Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

New soliton solutions of the conformal time derivative generalized q-deformed sinh-Gordon equation

  • In this article, our main purpose was to study the soliton solutions of conformal time derivative generalized q-deformed sinh-Gordon equation. New soliton solutions have been obtained by the complete discrimination system for the polynomial method. The solutions we obtained mainly included hyperbolic function solutions, solitary wave solutions, Jacobi elliptic function solutions, trigonometric function solutions and rational function solutions. The results showed abundant traveling wave patterns of conformal time derivative generalized q-deformed sinh-Gordon equation.

    Citation: Chun Huang, Zhao Li. New soliton solutions of the conformal time derivative generalized q-deformed sinh-Gordon equation[J]. AIMS Mathematics, 2024, 9(2): 4194-4204. doi: 10.3934/math.2024206

    Related Papers:

    [1] Khalid K. Ali, Mohamed S. Mohamed, M. Maneea . Exploring optical soliton solutions of the time fractional q-deformed Sinh-Gordon equation using a semi-analytic method. AIMS Mathematics, 2023, 8(11): 27947-27968. doi: 10.3934/math.20231429
    [2] Wedad Albalawi, Nauman Raza, Saima Arshed, Muhammad Farman, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Chaotic behavior and construction of a variety of wave structures related to a new form of generalized q-Deformed sinh-Gordon model using couple of integration norms. AIMS Mathematics, 2024, 9(4): 9536-9555. doi: 10.3934/math.2024466
    [3] Khalid K. Ali, Mohamed S. Mohamed, Weam G. Alharbi, M. Maneea . Solving the time fractional q-deformed tanh-Gordon equation: A theoretical analysis using controlled Picard's transform method. AIMS Mathematics, 2024, 9(9): 24654-24676. doi: 10.3934/math.20241201
    [4] Khalid K. Ali, Weam G. Alharbi . Exploring unconventional optical soliton solutions for a novel q-deformed mathematical model. AIMS Mathematics, 2024, 9(6): 15202-15222. doi: 10.3934/math.2024738
    [5] Abdullahi Yusuf, Tukur A. Sulaiman, Mustafa Inc, Sayed Abdel-Khalek, K. H. Mahmoud . Mtruncated optical soliton and their characteristics to a nonlinear equation governing the certain instabilities of modulated wave trains. AIMS Mathematics, 2021, 6(9): 9207-9221. doi: 10.3934/math.2021535
    [6] Chun Huang, Zhao Li . Soliton solutions of conformable time-fractional perturbed Radhakrishnan-Kundu-Lakshmanan equation. AIMS Mathematics, 2022, 7(8): 14460-14473. doi: 10.3934/math.2022797
    [7] Sayed Saifullah, Amir Ali, Zareen A. Khan . Analysis of nonlinear time-fractional Klein-Gordon equation with power law kernel. AIMS Mathematics, 2022, 7(4): 5275-5290. doi: 10.3934/math.2022293
    [8] Rutwig Campoamor-Stursberg, Eduardo Fernández-Saiz, Francisco J. Herranz . Generalized Buchdahl equations as Lie–Hamilton systems from the "book" and oscillator algebras: quantum deformations and their general solution. AIMS Mathematics, 2025, 10(3): 6873-6909. doi: 10.3934/math.2025315
    [9] Yanjie Zhou, Xianxiang Leng, Yuejie Li, Qiuxiang Deng, Zhendong Luo . A novel two-grid Crank-Nicolson mixed finite element method for nonlinear fourth-order sin-Gordon equation. AIMS Mathematics, 2024, 9(11): 31470-31494. doi: 10.3934/math.20241515
    [10] Wei Gao, Gulnur Yel, Haci Mehmet Baskonus, Carlo Cattani . Complex solitons in the conformable (2+1)-dimensional Ablowitz-Kaup-Newell-Segur equation. AIMS Mathematics, 2020, 5(1): 507-521. doi: 10.3934/math.2020034
  • In this article, our main purpose was to study the soliton solutions of conformal time derivative generalized q-deformed sinh-Gordon equation. New soliton solutions have been obtained by the complete discrimination system for the polynomial method. The solutions we obtained mainly included hyperbolic function solutions, solitary wave solutions, Jacobi elliptic function solutions, trigonometric function solutions and rational function solutions. The results showed abundant traveling wave patterns of conformal time derivative generalized q-deformed sinh-Gordon equation.



