Research article

New exact solutions for the Kaup-Kupershmidt equation

  • Received: 23 June 2020 Accepted: 23 August 2020 Published: 28 August 2020
  • MSC : 35A09, 35E05

  • We present new exact solutions for the (1+1)-dimensional Kaup-Kupershmidt (KK) equation by employing method of double $(G'/G, 1/G)$-expansion. We express solutions by hyperbolic, trigonometric and rational functions explicitly. Computational results indicate the efficiency and applicability potential of the method.

    Citation: Mustafa Inc, Mamun Miah, Akher Chowdhury, Shahadat Ali, Hadi Rezazadeh, Mehmet Ali Akinlar, Yu-Ming Chu. New exact solutions for the Kaup-Kupershmidt equation[J]. AIMS Mathematics, 2020, 5(6): 6726-6738. doi: 10.3934/math.2020432

    Related Papers:

  • We present new exact solutions for the (1+1)-dimensional Kaup-Kupershmidt (KK) equation by employing method of double $(G'/G, 1/G)$-expansion. We express solutions by hyperbolic, trigonometric and rational functions explicitly. Computational results indicate the efficiency and applicability potential of the method.


    加载中


    [1] C. Yue, D. Lu, M. M. A. Khater, et al. On explicit wave solutions of the fractional nonlinear DSW system via the modified Khater method, Fractals, 2020.
    [2] C. Yue, M. M. A. Khater, M. Inc, et al. Abundant analytical solutions of the fractional nonlinear (2+1)-dimensional BLMP equation arising in incompressible fluid, Int. J. Mod. Phys. B, 34 (2020), 1-13.
    [3] N. Mahak, G. Akram, Exact solitary wave solutions of the (1+1)-dimensional Fokas-Lenells equation, Optik, 208 (2020), 1-9.
    [4] H. Rezazadeh, J. Manafian, F. S. Khodadad, et al. Traveling wave solutions for density-dependent conformable fractional diffusion-reaction equation by the first integral method and the improvedtan(1/2φ(ξ))-expansion method, Opt. Quant. Electron., 50 (2018), 1-15. doi: 10.1007/s11082-017-1266-2
    [5] H. Rezazadeh, J. Vahidi, A. Zafar, et al. The functional variable method to find new exact solutions of the nonlinear evolution equations with dual-power-law nonlinearity, Int. J. Nonlin. Sci. Num., 21 (2019), 249-257.
    [6] B. Soltanalizadeh, H. Esmalifalak, R. Hekmati, et al. Numerical analysis of the one-demential wave equation subject to a boundary integral specification, WJST., 15 (2018), 421-437.
    [7] Z. Sarmast, B. Soltanalizadeh, K. Boubaker, A new numerical method to study a Second-order hyperbolic equation, South Asian Journal of Mathematics, 4 (2014), 285-296.
    [8] M. D. Hossain, M. K. Alam, M. A. Akbar, Abundant wave solutions of the Boussinesq equation and the (2+1)-dimensional extended shallow water wave equation, Ocean Engineering, 165 (2018), 69-76. doi: 10.1016/j.oceaneng.2018.07.025
    [9] M. D. Hossain, U. Kulsum, M. K. Alam, et al. Kink and periodic solutions to the Jimbo-Miwa equation and the Calogero-Bogoyavlenskii-Schiff equation, J. Mech. Cont. Math. Sci., 13 (2018), 50-66.
    [10] S. T. A. Siddique, M. D. Hossain, M. A. Akbar, Exact wave solutions to the (2+1)-dimensional Klein-Gordon equation with special types of nonlinearity, J. Mech. Cont. Math. Sci., 14 (2019), 1-20.
    [11] N. Sajid, G. Akram, Novel solutions of Biswas-Arshed equation by newly φ6-model expansion method, Optik, 211 (2020), 1-22.
    [12] Y. Chen, Q. Wang, Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic functions to (1+1)-dimensional dispersive long wave equation, Chaos Soliton. Fract., 24 (2005), 745-757. doi: 10.1016/j.chaos.2004.09.014
