 14 (2019), 1-20. |
[11] | N. Sajid, G. Akram, Novel solutions of Biswas-Arshed equation by newly φ6-model expansion method, Optik, 211 (2020), 1-22. |
[12] |
Y. Chen, Q. Wang, Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic functions to (1+1)-dimensional dispersive long wave equation, Chaos Soliton. Fract., 24 (2005), 745-757. doi: 10.1016/j.chaos.2004.09.014
![]() |
[13] |
D. Lü, Jacobi elliptic function solutions for two variant Boussinesq equations, Chaos Soliton. Fract., 24 (2005), 1373-1385. doi: 10.1016/j.chaos.2004.09.085
![]() |
[14] | A. Korkmaz, O. E. Hepson, K. Hosseini, et al. Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class, J. King Saud Univ. Sci., 32 (2018), 567-574. |
[15] |
A. Chen, J. Li, Single peak solitary wave solutions for the osmosis K(2,2) equation under inhomogeneous boundary condition, J. Math. Anal. Appl., 369 (2010), 758-766. doi: 10.1016/j.jmaa.2010.04.018
![]() |
[16] |
D. H. Feng, J. B. Li, Exact explicit Traveling wave solutions for the (n+1)-dimensional Ø6 field model, Phys. Lett. A, 369 (2007), 255-261. doi: 10.1016/j.physleta.2007.04.088
![]() |
[17] |
J. H. He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Soliton. Fract., 30 (2006), 700-708. doi: 10.1016/j.chaos.2006.03.020
![]() |
[18] | A. Bekir, Application of the exp-function method for nonlinear differential-difference equations, Appl. Math. Comput., 215 (2010), 4049-4053. |
[19] |
H. Rezazadeh, A. Korkmaz, M. Eslami, et al. A large family of optical solutions to Kundu-Eckhaus model by a new auxiliary equation method, Opt. Quant. Electron., 51 (2019), 1-12. doi: 10.1007/s11082-018-1712-9
![]() |
[20] | N. Raza, M. R. Aslam, H. Rezazadeh, Analytical study of resonant optical solitons with variable coefficients in Kerr and non-Kerr law media, Opt. Quant. Electron., 51 (2019), 59. |
[21] |
N. Raza, U. Afzal, A. R. Butt, et al. Optical solitons in nematic liquid crystals with Kerr and parabolic law nonlinearities, Opt. Quant. Electron., 51 (2019), 1-16. doi: 10.1007/s11082-018-1712-9
![]() |
[22] |
D. Feng, K. Li, On exact traveling wave solutions for (1+1)-dimensional Kaup-Kupershmidt equation, Appl. Math., 2 (2011), 752-756. doi: 10.4236/am.2011.26100
![]() |
[23] |
F. Batool, G. Akram, Application of extended Fan sub-equation method to (1+1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mohony equation with fractional evolution, Opt. Quant. Electron., 49 (2017), 1-9. doi: 10.1007/s11082-016-0848-8
![]() |
[24] |
M. A. Fiddy, M. Testorf, Inverse scattering method applied to the synthesis of strongly structures, Opt. Express, 14 (2006), 2037-2046. doi: 10.1364/OE.14.002037
![]() |
[25] | H. M. S. Ali, M. A. Habib, M. M. Miah, et al. A modification of the generalized Kudryshov method for the system of some nonlinear evolution equations, J. Mech. Cont. Math. Sci., 14 (2019), 91-109. |
[26] | M. M. Rahman, M. A. Habib, H. M. S. Ali, et al. The generalized Kudryshov method: a renewed mechanism for performing exact solitary wave solutions of some NLEEs, J. Mech. Cont. Math. Sci., 14 (2019), 323-339. |
[27] |
M. A. Habib, H. M. S. Ali, M. M. Miah, et al. The generalized Kudryashov method for new closed form traveling wave solutions to some NLEEs, AIMS Mathematics, 4 (2019), 896-909. doi: 10.3934/math.2019.3.896
![]() |
[28] |
A. M. Wazwaz, The Hirota's bilinear method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Kadomstsev-Petviashvili equation, Appl. Math. Computat., 200 (2008), 160-166. doi: 10.1016/j.amc.2007.11.001
![]() |
[29] |
J. G. Liu, M. Eslami, H. Rezazadeh, et al. Rational solutions and lump solutions to a non-isospectral and generalized variable-coefficient Kadomtsev-Petviashvili equation, Nonlinear Dynam., 95 (2019), 1027-1033. doi: 10.1007/s11071-018-4612-4
![]() |
[30] |
W. Gao, H. Rezazadeh, Z. Pinar, et al. Novel explicit solutions for the nonlinear Zoomeron equation by using newly extended direct algebraic technique, Opt. Quant. Electron., 52 (2020), 1-13. doi: 10.1007/s11082-019-2116-1
![]() |
[31] |
H. Jafari, N. Kadkhoda, D. Baleanu, Fractional Lie group method of the time-fractional Boussinesq equation, Nonlinear Dynam., 81 (2015), 1569-1574. doi: 10.1007/s11071-015-2091-4
![]() |
[32] |
L. H. Ling, L. X. Qiang, Exact Solutions to (2+1)-dimensional Kaup-Kupershmidt equation, Commun. Theor. Phys., 52 (2009), 795-800. doi: 10.1088/0253-6102/52/5/06
![]() |
[33] |
A. H. Bhrawy, A. Bishwas, M. Javidi, et al. New solutions for (1+1)-dimensional and (2+1)- dimensional Kaup-Kupershmidt equations, Results Math., 63 (2013), 675-686. doi: 10.1007/s00025-011-0225-7
![]() |
[34] |
M. A. Akbar, N. H. M. Ali, E. M. E. Zayed, Abundant exact traveling wave solutions of the generalized Bretherton equation via (G'/G)-expansion method, Commun. Theor. Phys., 57 (2012), 173-178. doi: 10.1088/0253-6102/57/2/01
![]() |
[35] |
B. Ayhan, A. Bekir, The (G'/G)-expansion method for the nonlinear lattice equations, Commun. Nonlinear Sci., 17 (2012), 3490-3498. doi: 10.1016/j.cnsns.2012.01.009
![]() |
[36] |
M. Wang, X. Li, J. Zhang, The (G'/G)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372 (2008), 417-423. doi: 10.1016/j.physleta.2007.07.051
![]() |
[37] | N. A. Kudryashov, A note on the (G'/G)-expansion method, Appl. Math. comput., 217 (2010), 1755-1758. |
[38] | L. Li, E. Li, M. Wang, The (G'/G, 1/G)-expansion method and its application to traveling wave solutions of the Zakharov equations, Appl. Math. J. Chin. Univ., 25 (2010), 454-462. |
[39] | E. M. E. Zayed, K. A. E. Alurrfi, The (G'/G, 1/G)-expansion method and its applications for solving two higher order nonlinear evolution equations, Math. Probl. Eng., 2014 (2014), 1-20. |
[40] | M. M. Miah, H. M. S. Ali, M. A. Akbar, An investigation of abundant traveling wave solutions of complex nonlinear evolution equations: the perturbed nonlinear Schrodinger equation and the cubic-quintic Ginzburg-Landau equation, Cogent Mathematics, 3 (2016), 1-19. |
[41] | M. M. Miah, H. M. S. Ali, M. A. Akbar, et al. Some applications of the (G'/G, 1/G)-expansion method to find new exact solutions of NLEEs, Eur. Phys. J. Plus, 132 (2017), 1-15. |
[42] |
H. M. S. Ali, M. M. Miah, M. A. Akbar, Study of abundant explicit wave solutions of the Drinfeld-Sokolov-Satsuma-Hirota (DSSH) equation and the shallow water wave equation, Propulsion and Power Research, 7 (2018), 320-328. doi: 10.1016/j.jppr.2018.11.007
![]() |
[43] | E. M. E. Zayed, K. A. E. Alurrfi, The (G'/G, 1/G)-expansion method and its applications to two nonlinear Schrödinger equations describing the propagation of femtosecond pulses in nonlinear optical fibers, Optik, 127 (2016), 1581-1589. |
[44] | M. M. Miah, H. M. S. Ali, M. A. Akbar, et al. New applications of the two variable (G'/G, 1/G)- expansion method for closed form traveling wave solutions of Integro-differential equations, Journal of Ocean Engineering and Science, 4 (2019), 132-143. |
[45] |
M. M. Miah, A. R. Seadawy, H. M. S. Ali, et al. Further investigations to extract abundant new exact traveling wave solutions of some NLEEs, Journal of Ocean Engineering and Science, 4 (2019), 387-394. doi: 10.1016/j.joes.2019.06.004
![]() |
1. | M. Akher Chowdhury, M. Mamun Miah, H.M. Shahadat Ali, Yu-Ming Chu, M.S. Osman, An investigation to the nonlinear (2 + 1)-dimensional soliton equation for discovering explicit and periodic wave solutions, 2021, 23, 22113797, 104013, 10.1016/j.rinp.2021.104013 | |
2. | Behzad Ghanbari, Abundant exact solutions to a generalized nonlinear Schrödinger equation with local fractional derivative, 2021, 0170-4214, 10.1002/mma.7302 | |
3. | Nehad Ali Shah, Mustafa Inc, An Analytical View of Fractional-Order Fisher’s Type Equations within Caputo Operator, 2021, 2021, 1563-5147, 1, 10.1155/2021/5516392 | |
4. | Behzad Ghanbari, Chun-Ku Kuo, Abundant wave solutions to two novel KP-like equations using an effective integration method, 2021, 96, 0031-8949, 045203, 10.1088/1402-4896/abde5a | |
5. | Mostafa M. A. Khater, Behzad Ghanbari, On the solitary wave solutions and physical characterization of gas diffusion in a homogeneous medium via some efficient techniques, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-01457-1 | |
6. | H.M. Shahadat Ali, M.A. Habib, Md. Mamun Miah, M. Mamun Miah, M. Ali Akbar, Diverse solitary wave solutions of fractional order Hirota-Satsuma coupled KdV system using two expansion methods, 2023, 66, 11100168, 1001, 10.1016/j.aej.2022.12.021 | |
7. | Lanre Akinyemi, Mohammad Mirzazadeh, Seyed Amin Badri, Kamyar Hosseini, Dynamical solitons for the perturbated Biswas–Milovic equation with Kudryashov's law of refractive index using the first integral method, 2022, 69, 0950-0340, 172, 10.1080/09500340.2021.2012286 | |
8. | SHAO-WEN YAO, A RIGID PENDULUM IN A MICROGRAVITY: SOME SPECIAL PROPERTIES AND A TWO-SCALE FRACTAL MODEL, 2021, 29, 0218-348X, 2150127, 10.1142/S0218348X21501279 | |
9. | Lanre Akinyemi, Hadi Rezazadeh, Qiu-Hong Shi, Mustafa Inc, Mostafa M.A. Khater, Hijaz Ahmad, Adil Jhangeer, M. Ali Akbar, New optical solitons of perturbed nonlinear Schrödinger–Hirota equation with spatio-temporal dispersion, 2021, 29, 22113797, 104656, 10.1016/j.rinp.2021.104656 | |
10. | Arzu Akbulut, Mir Sajjad Hashemi, Hadi Rezazadeh, New conservation laws and exact solutions of coupled Burgers' equation, 2021, 1745-5030, 1, 10.1080/17455030.2021.1979691 | |
11. | Lanre Akinyemi, Udoh Akpan, Pundikala Veeresha, Hadi Rezazadeh, Mustafa Inc, Computational techniques to study the dynamics of generalized unstable nonlinear Schrödinger equation, 2022, 24680133, 10.1016/j.joes.2022.02.011 | |
12. | Lanre Akinyemi, Mehmet Şenol, Emad Az-Zo’bi, P. Veeresha, Udoh Akpan, Novel soliton solutions of four sets of generalized (2+1)-dimensional Boussinesq–Kadomtsev–Petviashvili-like equations, 2022, 36, 0217-9849, 10.1142/S0217984921505308 | |
13. | H.I. Abdel-Gawad, M. Tantawy, M.S. Mani Rajan, Similariton regularized waves solutions of the (1+2)-dimensional non-autonomous BBME in shallow water and stability, 2022, 7, 24680133, 321, 10.1016/j.joes.2021.09.002 | |
14. | Guoan Xu, Jibin Li, Yi Zhang, Exact Solutions and Dynamical Behaviors of the Raman Soliton Model with Anti-Cubic Nonlinearity, 2022, 21, 1575-5460, 10.1007/s12346-022-00642-6 | |
15. | Fan Sun, Propagation of solitons in optical fibers with generalized Kudryashov’s refractive index, 2021, 28, 22113797, 104644, 10.1016/j.rinp.2021.104644 | |
16. | Hira Tariq, Maasoomah Sadaf, Ghazala Akram, Hadi Rezazadeh, Jamel Baili, Yu-Pei Lv, Hijaz Ahmad, Computational study for the conformable nonlinear Schrödinger equation with cubic–quintic–septic nonlinearities, 2021, 30, 22113797, 104839, 10.1016/j.rinp.2021.104839 | |
17. | Adivi Sri Venkata Ravi Kanth, Kirubanandam Aruna, Kondooru Raghavendar, Natural transform decomposition method for the numerical treatment of the time fractional Burgers–Huxley equation , 2022, 0749-159X, 10.1002/num.22983 | |
18. | Shahram Rezapour, Muhammad Imran Liaqat, Sina Etemad, Kolade M. Owolabi, An Effective New Iterative Method to Solve Conformable Cauchy Reaction-Diffusion Equation via the Shehu Transform, 2022, 2022, 2314-4785, 1, 10.1155/2022/4172218 | |
19. | Md Ashik Iqbal, Ye Wang, Md Mamun Miah, Mohamed S. Osman, Study on Date–Jimbo–Kashiwara–Miwa Equation with Conformable Derivative Dependent on Time Parameter to Find the Exact Dynamic Wave Solutions, 2021, 6, 2504-3110, 4, 10.3390/fractalfract6010004 | |
20. | Lanre Akinyemi, Two improved techniques for the perturbed nonlinear Biswas–Milovic equation and its optical solitons, 2021, 243, 00304026, 167477, 10.1016/j.ijleo.2021.167477 | |
21. | Siyuan Liu, S. Rezaei, S.A. Najati, Mohamed S. Mohamed, Novel wave solutions to a generalized third-order nonlinear Schrödinger’s equation, 2022, 37, 22113797, 105457, 10.1016/j.rinp.2022.105457 | |
22. | Shao-Wen Yao, Lanre Akinyemi, Mohammad Mirzazadeh, Mustafa Inc, Kamyar Hosseini, Mehmet Şenol, Dynamics of optical solitons in higher-order Sasa–Satsuma equation, 2021, 30, 22113797, 104825, 10.1016/j.rinp.2021.104825 | |
23. | Erdogan Mehmet Ozkan, New Exact Solutions of Some Important Nonlinear Fractional Partial Differential Equations with Beta Derivative, 2022, 6, 2504-3110, 173, 10.3390/fractalfract6030173 | |
24. | Behzad Ghanbari, Employing Hirota’s bilinear form to find novel lump waves solutions to an important nonlinear model in fluid mechanics, 2021, 29, 22113797, 104689, 10.1016/j.rinp.2021.104689 | |
25. | Fei Long, Shami A.M. Alsallami, S. Rezaei, Kamsing Nonlaopon, E.M. Khalil, New interaction solutions to the (2+1)-dimensional Hirota–Satsuma–Ito equation, 2022, 37, 22113797, 105475, 10.1016/j.rinp.2022.105475 | |
26. | Mostafa M. A. Khater, Adil Jhangeer, Hadi Rezazadeh, Lanre Akinyemi, M. Ali Akbar, Mustafa Inc, Hijaz Ahmad, New kinds of analytical solitary wave solutions for ionic currents on microtubules equation via two different techniques, 2021, 53, 0306-8919, 10.1007/s11082-021-03267-2 | |
27. | F. Samsami Khodadad, S. M. Mirhosseini-Alizamini, B. Günay, Lanre Akinyemi, Hadi Rezazadeh, Mustafa Inc, Abundant optical solitons to the Sasa-Satsuma higher-order nonlinear Schrödinger equation, 2021, 53, 0306-8919, 10.1007/s11082-021-03338-4 | |
28. | M. Mamun Miah, 2022, Chapter 94, 978-3-030-99791-5, 1113, 10.1007/978-3-030-99792-2_94 | |
29. | Abdul Hamid Ganie, Lamiaa H. Sadek, M.M. Tharwat, M. Ashik Iqbal, M. Mamun Miah, Md Mamunur Rasid, Nasser S. Elazab, M.S. Osman, New investigation of the analytical behaviors for some nonlinear PDEs in mathematical physics and modern engineering, 2024, 9, 26668181, 100608, 10.1016/j.padiff.2023.100608 | |
30. | Mohammed Shaaf Alharthi, Extracting solitary solutions of the nonlinear Kaup–Kupershmidt (KK) equation by analytical method, 2023, 21, 2391-5471, 10.1515/phys-2023-0134 | |
31. | M. Ashik Iqbal, M. Mamun Miah, Md Mamunur Rasid, Hashim M. Alshehri, M. S. Osman, An investigation of two integro-differential KP hierarchy equations to find out closed form solitons in mathematical physics, 2023, 30, 2576-5299, 535, 10.1080/25765299.2023.2256049 | |
32. | M. Mamun Miah, 2023, 2931, 0094-243X, 030002, 10.1063/5.0178567 | |
33. | Zahra Eidinejad, Reza Saadati, Chenkuan Li, Mustafa Inc, Javad Vahidi, The multiple exp-function method to obtain soliton solutions of the conformable Date–Jimbo–Kashiwara–Miwa equations, 2024, 38, 0217-9792, 10.1142/S0217979224500437 | |
34. | M. Mamun Miah, Faisal Alsharif, Md. Ashik Iqbal, J. R. M. Borhan, Mohammad Kanan, Chaotic Phenomena, Sensitivity Analysis, Bifurcation Analysis, and New Abundant Solitary Wave Structures of The Two Nonlinear Dynamical Models in Industrial Optimization, 2024, 12, 2227-7390, 1959, 10.3390/math12131959 | |
35. | U. Akram, Z. Tang, S. Althobaiti, A. Althobaiti, Dynamics of optical dromions in concatenation model, 2024, 112, 0924-090X, 14321, 10.1007/s11071-024-09810-6 | |
36. | Syed T. R. Rizvi, Aly R. Seadawy, Sarfaraz Ahmed, Farrah Ashraf, Novel rational solitons and generalized breathers for (1+1)-dimensional longitudinal wave equation, 2023, 37, 0217-9792, 10.1142/S0217979223502697 | |
37. | Tongshuai Liu, Tiecheng Xia, Darboux transformation and explicit solutions for the Kaup-Kupershmidt equation, 2023, 98, 0031-8949, 105244, 10.1088/1402-4896/acfa41 | |
38. | M Mamun Miah, M Ashik Iqbal, M S Osman, A study on stochastic longitudinal wave equation in a magneto-electro-elastic annular bar to find the analytical solutions, 2023, 75, 0253-6102, 085008, 10.1088/1572-9494/ace155 | |
39. | Abdul S. Awan, Sultan Hussain, Differential–anti-differential equations and their solutions, 2023, 1016-2526, 313, 10.52280/pujm.2023.55(7-8)04 |