    Nonlinear partial differential equations arised from many scientific fields, such as physics, biology and so on. In recent decades, scientists devoted themselves to formulate methods to find the solutions to the nonlinear problems [1,2,3,4,5,6,7,8]. It is well known that the sinh-Gordon equation is one of the essential nonlinear equations in integrable quantum field theory, kink dynamics, and fluid dynamics [9,10,11,12,13,14]. The sinh-Gordon equation arises as a special case of the Toda lattice equation, a well-known soliton equation in one space and one time dimension, which can be used to model the interaction of neighboring particles of equal mass in a lattice formation with a crystal.

    The sinh-Gordon equation [15] is

    2Ωx22Ωt2=[sinh(Ω)]. (1.1)

    In recent years, many powerful mathematical methods have been proposed to derive soliton solutions for the sinh-Gordon equation, such as the Tanh method [16], bifurcation method [17], (G/G)-expansion method and Exp-function method [18], F-expansion method [19], and the homogeneous balance method [20].

    When the q-deformed hyperbolic function, proposed in the 19th century by Arai, was included in the dynamical system, the symmetry of the system was destroyed and, consequently as was the symmetry of the solution [21,22]. Recently, there have been several solutions generated for the Schrödinger equation and Dirac equation with q-deformed hyperbolic potential. q-deformed functions show promise in modeling atom-trapping potentials or statistical distributions in Bose-Einstein condensates, as well as exploring vibrational spectra of diatomic molecules [23,24]. The generalized q-deformed sinh-Gordon equation is

    2Ωx22Ωt2=[sinhq(Ωθ)]lω. (1.2)

    This equation was introduced and studied in this form for the first time in 2018 by Eleuch [25]. Nauman et al. studied the equation via the exp(ϕ(ξ))-expansion method [26]. Ali et al. employed the extended tanh method to obtain the exact solutions of the equation [27].

    In this paper, we shall consider the conformal time derivative generalized q-deformed sinh-Gordon equation [28]:

    2Ωx22αΩt2α=[sinhq(Ωθ)]lω, (1.3)

    where θ,l are constants, α(0,1], and q(0,1). q=1 gives the standard sinh-Gordon equation. In addition, we get the generalized q-deformed sinh-Gordon equation at α=1. The equation also appears in problems varying from fluid flow to quantum field theory. In this work, we analyze the conformal time derivative generalized q-deformed sinh-Gordon equation with the aid of a conformable derivative operator to find solitons using the complete discrimination system for the polynomial method.

    This article is arranged as follows: In Section 2, we review the definition of conformable derivative and introduce the complete discrimination system for constructing the exact traveling wave solutions of fractional partial differential equation. In Section 3, we will apply this method to solve the conformal time derivative generalized q-deformed sinh-Gordon equation. In Section 4, we draw the numerical simulations. In Section 5, we present the concluding remarks.

    The conformable derivative of order α is defined as

    Dαtf(t)=limε0f(t+εt1α)f(t)ε (2.1)

    for all t>0, α(0,1].

    The following transformation is used to determine the traveling wave solution of Eq (1.3):

    Ω(x,t)=v(ξ),ξ=ρxκtαα, (2.2)

    and κ denotes the speed of the traveling wave.

    Using Eq (2.2), Eq (1.3) becomes

    (ρ2κ2)v(ξ)+ξ[sinhq(v(ξ)θ)]l=0. (2.3)

    Now, we take two cases for Eq (2.3).

    Case one: Suppose l=θ=1,ω=0. Then, Eq (2.3) can be written as

    (ρ2κ2)v(ξ)sinhq(v(ξ))=0. (2.4)

    We can multiply both sides of Eq (2.4) by v(ξ) and, after the integration, we get [28]

    12(ρ2κ2)(v(ξ))2coshq(v(ξ))m=0, (2.5)

    where m is the integration constant.

    Let

    v(ξ)=ln(u(ξ)), (2.6)

    and Eq (2.5) becomes

    (ρ2κ2)u(ξ)2+2mu2(ξ)+qu(ξ)+u3(ξ)=0. (2.7)

    Thus, we can solve Eq (2.7) using our method, and from Eqs (2.2) and (2.6), we can get the solution of Eq (1.3) in the first case.

    Case two: Suppose θ=1,l=2,ω=q2. In this case, Eq (2.3) can be expressed as [28]:

    (ρ2κ2)v(ξ)(sinhqv(ξ))2q2=0. (2.8)

    After simplifying Eq (2.8), we get

    (ρ2κ2)v(ξ)12coshq2(2v(ξ))=0. (2.9)

    Let

    v(ξ)=12ln(u(ξ)), (2.10)

    and Eq (2.10) becomes

    2(ρ2κ2)u(ξ)22(ρ2κ2)u(ξ)u(ξ)+q2u(ξ)+u3(ξ)=0. (2.11)

    Thus, we can solve Eq (2.11) using our method and from Eqs (2.2) and (2.10) we can get the solution of Eq (1.3) in the second case.

    Equations (2.7) and (2.10) are usually reduced to

    (u(ξ))2=G(u), (2.12)

    where G(u) is a polynomial, then, integrating Eq (2.12) once, we can obtain

    ±(ξξ0)=duG(u), (2.13)

    where ξ0 is an integral constant.

    According to the above procedures, recent results have been reported via the complete discrimination system [29,30].

    In this section, the polynomial method applies to find the analytic solution to the two cases that were imposed for Eq (1.3).

    The analytical solution of case one at l=θ=1,ω=0:

    Based on Eq (2.7), we can get

    (u)2=1ρ2κ2u3+2mρ2κ2u2+qρ2κ2u. (3.1)

    Making the transformation ψ=(1ρ2κ2)13u, ξ1=(1ρ2κ2)13ξ, Eq (3.1) becomes

    (ψ)2=ψ3+p1ψ2+p2ψ, (3.2)

    where p1=2m(1ρ2κ2)13, p2=q(1ρ2κ2)23.

    Integrating Eq (3.2), we have

    ±(ξ1ξ0)=duψ3+p1ψ2+p2ψ. (3.3)

    According to the complete discrimination system, we give the corresponding single traveling wave solutions to Eq (2.7).

    Case 1.1. Δ=0, D1<0, and we have F(ψ)=(ψλ1)2(ψλ2), λ1λ2.

    When ψ>λ2, we have

    ±(ξ1ξ0)=dψ(ψλ1)ψλ2={1λ1λ2lnψλ1λ1λ2ψλ2+λ1λ2(λ1>λ2),2λ2λ1arctanψλ2λ1λ2(λ1<λ2); (3.4)

    the corresponding solutions of Eq (1.3) are

    Ω1(x,t)=13ln(ρ2κ2)+ln{(λ1λ2)tanh2[λ1λ22(1ρ2κ2)13(ξξ0)]+λ2}(λ1>λ2); (3.5)
    Ω2(x,t)=13ln(ρ2κ2)+ln{(λ1λ2)coth2[λ1λ22(1ρ2κ2)13(ξξ0)]+λ2}(λ1>λ2); (3.6)
    Ω3(x,t)=13ln(ρ2κ2)+ln{(λ2λ1)tan2[λ2λ12(1ρ2κ2)13(ξξ0)]+λ2}(λ1>λ2). (3.7)

    Case 1.2. Δ=0, D1=0, then F(ψ)=(ωλ)3 and the corresponding solutions of Eq (1.3) are

    Ω4(x,t)=ln[4(1ρ2κ2)23(ξξ0)2+λ]. (3.8)

    Case 1.3. Δ>0, D1<0, then F(ψ)=(ψλ1)(ψλ3)(ψλ3), with λ1<λ2<λ3. Therefore, we have

    ±(ξ1ξ0)=du(ψλ1)(ψλ1)(ψλ3). (3.9)

    When λ1<ψ<λ3, the corresponding solutions of Eq (1.3) are

    Ω5(x,t)=13ln(ρ2κ2)+ln[λ1+(λ2λ1)sn2(λ3λ12)(1ρ2κ2)13(ξξ0),m)]. (3.10)

    When ψ>λ3, the corresponding solutions of Eq (1.3) are

    Ω6(x,t)=13ln(ρ2κ2)+ln[λ3λ2sn2(λ3λ12(1ρ2κ2)13(ξξ0),m)cn2(λ3λ12(1ρ2κ2)13(ξξ0),m)], (3.11)

    where m2=λ2λ1λ3λ1.

    Case 1.4. Δ<0, then, F(ψ)=(ψλ)(ψ2+b1ψ+b2), b214b2<0, and the corresponding integral becomes

    ±(ξ1ξ0)=dψ(ψλ)(ψ2+b1ψ+b2). (3.12)

    When ψ>λ, the corresponding solutions of Eq (1.3) are

    Ω7(x,t)=13ln(ρ2κ2)+ln[λ+2λ2+b1λ+b21+cn(λ2+b1λ+b2)14(1ρ2κ2)13(ξ1ξ0),m)λ2+b1λ+b2], (3.13)

    where m2=12(1λ+b12λ2+b1λ+b2).

    The analytical solution of case two at l=2,θ=1,ω=q2.

    By our trial equation method, we have the trial equation

    u=a0+a1u+a2u2. (3.14)

    Integrating Eq (3.14), we have

    (u)2=23a2u3+a1u2+a0u+d. (3.15)

    Substituting Eqs (3.14) and (3.15) into Eq (2.11),

    r3u3+r2u2+r1u+r0=0, (3.16)

    where r3=23(ρ2κ2)a2+1, r2=4(ρ2κ2)a1, r1=2(ρ2κ2)a0+q2, r0=2(ρ2κ2)d.

    Thus, we have a system of algebraic equations from the coefficients of polynomial u. Solving the algebraic equation system yields the following: a2=32(ρ2κ2), a1 is the constant, a0=q22(ρ2κ2), d=0.

    Making the transformation u=(23a2)13ϕ, ξ1=(23a2)13ξ, we have

    ±(ξ1ξ0)=dϕϕ[ϕ2+q1ϕ+q2], (3.17)

    where ξ0 is the integration constant.

    Suppose that Δ=q214q2, F(ϕ)=ϕ2+q1ϕ+q2, and there are four cases for the solutions of Eq (1.3).

    Case 2.1. Δ=0. Since ϕ>0, we have

    ±(ξ1ξ0)=dϕϕ(ϕ+q12). (3.18)

    If q1<0, Eq (3.18) becomes

    ±(ξ1ξ0)=2q1ln2ϕq12ϕ+q1, (3.19)

    and the traveling wave solutions of Eq (1.3) are

    Ω8(x,t)=13lna12(ρ2κ2)+lntanh(18a1(ρ2κ2)23(ξξ0)), (3.20)
    Ω9(x,t)=13lna12(ρ2κ2)+lncoth(18a1(ρ2κ2)23(ξξ0)). (3.21)

    If q1>0, Eq (3.18) becomes

    ±(ξ1ξ0)=q12arctan2ϕq1, (3.22)

    and the traveling wave solutions of Eq (1.3) are

    Ω10(x,t)=12lna12(ρ2κ2)+lntan[a12(ρ2κ2)23(ξξ0)]. (3.23)

    If q1=0, Eq (3.18) becomes

    ±(ξ1ξ0)=1ϕ, (3.24)

    and the traveling wave solutions of Eq (1.3) are

    Ω11(x,t)=12ln4(ξξ0)2. (3.25)

    Case 2.2. Δ>0, q2=0. Since ϕ>q1, Eq (3.17) can be written as

    ±(ξ1ξ0)=dϕϕϕ+q1. (3.26)

    If q1>0, then, Eq (3.26) becomes

    ±(ξ1ξ0)=2q1ln2(ϕ+q1)q12(ϕ+q1)+q1, (3.27)

    and the traveling wave solutions of Eq (1.3) are

    Ω12(x,t)=12lna12(ρ2κ2)+lntanh[a12(ρ2κ2)23(ξξ0)]a1(ρ2κ2)23], (3.28)
    Ω13(x,t)=12lna12(ρ2κ2)+lncoth[a12(ρ2κ2)23(ξξ0)]a1(ρ2κ2)23]. (3.29)

    If q1<0, then, Eq (3.26) becomes

    ±(ξ1ξ0)=22q1arctan2(ϕ+q1)q1, (3.30)

    and the traveling wave solutions of Eq (1.3) are

    Ω14(x,t)=12ln{a12(ρ2κ2)[a12(ρ2κ2)23(ξξ0)]a1(ρ2κ2)23}. (3.31)

    Case 2.3. Δ>0, q20. Suppose α1<α2<α3, one of them is zero and the other two are the roots of F(ϕ).

    If α1<ϕ<α3, and take ϕ=α1+(α2α1)sinθ, then, Eq (3.17) can be rewritten as

    ±(ξ1ξ0)=2α3α1dϕ1m2sin2θ. (3.32)

    Here, m2=α2α1α3α1. According to the definition of Jacobian elliptic function sn, we obtain the solution of Eq (1.3) in the following form:

    Ω15(x,t)=12ln{(ρ2κ2)[α1+(α2α1)sn2(α3α1(ξξ0),m)]}. (3.33)

    If ϕ>α3, and take ψ=α2sin2φ+α3cos2φ, the solution of Eq (1.3) can be constructed as follows:

    Ω16(x,t)=12ln(ρ2κ2)βsn(α3α1(ξ1ξ0),m)+α3cn(α3α1(ξ1ξ0),m). (3.34)

    Case 2.4. Δ<0, ϕ>0, and take the transformation

    ϕ=q2tan2φ2. (3.35)

    Substituting Eq (3.35) into Eq (3.17),

    ±(ξ1ξ0)=q142dφ1k2sin2φ, (3.36)

    where k2=12(1q12q2). From the definition of Jacobian elliptic function cn, we obtain

    cn(2(q142)(ξ1ξ0),m)=cosφ. (3.37)

    From Eq (3.35), we get

    cosφ=2q2ϕ+q21. (3.38)

    By using Eqs (3.37) and (3.38), the traveling wave solution of Eq (1.3) can be derived in the following form:

    Ω17(x,t)=12ln [2q21+cn(2q2((ρ2κ2)16)(ξξ0),m)q2(ρ2κ2)13]. (3.39)

    In this section, the exact solutions of the conformal time derivative generalized q-deformed sinh-Gordon equation are given. Through the above results, we get some new exact solutions, such as solitary wave solutions Ω1(x,t),Ω2(x,t),Ω8(x,t),Ω9(x,t),Ω12(x,t),Ω13(x,t); rational function solutions Ω4(x,t),Ω11(x,t),Ω14(x,t); trigonometric function solutions Ω3(x,t),Ω10(x,t); and Jacobi elliptic function double periodic solutions Ω5(x,t),Ω6(x,t),Ω7(x,t),Ω15(x,t),Ω16(x,t),Ω17(x,t). Furthermore, Ω1(x,t),Ω8(x,t),Ω12(x,t) are bounded solutions and Ω2(x,t),Ω9(x,t),Ω13(x,t) are unbounded solutions. Using the mathematical software Maple, we plot some of these obtained solutions, which are shown in Figures 13.

    Figure 1.  The solitary wave solution Ω8(x,t) for Eq (1.1) with ρ=1,κ=12,a1=1,ξ0=0. (a) Perspective view of the wave. (b) The wave along the z-axis.
    Figure 2.  The solitary wave solution Ω9(x,t) for Eq (1.1) with ρ=23,κ=12,a1=1,ξ0=0. (a) Perspective view of the wave. (b) The wave along the z-axis.
    Figure 3.  The solitary wave solution Ω10(x,t) for Eq (1.1) with ρ=1,κ=12,a1=1,ξ0=0. (a) Perspective view of the wave. (b) The wave along the z-axis.

    In this paper, the conformal time derivative generalized q-deformed sinh-Gordon equation has been investigated via the complete discriminant system method. A range of new traveling wave solutions is obtained, such as periodic solutions, rational wave solutions, Jacobi elliptic solutions, triangular functions solutions, and hyperbolic function solutions. Comparing with other works [28], these solutions have not been reported in the former literature. This also indicates that the complete discrimination system for polynomial method is powerful in nonlinear analysis.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by Science Research Fund of Sichuan Vocational and Technical College under grant No. 2022YZB009.

    The authors declare no conflicts of interest.



    [1] Z. Li, C. Huang, B. J. Wang, Phase portrait, bifurcation, chaotic pattern and optical soliton solutions of the Fokas-Lenells equation with cubic-quartic dispersion in optical fibers, Phys. Lett. A, 465 (2023), 128714. https://doi.org/10.1016/j.physleta.2023.128714 doi: 10.1016/j.physleta.2023.128714
    [2] B. Lu, The first integral method for some time fractional differential equations, J. Math. Anal. Appl., 395 (2012), 684–693. https://doi.org/10.1016/j.jmaa.2012.05.066 doi: 10.1016/j.jmaa.2012.05.066
    [3] O. Guner, Exp-function method and fractional complex transform for space-time fractional KP-BBM equation, Commun. Theor. Phys., 68 (2017), 149. https://doi.org/10.1088/0253-6102/68/2/149 doi: 10.1088/0253-6102/68/2/149
    [4] Z. Li, C. Peng, Bifurcation, phase portrait and traveling wave solution of time-fractional thin-film ferroelectric material equation with beta fractional derivative, Phys. Lett. A, 484 (2023), 129080. https://doi.org/10.1016/j.physleta.2023.129080 doi: 10.1016/j.physleta.2023.129080
    [5] J. Wu, Z. Yang, Global existence and boundedness of chemotaxis-fluid equations to the coupled Solow-Swan model, AIMS Math., 8 (2023), 17914–17942. https://doi.org/10.3934/math.2023912 doi: 10.3934/math.2023912
    [6] Z. Li, J. Liu, X. Y. Xie, New single traveling wave solution in birefringent fibers or crossing sea waves on the high seas for the coupled Fokas-Lenells system, J. Ocean Eng. Sci., 8 (2023), 590–594. https://doi.org/10.1016/j.joes.2022.05.017 doi: 10.1016/j.joes.2022.05.017
    [7] A. Korkmaz, Exact solutions to (3+1) conformable time fractional Jimbo-Miwa, Zakharov-Kuznetsov and modified Zakharov-Kuznetsov equations, Commun. Theor. Phys., 67 (2017), 479. https://doi.org/10.1088/0253-6102/67/5/479 doi: 10.1088/0253-6102/67/5/479
    [8] Y. Pandir, H. H. Duzgun, New exact solutions of time fractional Gardner equation by using new version of F-expansion method, Commun. Theor. Phys., 67 (2017), 9. https://doi.org/10.1088/0253-6102/67/1/9 doi: 10.1088/0253-6102/67/1/9
    [9] Sirendaoreji, S. Jiong, A direct method for solving sine-Gordon type equations, Phys. Lett. A, 298 (2002), 133–139. https://doi.org/10.1016/S0375-9601(02)00513-3 doi: 10.1016/S0375-9601(02)00513-3
    [10] Z. T. Fu, S. K. Liu, S. D. Liu, Exact solutions to double and triple sinh-Gordon equations, Z. Naturforsch. A, 59 (2004), 933–937. https://doi.org/10.1515/zna-2004-1207 doi: 10.1515/zna-2004-1207
    [11] S. K. Liu, Z. T. Fu, S. D. Liu, Exact solutions to sine-Gordon-type equations, Phys. Lett. A, 351 (2006), 59–63. https://doi.org/10.1016/j.physleta.2005.10.054 doi: 10.1016/j.physleta.2005.10.054
    [12] W. G. Wei, Discrete singular convolution for the sine-Gordon equation, Phys. D, 137 (2000), 247–259. https://doi.org/10.1016/S0167-2789(99)00186-4 doi: 10.1016/S0167-2789(99)00186-4
    [13] A. M. Wazwaz, Exact solutions for the generalized sine-Gordon and the generalized sinh-Gordon equations, Chaos Solitons Fract., 28 (2006), 127–135. https://doi.org/10.1016/j.chaos.2005.05.017 doi: 10.1016/j.chaos.2005.05.017
    [14] A. M. Wazwaz, Travelling wave solutions for combined and double combined sine-cosine-Gordon equations by the variable separated ODE method, Appl. Math. Comput., 177 (2016), 755–760. https://doi.org/10.1016/j.amc.2005.09.104 doi: 10.1016/j.amc.2005.09.104
    [15] A. Grauel, Sinh-Gordon equation, Painlevé property and Bäcklund transformation, Phys. A, 132 (1985), 557–568. https://doi.org/10.1016/0378-4371(85)90027-5 doi: 10.1016/0378-4371(85)90027-5
    [16] A. M. Wazwaz, Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE method, Comput. Math. Appl., 50 (2005), 1685–1696. https://doi.org/10.1016/j.camwa.2005.05.010 doi: 10.1016/j.camwa.2005.05.010