    [13] D. Lü, Jacobi elliptic function solutions for two variant Boussinesq equations, Chaos Soliton. Fract., 24 (2005), 1373-1385. doi: 10.1016/j.chaos.2004.09.085
    [14] A. Korkmaz, O. E. Hepson, K. Hosseini, et al. Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class, J. King Saud Univ. Sci., 32 (2018), 567-574.
    [15] A. Chen, J. Li, Single peak solitary wave solutions for the osmosis K(2,2) equation under inhomogeneous boundary condition, J. Math. Anal. Appl., 369 (2010), 758-766. doi: 10.1016/j.jmaa.2010.04.018
    [16] D. H. Feng, J. B. Li, Exact explicit Traveling wave solutions for the (n+1)-dimensional Ø6 field model, Phys. Lett. A, 369 (2007), 255-261. doi: 10.1016/j.physleta.2007.04.088
    [17] J. H. He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Soliton. Fract., 30 (2006), 700-708. doi: 10.1016/j.chaos.2006.03.020
    [18] A. Bekir, Application of the exp-function method for nonlinear differential-difference equations, Appl. Math. Comput., 215 (2010), 4049-4053.
    [19] H. Rezazadeh, A. Korkmaz, M. Eslami, et al. A large family of optical solutions to Kundu-Eckhaus model by a new auxiliary equation method, Opt. Quant. Electron., 51 (2019), 1-12. doi: 10.1007/s11082-018-1712-9
    [20] N. Raza, M. R. Aslam, H. Rezazadeh, Analytical study of resonant optical solitons with variable coefficients in Kerr and non-Kerr law media, Opt. Quant. Electron., 51 (2019), 59.
    [21] N. Raza, U. Afzal, A. R. Butt, et al. Optical solitons in nematic liquid crystals with Kerr and parabolic law nonlinearities, Opt. Quant. Electron., 51 (2019), 1-16. doi: 10.1007/s11082-018-1712-9
    [22] D. Feng, K. Li, On exact traveling wave solutions for (1+1)-dimensional Kaup-Kupershmidt equation, Appl. Math., 2 (2011), 752-756. doi: 10.4236/am.2011.26100
    [23] F. Batool, G. Akram, Application of extended Fan sub-equation method to (1+1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mohony equation with fractional evolution, Opt. Quant. Electron., 49 (2017), 1-9. doi: 10.1007/s11082-016-0848-8
    [24] M. A. Fiddy, M. Testorf, Inverse scattering method applied to the synthesis of strongly structures, Opt. Express, 14 (2006), 2037-2046. doi: 10.1364/OE.14.002037
    [25] H. M. S. Ali, M. A. Habib, M. M. Miah, et al. A modification of the generalized Kudryshov method for the system of some nonlinear evolution equations, J. Mech. Cont. Math. Sci., 14 (2019), 91-109.
    [26] M. M. Rahman, M. A. Habib, H. M. S. Ali, et al. The generalized Kudryshov method: a renewed mechanism for performing exact solitary wave solutions of some NLEEs, J. Mech. Cont. Math. Sci., 14 (2019), 323-339.
    [27] M. A. Habib, H. M. S. Ali, M. M. Miah, et al. The generalized Kudryashov method for new closed form traveling wave solutions to some NLEEs, AIMS Mathematics, 4 (2019), 896-909. doi: 10.3934/math.2019.3.896
    [28] A. M. Wazwaz, The Hirota's bilinear method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Kadomstsev-Petviashvili equation, Appl. Math. Computat., 200 (2008), 160-166. doi: 10.1016/j.amc.2007.11.001
    [29] J. G. Liu, M. Eslami, H. Rezazadeh, et al. Rational solutions and lump solutions to a non-isospectral and generalized variable-coefficient Kadomtsev-Petviashvili equation, Nonlinear Dynam., 95 (2019), 1027-1033. doi: 10.1007/s11071-018-4612-4
    [30] W. Gao, H. Rezazadeh, Z. Pinar, et al. Novel explicit solutions for the nonlinear Zoomeron equation by using newly extended direct algebraic technique, Opt. Quant. Electron., 52 (2020), 1-13. doi: 10.1007/s11082-019-2116-1
    [31] H. Jafari, N. Kadkhoda, D. Baleanu, Fractional Lie group method of the time-fractional Boussinesq equation, Nonlinear Dynam., 81 (2015), 1569-1574. doi: 10.1007/s11071-015-2091-4
    [32] L. H. Ling, L. X. Qiang, Exact Solutions to (2+1)-dimensional Kaup-Kupershmidt equation, Commun. Theor. Phys., 52 (2009), 795-800. doi: 10.1088/0253-6102/52/5/06
    [33] A. H. Bhrawy, A. Bishwas, M. Javidi, et al. New solutions for (1+1)-dimensional and (2+1)- dimensional Kaup-Kupershmidt equations, Results Math., 63 (2013), 675-686. doi: 10.1007/s00025-011-0225-7
    [34] M. A. Akbar, N. H. M. Ali, E. M. E. Zayed, Abundant exact traveling wave solutions of the generalized Bretherton equation via (G'/G)-expansion method, Commun. Theor. Phys., 57 (2012), 173-178. doi: 10.1088/0253-6102/57/2/01
    [35] B. Ayhan, A. Bekir, The (G'/G)-expansion method for the nonlinear lattice equations, Commun. Nonlinear Sci., 17 (2012), 3490-3498. doi: 10.1016/j.cnsns.2012.01.009
    [36] M. Wang, X. Li, J. Zhang, The (G'/G)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372 (2008), 417-423. doi: 10.1016/j.physleta.2007.07.051
    [37] N. A. Kudryashov, A note on the (G'/G)-expansion method, Appl. Math. comput., 217 (2010), 1755-1758.
    [38] L. Li, E. Li, M. Wang, The (G'/G, 1/G)-expansion method and its application to traveling wave solutions of the Zakharov equations, Appl. Math. J. Chin. Univ., 25 (2010), 454-462.
    [39] E. M. E. Zayed, K. A. E. Alurrfi, The (G'/G, 1/G)-expansion method and its applications for solving two higher order nonlinear evolution equations, Math. Probl. Eng., 2014 (2014), 1-20.
    [40] M. M. Miah, H. M. S. Ali, M. A. Akbar, An investigation of abundant traveling wave solutions of complex nonlinear evolution equations: the perturbed nonlinear Schrodinger equation and the cubic-quintic Ginzburg-Landau equation, Cogent Mathematics, 3 (2016), 1-19.
    [41] M. M. Miah, H. M. S. Ali, M. A. Akbar, et al. Some applications of the (G'/G, 1/G)-expansion method to find new exact solutions of NLEEs, Eur. Phys. J. Plus, 132 (2017), 1-15.
    [42] H. M. S. Ali, M. M. Miah, M. A. Akbar, Study of abundant explicit wave solutions of the Drinfeld-Sokolov-Satsuma-Hirota (DSSH) equation and the shallow water wave equation, Propulsion and Power Research, 7 (2018), 320-328. doi: 10.1016/j.jppr.2018.11.007
    [43] E. M. E. Zayed, K. A. E. Alurrfi, The (G'/G, 1/G)-expansion method and its applications to two nonlinear Schrödinger equations describing the propagation of femtosecond pulses in nonlinear optical fibers, Optik, 127 (2016), 1581-1589.
    [44] M. M. Miah, H. M. S. Ali, M. A. Akbar, et al. New applications of the two variable (G'/G, 1/G)- expansion method for closed form traveling wave solutions of Integro-differential equations, Journal of Ocean Engineering and Science, 4 (2019), 132-143.
    [45] M. M. Miah, A. R. Seadawy, H. M. S. Ali, et al. Further investigations to extract abundant new exact traveling wave solutions of some NLEEs, Journal of Ocean Engineering and Science, 4 (2019), 387-394. doi: 10.1016/j.joes.2019.06.004
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3900) PDF downloads(195) Cited by(28)

Article outline

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog