Research article

A direct method for updating piezoelectric smart structural models based on measured modal data

  • Received: 07 July 2023 Revised: 17 August 2023 Accepted: 23 August 2023 Published: 30 August 2023
  • MSC : 15A24, 65F18

  • A direct method for simultaneously updating mass and stiffness matrices of the undamped piezoelectric smart structural models based on incomplete modal measured data is presented. By applying the generalized singular value decomposition and some matrix derivatives, the optimal approximate mass and stiffness matrices which satisfy the required eigenvalue equation and the orthogonality relation are found under the Frobenius norm sense. The method is computationally efficient as neither iteration nor eigenanalysis is required. Numerical results are included to illustrate the effectiveness of the proposed method.

    Citation: Yinlan Chen, Lina Liu. A direct method for updating piezoelectric smart structural models based on measured modal data[J]. AIMS Mathematics, 2023, 8(10): 25262-25274. doi: 10.3934/math.20231288

    Related Papers:

  • A direct method for simultaneously updating mass and stiffness matrices of the undamped piezoelectric smart structural models based on incomplete modal measured data is presented. By applying the generalized singular value decomposition and some matrix derivatives, the optimal approximate mass and stiffness matrices which satisfy the required eigenvalue equation and the orthogonality relation are found under the Frobenius norm sense. The method is computationally efficient as neither iteration nor eigenanalysis is required. Numerical results are included to illustrate the effectiveness of the proposed method.



    加载中


    [1] S. Narayanan, V. Balamurugan, Finite element modelling of piezolaminated smart structures for active vibration control with distributed sensors and actuators, J. Sound Vib., 262 (2003), 529–562. https://doi.org/10.1016/S0022-460X(03)00110-X doi: 10.1016/S0022-460X(03)00110-X
    [2] W. Gao, J. J. Chen, H. B. Ma, X. S. Ma, Optimal placement of active bars in active vibration control for piezoelectric intelligent truss structures with random parameters, Comput. Stuct., 81 (2003), 53–60. https://doi.org/10.1016/S0045-7949(02)00331-0 doi: 10.1016/S0045-7949(02)00331-0
    [3] H. S. Tzou, C. I. Tseng, Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: A piezoelectric finite element approach, J. Sound Vib., 138 (1990), 17–34. https://doi.org/10.1016/0022-460X(90)90701-Z doi: 10.1016/0022-460X(90)90701-Z
    [4] W. I. Liao, J. X. Wang, G. Song, H. Gu, C. Olmi, Y. L. Mo, et al., Structural health monitoring of concrete columns subjected to seismic excitations using piezoceramic-based sensors, Smart Mater. Struct., 20 (2011), 125015. https://doi.org/10.1088/0964-1726/20/12/125015 doi: 10.1088/0964-1726/20/12/125015
    [5] C. Willberg, U. Gabbert, Development of a three-dimensional piezoelectric isogeometric finite element for smart structure applications, Acta Mech., 223 (2012), 1837–1850. https://doi.org/10.1007/s00707-012-0644-x doi: 10.1007/s00707-012-0644-x
    [6] G. Song, H. Gu, Y. L. Mo, T. T. C. Hsu, H. Dhonde, Concrete structural health monitoring using embedded piezoceramic transducers, Smart Mater. Struct., 16 (2007), 959–968. https://doi.org/10.1088/0964-1726/16/4/003 doi: 10.1088/0964-1726/16/4/003
    [7] R. P. Thornburgh, A. Chattopadhyay, A. Ghoshal, Transient vibration of smart structures using a coupled piezoelectric-mechanical theory, J. Sound Vib., 274 (2004), 53–72. https://doi.org/10.1016/S0022-460X(03)00648-5 doi: 10.1016/S0022-460X(03)00648-5
    [8] H. F. Tiersten, Hamilton's principle for linear piezoelectric media, P. IEEE, 55 (1967), 1523–1524. https://doi.org/10.1109/PROC.1967.5887 doi: 10.1109/PROC.1967.5887
    [9] J. E. Mottershead, M. I. Friswell, Model updating in structural dynamics: A survey, J. Sound Vib., 167 (1993), 347–375. https://doi.org/10.1006/jsvi.1993.1340 doi: 10.1006/jsvi.1993.1340
    [10] J. Fish, W. Chen, Modeling and simulation of piezocomposites, Comput. Method Appl. M., 192 (2003), 3211–3232. https://doi.org/10.1016/S0045-7825(03)00343-8 doi: 10.1016/S0045-7825(03)00343-8
    [11] S. X. Xu, T. S. Koko, Finite element analysis and design of actively controlled piezoelectric smart structures, Finite Elem. Anal. Des., 40 (2004), 241–262. https://doi.org/10.1016/S0168-874X(02)00225-1 doi: 10.1016/S0168-874X(02)00225-1
    [12] K. Zhao, A. Liao, Updating the undamped piezoelectric smart structure system with no-spillover, Appl. Math. Lett., 107 (2020), 106435. https://doi.org/10.1016/j.aml.2020.106435 doi: 10.1016/j.aml.2020.106435
    [13] C. C. Paige, M. A. Saunders, Towards a generalized singular value decompostion, SIAM J. Numer. Anal., 18 (1981), 398–405. https://doi.org/10.1137/07180 doi: 10.1137/07180
    [14] G. H. Golub, C. F. Van Loan, Matrix computations, 4 Eds., Baltimore: The Johns Hopkins University Press, 2013.
    [15] J. P. Aubin, Applied functional analysis, New York: Wiley, 1979.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(860) PDF downloads(32) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog