Research article Special Issues

Some matrix inequalities related to norm and singular values

  • Received: 20 November 2023 Revised: 27 December 2023 Accepted: 04 January 2024 Published: 15 January 2024
  • MSC : 47A30, 15A42, 15A18

  • In this short note, we presented a new proof of a weak log-majorization inequality for normal matrices and obtained a singular value inequality related to positive semi-definite matrices. What's more, we also gave an example to show that some conditions in an existing norm inequality are necessary.

    Citation: Xiaoyan Xiao, Feng Zhang, Yuxin Cao, Chunwen Zhang. Some matrix inequalities related to norm and singular values[J]. AIMS Mathematics, 2024, 9(2): 4205-4210. doi: 10.3934/math.2024207

    Related Papers:

  • In this short note, we presented a new proof of a weak log-majorization inequality for normal matrices and obtained a singular value inequality related to positive semi-definite matrices. What's more, we also gave an example to show that some conditions in an existing norm inequality are necessary.



    加载中


    [1] Y. Yan, D. Cheng, J. Feng, H. Li, J. Yue, Survey on applications of algebraic state space theory of logical systems to finite state machines, Sci. China Inf. Sci., 66 (2023), 111201. https://doi.org/10.1007/s11432-022-3538-4 doi: 10.1007/s11432-022-3538-4
    [2] X. Zhan, Singular values of differences of positive semidefinite matrices, SIAM J. Matrix Anal. Appl., 22 (2000), 819–823. https://doi.org/10.1137/S0895479800369840 doi: 10.1137/S0895479800369840
    [3] D. Chen, Y. Zhang, Weak log-majorization inequalities of singular values between normal matrices and their absolute values, Bull. Iranian Math. Soc., 42 (2016), 143–153.
    [4] R. Bhatia, Positive Definite Matrices, Princeton: Princeton University Press, 2007. https://doi.org/10.1515/9781400827787
    [5] R. Bhatia, Matrix Analysis, Berlin: Springer, 1997. https://doi.org/10.1007/978-1-4612-0653-8
    [6] M. Hayajneh, S. Hayajneh, F. Kittaneh, Remarks on some norm inequalities for positive semidefinite matrices and questions of Bourin, Math. Inequal. Appl., 20 (2017), 225–232. https://doi.org/10.7153/mia-20-16 doi: 10.7153/mia-20-16
    [7] K. M. R. Audenaert, A norm inequality for pairs of commuting positive semidefinite matrices, Electron. J. Linear Algebra, 30 (2015), 80–84. https://doi.org/10.13001/1081-3810.2829 doi: 10.13001/1081-3810.2829
    [8] J. Zhao, Q. Jiang, A note on "Remarks on some inequalities for positive semidefinite matrices and questions for Bourin", J. Math. Inequal., 13 (2019), 747–752. https://doi.org/10.7153/jmi-2019-13-51 doi: 10.7153/jmi-2019-13-51
    [9] X. Wu, Two inequalities of unitarily invariant norms for matrices, ScienceAsia, 45 (2019), 395–397. https://doi.org/10.2306/scienceasia1513-1874.2019.45.395 doi: 10.2306/scienceasia1513-1874.2019.45.395
    [10] R. Bhatia, P. Grover, Norm inequalities related to the matrix geometric mean, Linear Algebra Appl., 437 (2012), 726–733. https://doi.org/10.1016/j.laa.2012.03.001 doi: 10.1016/j.laa.2012.03.001
    [11] X. Xu, C. He, Inequalities for eigenvalues of matrices, J. Inequal. Appl., 2013 (2013), 6. https://doi.org/10.1186/1029-242X-2013-6 doi: 10.1186/1029-242X-2013-6
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1254) PDF downloads(116) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog