Citation: Mustafa Inc, Mamun Miah, Akher Chowdhury, Shahadat Ali, Hadi Rezazadeh, Mehmet Ali Akinlar, Yu-Ming Chu. New exact solutions for the Kaup-Kupershmidt equation[J]. AIMS Mathematics, 2020, 5(6): 6726-6738. doi: 10.3934/math.2020432
[1] | C. Yue, D. Lu, M. M. A. Khater, et al. On explicit wave solutions of the fractional nonlinear DSW system via the modified Khater method, Fractals, 2020. |
[2] | C. Yue, M. M. A. Khater, M. Inc, et al. Abundant analytical solutions of the fractional nonlinear (2+1)-dimensional BLMP equation arising in incompressible fluid, Int. J. Mod. Phys. B, 34 (2020), 1-13. |
[3] | N. Mahak, G. Akram, Exact solitary wave solutions of the (1+1)-dimensional Fokas-Lenells equation, Optik, 208 (2020), 1-9. |
[4] | H. Rezazadeh, J. Manafian, F. S. Khodadad, et al. Traveling wave solutions for density-dependent conformable fractional diffusion-reaction equation by the first integral method and the improvedtan(1/2φ(ξ))-expansion method, Opt. Quant. Electron., 50 (2018), 1-15. doi: 10.1007/s11082-017-1266-2 |
[5] | H. Rezazadeh, J. Vahidi, A. Zafar, et al. The functional variable method to find new exact solutions of the nonlinear evolution equations with dual-power-law nonlinearity, Int. J. Nonlin. Sci. Num., 21 (2019), 249-257. |
[6] | B. Soltanalizadeh, H. Esmalifalak, R. Hekmati, et al. Numerical analysis of the one-demential wave equation subject to a boundary integral specification, WJST., 15 (2018), 421-437. |
[7] | Z. Sarmast, B. Soltanalizadeh, K. Boubaker, A new numerical method to study a Second-order hyperbolic equation, South Asian Journal of Mathematics, 4 (2014), 285-296. |
[8] | M. D. Hossain, M. K. Alam, M. A. Akbar, Abundant wave solutions of the Boussinesq equation and the (2+1)-dimensional extended shallow water wave equation, Ocean Engineering, 165 (2018), 69-76. doi: 10.1016/j.oceaneng.2018.07.025 |
[9] | M. D. Hossain, U. Kulsum, M. K. Alam, et al. Kink and periodic solutions to the Jimbo-Miwa equation and the Calogero-Bogoyavlenskii-Schiff equation, J. Mech. Cont. Math. Sci., 13 (2018), 50-66. |
[10] | S. T. A. Siddique, M. D. Hossain, M. A. Akbar, Exact wave solutions to the (2+1)-dimensional Klein-Gordon equation with special types of nonlinearity, J. Mech. Cont. Math. Sci., 14 (2019), 1-20. |
[11] | N. Sajid, G. Akram, Novel solutions of Biswas-Arshed equation by newly φ6-model expansion method, Optik, 211 (2020), 1-22. |
[12] | Y. Chen, Q. Wang, Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic functions to (1+1)-dimensional dispersive long wave equation, Chaos Soliton. Fract., 24 (2005), 745-757. doi: 10.1016/j.chaos.2004.09.014 |
[13] | D. Lü, Jacobi elliptic function solutions for two variant Boussinesq equations, Chaos Soliton. Fract., 24 (2005), 1373-1385. doi: 10.1016/j.chaos.2004.09.085 |
[14] | A. Korkmaz, O. E. Hepson, K. Hosseini, et al. Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class, J. King Saud Univ. Sci., 32 (2018), 567-574. |
[15] | A. Chen, J. Li, Single peak solitary wave solutions for the osmosis K(2,2) equation under inhomogeneous boundary condition, J. Math. Anal. Appl., 369 (2010), 758-766. doi: 10.1016/j.jmaa.2010.04.018 |
[16] | D. H. Feng, J. B. Li, Exact explicit Traveling wave solutions for the (n+1)-dimensional Ø6 field model, Phys. Lett. A, 369 (2007), 255-261. doi: 10.1016/j.physleta.2007.04.088 |
[17] | J. H. He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Soliton. Fract., 30 (2006), 700-708. doi: 10.1016/j.chaos.2006.03.020 |
[18] | A. Bekir, Application of the exp-function method for nonlinear differential-difference equations, Appl. Math. Comput., 215 (2010), 4049-4053. |
[19] | H. Rezazadeh, A. Korkmaz, M. Eslami, et al. A large family of optical solutions to Kundu-Eckhaus model by a new auxiliary equation method, Opt. Quant. Electron., 51 (2019), 1-12. doi: 10.1007/s11082-018-1712-9 |
[20] | N. Raza, M. R. Aslam, H. Rezazadeh, Analytical study of resonant optical solitons with variable coefficients in Kerr and non-Kerr law media, Opt. Quant. Electron., 51 (2019), 59. |
[21] | N. Raza, U. Afzal, A. R. Butt, et al. Optical solitons in nematic liquid crystals with Kerr and parabolic law nonlinearities, Opt. Quant. Electron., 51 (2019), 1-16. doi: 10.1007/s11082-018-1712-9 |
[22] | D. Feng, K. Li, On exact traveling wave solutions for (1+1)-dimensional Kaup-Kupershmidt equation, Appl. Math., 2 (2011), 752-756. doi: 10.4236/am.2011.26100 |
[23] | F. Batool, G. Akram, Application of extended Fan sub-equation method to (1+1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mohony equation with fractional evolution, Opt. Quant. Electron., 49 (2017), 1-9. doi: 10.1007/s11082-016-0848-8 |
[24] | M. A. Fiddy, M. Testorf, Inverse scattering method applied to the synthesis of strongly structures, Opt. Express, 14 (2006), 2037-2046. doi: 10.1364/OE.14.002037 |
[25] | H. M. S. Ali, M. A. Habib, M. M. Miah, et al. A modification of the generalized Kudryshov method for the system of some nonlinear evolution equations, J. Mech. Cont. Math. Sci., 14 (2019), 91-109. |
[26] | M. M. Rahman, M. A. Habib, H. M. S. Ali, et al. The generalized Kudryshov method: a renewed mechanism for performing exact solitary wave solutions of some NLEEs, J. Mech. Cont. Math. Sci., 14 (2019), 323-339. |
[27] | M. A. Habib, H. M. S. Ali, M. M. Miah, et al. The generalized Kudryashov method for new closed form traveling wave solutions to some NLEEs, AIMS Mathematics, 4 (2019), 896-909. doi: 10.3934/math.2019.3.896 |
[28] | A. M. Wazwaz, The Hirota's bilinear method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Kadomstsev-Petviashvili equation, Appl. Math. Computat., 200 (2008), 160-166. doi: 10.1016/j.amc.2007.11.001 |
[29] | J. G. Liu, M. Eslami, H. Rezazadeh, et al. Rational solutions and lump solutions to a non-isospectral and generalized variable-coefficient Kadomtsev-Petviashvili equation, Nonlinear Dynam., 95 (2019), 1027-1033. doi: 10.1007/s11071-018-4612-4 |
[30] | W. Gao, H. Rezazadeh, Z. Pinar, et al. Novel explicit solutions for the nonlinear Zoomeron equation by using newly extended direct algebraic technique, Opt. Quant. Electron., 52 (2020), 1-13. doi: 10.1007/s11082-019-2116-1 |
[31] | H. Jafari, N. Kadkhoda, D. Baleanu, Fractional Lie group method of the time-fractional Boussinesq equation, Nonlinear Dynam., 81 (2015), 1569-1574. doi: 10.1007/s11071-015-2091-4 |
[32] | L. H. Ling, L. X. Qiang, Exact Solutions to (2+1)-dimensional Kaup-Kupershmidt equation, Commun. Theor. Phys., 52 (2009), 795-800. doi: 10.1088/0253-6102/52/5/06 |
[33] | A. H. Bhrawy, A. Bishwas, M. Javidi, et al. New solutions for (1+1)-dimensional and (2+1)- dimensional Kaup-Kupershmidt equations, Results Math., 63 (2013), 675-686. doi: 10.1007/s00025-011-0225-7 |
[34] | M. A. Akbar, N. H. M. Ali, E. M. E. Zayed, Abundant exact traveling wave solutions of the generalized Bretherton equation via (G'/G)-expansion method, Commun. Theor. Phys., 57 (2012), 173-178. doi: 10.1088/0253-6102/57/2/01 |
[35] | B. Ayhan, A. Bekir, The (G'/G)-expansion method for the nonlinear lattice equations, Commun. Nonlinear Sci., 17 (2012), 3490-3498. doi: 10.1016/j.cnsns.2012.01.009 |
[36] | M. Wang, X. Li, J. Zhang, The (G'/G)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372 (2008), 417-423. doi: 10.1016/j.physleta.2007.07.051 |
[37] | N. A. Kudryashov, A note on the (G'/G)-expansion method, Appl. Math. comput., 217 (2010), 1755-1758. |
[38] | L. Li, E. Li, M. Wang, The (G'/G, 1/G)-expansion method and its application to traveling wave solutions of the Zakharov equations, Appl. Math. J. Chin. Univ., 25 (2010), 454-462. |
[39] | E. M. E. Zayed, K. A. E. Alurrfi, The (G'/G, 1/G)-expansion method and its applications for solving two higher order nonlinear evolution equations, Math. Probl. Eng., 2014 (2014), 1-20. |
[40] | M. M. Miah, H. M. S. Ali, M. A. Akbar, An investigation of abundant traveling wave solutions of complex nonlinear evolution equations: the perturbed nonlinear Schrodinger equation and the cubic-quintic Ginzburg-Landau equation, Cogent Mathematics, 3 (2016), 1-19. |
[41] | M. M. Miah, H. M. S. Ali, M. A. Akbar, et al. Some applications of the (G'/G, 1/G)-expansion method to find new exact solutions of NLEEs, Eur. Phys. J. Plus, 132 (2017), 1-15. |
[42] | H. M. S. Ali, M. M. Miah, M. A. Akbar, Study of abundant explicit wave solutions of the Drinfeld-Sokolov-Satsuma-Hirota (DSSH) equation and the shallow water wave equation, Propulsion and Power Research, 7 (2018), 320-328. doi: 10.1016/j.jppr.2018.11.007 |
[43] | E. M. E. Zayed, K. A. E. Alurrfi, The (G'/G, 1/G)-expansion method and its applications to two nonlinear Schrödinger equations describing the propagation of femtosecond pulses in nonlinear optical fibers, Optik, 127 (2016), 1581-1589. |
[44] | M. M. Miah, H. M. S. Ali, M. A. Akbar, et al. New applications of the two variable (G'/G, 1/G)- expansion method for closed form traveling wave solutions of Integro-differential equations, Journal of Ocean Engineering and Science, 4 (2019), 132-143. |
[45] | M. M. Miah, A. R. Seadawy, H. M. S. Ali, et al. Further investigations to extract abundant new exact traveling wave solutions of some NLEEs, Journal of Ocean Engineering and Science, 4 (2019), 387-394. doi: 10.1016/j.joes.2019.06.004 |