    [17] S. Q. Tang, W. T. Huang, Bifurcations of travelling wave solutions for the generalized double sinh-Gordon equation, Appl. Math. Comput., 189 (2007), 1774–1781. https://doi.org/10.1016/j.amc.2006.12.082 doi: 10.1016/j.amc.2006.12.082
    [18] H. Kheiri, A. Jabbari, Exact solutions for the double sinh-Gordon and generalized form of the double sinh-Gordon equations by using (G/G)-expansion method, Turkish J. Phys., 34 (2010), 73–82. https://doi.org/10.3906/fiz-0909-7 doi: 10.3906/fiz-0909-7
    [19] B. He, W. G. Rui, Y. Long, New exact double periodic wave and complex wave solutions for a generalized sinh-Gordon equation, Appl. Math. Comput., 229 (2014), 159–172. https://doi.org/10.1016/j.amc.2013.12.040 doi: 10.1016/j.amc.2013.12.040
    [20] A. Neirameh, Exact solutions of the generalized sinh-Gordon equation, Comput. Math. Math. Phys., 56 (2016), 1336–1342. https://doi.org/10.1134/S0965542516070149 doi: 10.1134/S0965542516070149
    [21] A. Arai, Exactly solvable supersymmetric quantum mechanics, J. Math. Anal. Appl., 158 (1991), 63–79. https://doi.org/10.1016/0022-247X(91)90267-4 doi: 10.1016/0022-247X(91)90267-4
    [22] M. S. Abdalla, H. Eleuch, Exact analytic solutions of the Schrödinger equations for some modifed q-deformed potentials, J. Appl. Phys., 115 (2014), 234906. https://doi.org/10.1063/1.4883296 doi: 10.1063/1.4883296
    [23] Y. G. Shu, J. C. Chen, L. X. Chen, Bose-Einstein condensation of a q-deformed ideal Bose gas, Phys. Lett. A, 292 (2002), 309–314. https://doi.org/10.1016/S0375-9601(01)00816-7 doi: 10.1016/S0375-9601(01)00816-7
    [24] S. M. Ikhdair, Rotation and vibration of diatomic molecule in the spatially-dependent mass Schrödinger equation with generalized q-deformed Morse potential, Chem. Phys., 361 (2009), 9–17. https://doi.org/10.1016/j.chemphys.2009.04.023 doi: 10.1016/j.chemphys.2009.04.023
    [25] H. Eleuch, Some analytical solitary wave solutions for the generalized q-deformed sinh-Gordon equation: 2θzξ=α[sinhq(βθγ)]pδ, Adv. Math. Phys., 2018 (2018), 1–7. https://doi.org/10.1155/2018/5242757 doi: 10.1155/2018/5242757
    [26] N. Raza, S. Arshed, H. I. Alrebdi, A. H. Abdel-Aty, H. Eleuch, Abundant new optical soliton solutions related to q-deformed sinh-Gordon model using two innovative integration architectures, Results Phys., 35 (2022), 105358. https://doi.org/10.1016/j.rinp.2022.105358 doi: 10.1016/j.rinp.2022.105358
    [27] K. K. Ali, A. H. Abdel-Aty, An extensive analytical and numerical study of the generalized q-deformed sinh-Gordon equation, J. Ocean Eng. Sci., 2022. https://doi.org/10.1016/j.joes.2022.05.034 doi: 10.1016/j.joes.2022.05.034
    [28] K. K. Ali, A. H. Abdel-Aty, H. Eleuch, New soliton solutions for the conformal time derivative q-deformed physical model, Results Phys., 42 (2022), 105993. https://doi.org/10.1016/j.rinp.2022.105993 doi: 10.1016/j.rinp.2022.105993
    [29] D. M. Cao, C. Li, F. J. He, Exact solutions to the space-time fraction Whitham-Broer-Kaup equation, Modern Phys. Lett. B, 34 (2020), 2050178. https://doi.org/10.1142/S021798492050178X doi: 10.1142/S021798492050178X
    [30] B. Guan, S. B. Li, S. Q. Chen, L. G. Zhang, C. H. Wang, The classification of single traveling wave solutions to coupled time-fractional KdV-Drinfel'd-Sokolov-Wilson system, Results Phys., 13 (2019), 102291. https://doi.org/10.1016/j.rinp.2019.102291 doi: 10.1016/j.rinp.2019.102291
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1044) PDF downloads(59) Cited by(0)

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog