Research article

The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations

  • Received: 16 January 2020 Accepted: 13 April 2020 Published: 28 April 2020
  • MSC : 35C25, 35C07, 35C08, 35Q20

  • In this paper, we apply the two variable (ϕ'/ϕ, 1/ϕ)-expansion method to seek exact traveling wave solutions (solitary wave solutions, periodic function solutions, rational function solution) for time-fractional Kuramoto-Sivashinsky (K-S) equation, (3+1)-dimensional time-fractional KdV-Zakharov-Kuznetsov (KdV-ZK) equation and time-fractional Sharma-Tasso-Olver (FSTO) equation. The solutions are obtained in the form of hyperbolic, trigonometric and rational functions containing parameters. The results show that the two variable (ϕ'/ϕ, 1/ϕ)-expansion method is simple, effctivet, straightforward and is the generalization of the (G'/G)-expansion method.

    Citation: Yunmei Zhao, Yinghui He, Huizhang Yang. The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations[J]. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264

    Related Papers:

  • In this paper, we apply the two variable (ϕ'/ϕ, 1/ϕ)-expansion method to seek exact traveling wave solutions (solitary wave solutions, periodic function solutions, rational function solution) for time-fractional Kuramoto-Sivashinsky (K-S) equation, (3+1)-dimensional time-fractional KdV-Zakharov-Kuznetsov (KdV-ZK) equation and time-fractional Sharma-Tasso-Olver (FSTO) equation. The solutions are obtained in the form of hyperbolic, trigonometric and rational functions containing parameters. The results show that the two variable (ϕ'/ϕ, 1/ϕ)-expansion method is simple, effctivet, straightforward and is the generalization of the (G'/G)-expansion method.


    加载中


    [1] B. Tang, Y. N. He, L. L. Wei, et al. A generalized fractional sub-equation method for fractional differential equations with variable coefficients, Phys. Lett. A, 376 (2012), 2588-2590. doi: 10.1016/j.physleta.2012.07.018
    [2] S. M. Guo, L. Q. Mei, Y. Li, et al. The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics, Phys. Lett. A, 376 (2012), 407-411. doi: 10.1016/j.physleta.2011.10.056
    [3] B. Lu, The first integral method for some time fractional differential equations, J. Math. Anal. Appl., 395 (2012), 684-693. doi: 10.1016/j.jmaa.2012.05.066
    [4] W. Li, H. Z. Yang, B. He, Exact solutions of fractional Burgers and Cahn-Hilliard equations using extended fractional Riccati expansion method, Math. Prob. Eng., 2014 (2014), 1-9.
    [5] J. H. He, S. K. Elagan, Z. B. Li, Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus, Phys. Lett. A, 376 (2012), 257-259. doi: 10.1016/j.physleta.2011.11.030
    [6] Q. H. Feng, F. W. Meng, Explicit solutions for space-time fractional partial differential equations in mathematical physics by a new generalized fractional Jacobi elliptic equation-based sub-equation method, Optik, 127 (2016), 7450-7458. doi: 10.1016/j.ijleo.2016.05.147
    [7] E. A. Abdel-Salam, Z. I. Al-Muhiameed, Analytic solutions of the space-time fractional combined KdV-mKdV equation, Math. Prob. Eng., 2015 (2015), 1-6.
    [8] A. Bekir, ö. Güner, The $(\frac{G'}{G})$-expansion method using modified Riemann-Liouville derivative for some space-time fractional differential equations, Ain. Shams. Eng. J., 5 (2014), 959-965. doi: 10.1016/j.asej.2014.03.006
    [9] Q. H. Feng, A new analytical method for seeking traveling wave solutions of space-time fractional partial differential equations arising in mathematical physics, Optik, 130 (2017), 310-323. doi: 10.1016/j.ijleo.2016.10.106
    [10] Y. M. Zhao, Y. H. He, The extended fractional $(D_\xi^\alpha G/G)$-expansion method and its applications to a space-time fractional Fokas equation, Math. Prob. Eng., 2017 (2017), 1-9.
    [11] Y. H. He, Y. M. Zhao, Applications of separation variables approach in solving time-fractional PDEs, Math. Prob. Eng., 2018 (2018), 1-10.
    [12] K. K. Ali, R. I. Nuruddeen, K. R. Raslan, New structures for the space-time fractional simplified MCH and SRLW equations, Chaos Soliton. Fract., 106 (2018), 304-309. doi: 10.1016/j.chaos.2017.11.038
    [13] M. Kaplan, A. Bekir, A novel analytical method for time-fractional differential equations, Optik, 127 (2016), 8209-8214. doi: 10.1016/j.ijleo.2016.05.152
    [14] M. Kaplan, A. Bekir, Construction of exact solutions to the space-time fractional differential equations via new approach, Optik, 132 (2017), 1-8. doi: 10.1016/j.ijleo.2016.11.139
    [15] R. Sahadevan, T. Bakkyaraj, Invariant subspace method and exact solutions of certain nonlinear time fractional partial differential equations, Fract. Calc. Appl. Anal., 18 (2015), 146-162.
    [16] A. A. Omar, S. Nabil, Application of reproducing kernel algorithm for solving Dirichlet timefractional diffusion-Gordon types equations in porous media, J. Porous Media, 22 (2019), 411-434. doi: 10.1615/JPorMedia.2019028970
    [17] A. A. Omar, Application of residual power series method for the solution of time-fractional Schrodinger equations in one-dimensional space, Fund. Inform., 166 (2019), 87-110. doi: 10.3233/FI-2019-1795
    [18] A. A. Omar, Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm, Calcolo, 55 (2018), 1-28. doi: 10.1007/s10092-018-0244-9
    [19] A. A. Omar, Numerical Algorithm for the Solutions of Fractional Order Systems of Dirichlet Function Types with Comparative Analysis, Fund. Inform., 166 (2019), 111-137. doi: 10.3233/FI-2019-1796
    [20] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
    [21] R. Khalil, M. Al-Horani, A. Yousef, et al. A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. doi: 10.1016/j.cam.2014.01.002
    [22] Y. M. Zhao, New exact solutions for a higher-order wave equation of KdV type using the multiple simplest equation method, J. Appl. Math., 2014 (2014), 1-13.
    [23] S. Sahoo, S. Saha Ray, New approach to find exact solutions of time-fractional KuramotoSivashinsky equation, Physica A, 434 (2015), 240-245. doi: 10.1016/j.physa.2015.04.018
    [24] S. Sahoo, S. Saha Ray, Improved fractional sub-equation method for (3+1)-dimensional generalized fractional KdV-Zakharov-Kuznetsov equations, Comput. Math. Appl., 70 (2015), 158-166. doi: 10.1016/j.camwa.2015.05.002
    [25] C. Chen, Y. L. Jiang, Simplest equation method for some time-fractional partial differential equations with conformable derivative, Comput. Math. Appl., 75 (2018), 2978-2988. doi: 10.1016/j.camwa.2018.01.025
    [26] L. Song, Q. Wang, H. Q. Zhang, Rational approximation solution of the fractional Sharma-TassoOlever equation, J. Comput. Appl. Math, 224 (2009), 210-218. doi: 10.1016/j.cam.2008.04.033
    [27] B. Lu, The first integral method for some time fractional differential equations, J. Math. Anal. Appl., 395 (2012), 684-693. doi: 10.1016/j.jmaa.2012.05.066
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3808) PDF downloads(366) Cited by(7)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog