Research article

A direct method for updating piezoelectric smart structural models based on measured modal data

  • Received: 07 July 2023 Revised: 17 August 2023 Accepted: 23 August 2023 Published: 30 August 2023
  • MSC : 15A24, 65F18

  • A direct method for simultaneously updating mass and stiffness matrices of the undamped piezoelectric smart structural models based on incomplete modal measured data is presented. By applying the generalized singular value decomposition and some matrix derivatives, the optimal approximate mass and stiffness matrices which satisfy the required eigenvalue equation and the orthogonality relation are found under the Frobenius norm sense. The method is computationally efficient as neither iteration nor eigenanalysis is required. Numerical results are included to illustrate the effectiveness of the proposed method.

    Citation: Yinlan Chen, Lina Liu. A direct method for updating piezoelectric smart structural models based on measured modal data[J]. AIMS Mathematics, 2023, 8(10): 25262-25274. doi: 10.3934/math.20231288

    Related Papers:

    [1] Xiang Gao, Linzhang Lu, Qilong Liu . Non-negative Tucker decomposition with double constraints for multiway dimensionality reduction. AIMS Mathematics, 2024, 9(8): 21755-21785. doi: 10.3934/math.20241058
    [2] J. Alberto Conejero, Antonio Falcó, María Mora–Jiménez . A pre-processing procedure for the implementation of the greedy rank-one algorithm to solve high-dimensional linear systems. AIMS Mathematics, 2023, 8(11): 25633-25653. doi: 10.3934/math.20231308
    [3] Chang-Jun Wang, Zi-Jian Gao . Two-stage stochastic programming with imperfect information update: Value evaluation and information acquisition game. AIMS Mathematics, 2023, 8(2): 4524-4550. doi: 10.3934/math.2023224
    [4] Tianji Wang, Qingdao Huang . A new Newton method for convex optimization problems with singular Hessian matrices. AIMS Mathematics, 2023, 8(9): 21161-21175. doi: 10.3934/math.20231078
    [5] Yonghong Duan, Ruiping Wen . An alternating direction power-method for computing the largest singular value and singular vectors of a matrix. AIMS Mathematics, 2023, 8(1): 1127-1138. doi: 10.3934/math.2023056
    [6] Ruiping Wen, Wenwei Li . An accelerated alternating directional method with non-monotone technique for matrix recovery. AIMS Mathematics, 2023, 8(6): 14047-14063. doi: 10.3934/math.2023718
    [7] Andrew Calcan, Scott B. Lindstrom . The ADMM algorithm for audio signal recovery and performance modification with the dual Douglas-Rachford dynamical system. AIMS Mathematics, 2024, 9(6): 14640-14657. doi: 10.3934/math.2024712
    [8] Renjie Chu, Peiyuan Jin, Hanli Qiao, Quanxi Feng . Intrusion detection in the IoT data streams using concept drift localization. AIMS Mathematics, 2024, 9(1): 1535-1561. doi: 10.3934/math.2024076
    [9] Yue Zhao, Meixia Li, Xiaowei Pan, Jingjing Tan . Partial symmetric regularized alternating direction method of multipliers for non-convex split feasibility problems. AIMS Mathematics, 2025, 10(2): 3041-3061. doi: 10.3934/math.2025142
    [10] Yinlan Chen, Wenting Duan . The Hermitian solution to a matrix inequality under linear constraint. AIMS Mathematics, 2024, 9(8): 20163-20172. doi: 10.3934/math.2024982
  • A direct method for simultaneously updating mass and stiffness matrices of the undamped piezoelectric smart structural models based on incomplete modal measured data is presented. By applying the generalized singular value decomposition and some matrix derivatives, the optimal approximate mass and stiffness matrices which satisfy the required eigenvalue equation and the orthogonality relation are found under the Frobenius norm sense. The method is computationally efficient as neither iteration nor eigenanalysis is required. Numerical results are included to illustrate the effectiveness of the proposed method.



    Throughout this paper, Rm×n, ORn×n and SRn×n denote the sets of all m×n real matrices, all n×n orthogonal matrices and all n×n symmetric matrices, respectively. A and tr(A) stand for the transpose and the trace of a matrix A, respectively. In denotes the identity matrix of size n.

    Piezoelectric smart materials are a class of materials with piezoelectric effect. Due to the development of smart materials and structures, these materials are endowed with strong vitality. Piezoelectric smart materials can rapidly transform pressure, vibration into electrical signals, or electrical signals into vibration signals, that is, the piezoelectric elements can be used as both sensors and actuators, which realizes the unity of the sensing elements and the action elements, and make them widely used in engineering. For example, piezoelectric materials are applied in active vibration control [1,2], distributed dynamic measurement [3] and structural health monitoring [4,5,6], etc.

    By using the finite element techniques, the global equation of motion for the undamped piezoelectric smart structure system with n degrees of freedom can be written as [7]:

    MA¨v+KAv=f. (1.1)

    The matrices MA,KA, and the vectors v,f are of the form

    MA=[˜Muu000], KA=[˜Kuu˜Kuϕ˜Kuϕ˜Kϕϕ], v=[uϕ], f=[fufϕ], (1.2)

    where ˜MuuSRnu×nu is the structural mass matrix, ˜KuuSRnu×nu is the structural stiffness matrix, ˜KuϕRnu×nϕ (nu+nϕ=n) is the piezoelectric coupling matrix, ˜KϕϕSRnϕ×nϕ is the dielectric stiffness matrix, uRnu denotes the mechanical displacement vector, ϕRnϕ denotes the electrical potential vector, fuRnu denotes the mechanical external force vector and fϕRnϕ denotes the external electric charge vector. It is known that the vibration of the mathematical model (1.1) is characterized by eigenvalues and eigenvectors of the following generalized inverse eigenvalue problem:

    ω[˜Muu000][z1z2]=[˜Kuu˜Kuϕ˜Kuϕ˜Kϕϕ][z1z2]. (1.3)

    In general, owning to the difficulty in accurately determining some structural parameters, the unreasonable coupling simplification [8] and the mathematical description error of geometry and boundary conditions [9], the piezoelectric smart structure model established by finite element techniques may not truly describe the actual characteristics of the structure. Therefore, we need to update the model by applying the measured modal data such that the updated model can better reflect the physical structure and the measured results. Mathematically, the problem of updating piezoelectric smart structure model can be formulated as the following problem.

    Problem IEP. Let Ω=diag(ω1,...,ωp)Rp×p and Z=[Z1,Z2]Rn×p be the measured eigenvalue and eigenvector matrices, where Z1Rnu×p, Z2Rnϕ×p and rank(Z1)=p. Find matrices M=[Muu000],K=[KuuKuϕKuϕKϕϕ]SRn×n such that

    MZΩ=KZ,   Z1MuuZ1=Ip. (1.4)

    It is well known that the numerical model is a "good" representation of the structure, we hope to find a model that is closest to the original model. Thus, we should further consider the following best approximate problem:

    Problem BAP. Given matrices MA,KASRn×n. Find (ˆM,ˆK)κS such that

    ˆMMA2+ˆKKA2=min(M,K)κS(MMA2+KKA2), (1.5)

    where is the Frobenius norm and κS is the solution set of Problem IEP.

    Fish and Chen [10] developed the solution procedures for large-scale transient analysis of piezocomposites by using the representative volume element-based multilevel method. Xu and Koko [11] presented a general purpose design scheme of actively controlled piezoelectric smart structures by finite element modal analysis. More recently, Zhao and Liao [12] solved the updating problem of undamped piezoelectric smart structure systems with no-spillover and derived a set of parametric solutions. Nevertheless, the problem of BAP seems rarely to be discussed in the literatures, which motivates us to provide a numerical method to solve problems IEP and BAP. By applying the generalized singular value decomposition(GSVD) of a matrix pair, the expression of the general solution of Problem IEP is derived when the solvability conditions are satisfied and the best approximate solution of Problem BAP is obtained. Finally, two numerical examples are given to verify the correctness of the results.

    Note that rank(Z1)=p, then the GSVD [13,14] of the matrix pair [Z1,Z2] is of the following form:

    Z1=UΣ1N,   Z2=VΣ2N, (2.1)

    where NRp×p is nonsingular, and

    Σ1=[I00Θ00]pssnup    pss,  Σ2=[000Δ00]pssnϕp    pss,
    U=[U1U2U3]ORnu×nu,  V=[V1V2V3]ORnϕ×nϕ,

    and

    Θ=diag(θ1,,θs),  Δ=diag(δ1,,δs)

    with

    1>θ1θ2θs>0,  0<δ1δ2δs<1,θ2i+δ2i=1, i=1,,s.

    By (2.1), Eq (1.4) can be equivalently written as

    [Muu000][UΣ1NVΣ2N]Ω=[KuuKuϕKuϕKϕϕ][UΣ1NVΣ2N], (2.2)
    NΣ1UMuuUΣ1N=Ip, (2.3)

    that is,

    MuuUΣ1NΩ=KuuUΣ1N+KuϕVΣ2N, (2.4)
    KuϕUΣ1N+KϕϕVΣ2N=0, (2.5)
    Σ1UMuuUΣ1=NN1. (2.6)

    Let

    NΩN1=[S11S12S21S22]pss            ps s,   NN1=[N11N12N12N22]pss              ps s, (2.7)
    UMuuU=[M11M12M13M12M22M23M13M23M33]pssnup                ps  s  nup, (2.8)
    UKuuU=[F11F12F13F12F22F23F13F23F33]pssnup                   ps  s  nup, (2.9)
    VKϕϕV=[G11G12G13G12G22G23G13G23G33]pssnϕp                 ps  s  nϕp, (2.10)
    UKuϕV=[L11L12L13L21L22L23L31L32L33]pssnup                   ps  s  nϕp. (2.11)

    Thus, Eqs (2.4)-(2.6) are equivalent to

    [F11F12F13F12F22F23F13F23F33][I00Θ00]+[L11L12L13L21L22L23L31L32L33][000Δ00]=[M11M12M13M12M22M23M13M23M33][I00Θ00][S11S12S21S22], (2.12)
    [L11L21L31L12L22L32L13L23L33][I00Θ00]+[G11G12G13G12G22G23G13G23G33][000Δ00]=0, (2.13)
    [I000Θ0][M11M12M13M12M22M23M13M23M33][I00Θ00]=[N11N12N12N22]. (2.14)

    Comparing two sides of (2.12)-(2.14) , we have

    M11=N11, M12=N12Θ1, M22=Θ1N22Θ1, (2.15)
    F11=N11S11+N12S21, (2.16)
    F12=(N11S12+N12S22)Θ1, F12=Θ1(N12S11+N22S21), (2.17)
    F13=S11M13+S21ΘM23, F22=Θ1(N12S12+N22S22+ΔG22Δ)Θ1, (2.18)
    F23=Θ1(S12M13+S22ΘM23ΔL32), (2.19)
    L11=0, L12=0, L13=0, (2.20)
    L21=Θ1ΔG12, L22=Θ1ΔG22, L23=Θ1ΔG23. (2.21)

    In summary, we can state the follwing theorem.

    Theorem 2.1. Suppose that Ω=diag(ω1,...,ωp)Rp×p and Z=[Z1,Z2]Rn×p are the measured eigenvalue and eigenvector matrices, where Z1Rnu×p, Z2Rnϕ×p and rank(Z1)=p. Let the GSVD of the matrix pair [Z1,Z2] be given by (2.1). Then Problem IEP is solvable if and only if

    N11S11+N12S21=S11N11+S21N12,S12N11+S22N12=N12S11+N22S21,N12S12+N22S22=S12N12+S22N22. (2.22)

    In this case, the solution set of Problem IEP can be expressed as

    κS={(M,K):M=[Muu000], K=[KuuKuϕKuϕKϕϕ]}, (2.23)

    where

    Muu=U[M11M12M13M12M22M23M13M23M33]U,   Kuu=U[F11F12F13F12F22F23F13F23F33]U, (2.24)
    Kuϕ=U[L11L12L13L21L22L23L31L32L33]V,   Kϕϕ=V[G11G12G13G12G22G23G13G23G33]V, (2.25)

    Mh3(h=1,2), L3k(k=1,2,3), G12,G13,G23 are arbitrary matrices, and M33,F33, Gkk(k=1,2,3) are arbitrary symmetric matrices; and M21, F12,F13,F23, Lhk(h=1,2,k=1,2,3) and Mkk,Fkk(k=1,2) are given by (2.15) – (2.21).

    In order to solve Problem BAP, the following lemma is needed.

    Lemma 3.1. Let A, BSRs×s, CRs×s, and Θ=diag(θ1,,θs)Rs×s, Δ=diag(δ1,,δs)Rs×s satisfy θ2i+δ2i=1, i=1,,s. Then

    Ψ(G22)=Θ1ΔG22ΔΘ1+A2+G22B2+2Θ1ΔG22+C2=min,
    s. t. G22=G22

    if and only if

    G22=ΔΘAΘΔ+Θ2BΘ2ΔΘCΘ2Θ2CΘΔ. (3.1)

    Proof. Let A=[aij], B=[bij], C=[cij]Rs×s, and G22=[gij]Rs×s. Then

    Ψ(G22):=si=1sj=1((δiθigijδjθj+aij)2+(gijbij)2+2(δiθigij+cij)2).

    Now we minimize the quantities

    ψij=(δiθigijδjθj+aij)2+(gijbij)2+2(δiθigij+cij)2+(δjθjgjiδiθi+aji)2+(gjibji)2+2(δjθjgji+cji)2, 1i,js.

    By direct calculation, we have the minimizers

    gij=δiθiaijθjδj+θ2ibijθ2jδiθicijθ2jθ2jcjiθiδi, 1i,js. (3.2)

    By rewriting (3.2) in matrix form, we can get (3.1) .

    It is easy to verify that κS is a closed convex subset of Rn×n×Rn×n. From the best approximate theorem [15], we know that there exists a unique solution (ˆM,ˆK)κS to Problem BAP. For the given matrices MA,KASRn×n, write

    U˜MuuU=[˜M11˜M12˜M13˜M12˜M22˜M23˜M13˜M23˜M33]pssnup                 ps  s  nup, (3.3)
    U˜KuuU=[˜F11˜F12˜F13˜F12˜F22˜F23˜F13˜F23˜F33]pssnup                   ps  s  nup, (3.4)
    V˜KϕϕV=[˜G11˜G12˜G13˜G12˜G22˜G23˜G13˜G23˜G33]pssnϕp                 ps  s  nϕp, (3.5)
    U˜KuϕV=[˜L11˜L12˜L13˜L21˜L22˜L23˜L31˜L32˜L33]pssnup                   ps  s  nϕp. (3.6)

    Then

    MMA2+KKA2=Muu˜Muu2+Kuu˜Kuu2+2Kuϕ˜Kuϕ2+Kϕϕ˜Kϕϕ2=[M11M12M13M12M22M23M13M23M33]U˜MuuU2+[F11F12F13F12F22F23F13F23F33]U˜KuuU2+2[L11L12L13L21L22L23L31L32L33]U˜KuϕV2+[G11G12G13G12G22G23G13G23G33]V˜KϕϕV2.

    Therefore, MMA2+KKA2=min if and only if

    M33=˜M33,F33=˜F33,L31=˜L31,L33=˜L33,
    G11=˜G11,G13=˜G13,G33=˜G33,
    f(M13,M23,L32)=2M13˜M132+2M23˜M232+2S11M13+S21ΘM23˜F132+2Θ1(S12M13+S22ΘM23ΔL32)˜F232+2L32˜L322=min, (3.7)
    f(G12)=2Θ1ΔG12+˜L212+2G12˜G122=min, (3.8)
    f(G22)=Θ1(N12S12+N22S22+ΔG22Δ)Θ1˜F222+G22˜G222+2Θ1ΔG22+˜L222=min, (3.9)
    f(G23)=2Θ1ΔG23+˜L232+2G23˜G232=min. (3.10)

    From (3.7), we have

    f(M13,M23,L32)=2tr[(M13˜M13)(M13˜M13)+(M23˜M23)(M23˜M23)+(S11M13+S21ΘM23˜F13)(S11M13+S21ΘM23˜F13)+(Θ1(S12M13+S22ΘM23ΔL32)˜F23)(Θ1(S12M13+S22ΘM23ΔL32)˜F23)+(L32˜L32)(L32˜L32)].

    Thus,

    f(M13,M23,L32)M13=4(M13˜M13+S11S11M13+S11S21ΘM23S11˜F13+S12Θ2S12M13+S12Θ2S22ΘM23S12Θ2ΔL32S12Θ1˜F23),f(M13,M23,L32)M23=4(M23˜M23+ΘS21S11M13+ΘS21S21ΘM23ΘS21˜F13+ΘS22Θ2S12M13+ΘS22Θ2S22ΘM23ΘS22Θ2ΔL32ΘS22Θ1˜F23),f(M13,M23,L32)L32=4(L32˜L32M13S12Θ2ΔM23ΘS22Θ2Δ+L32ΔΘ2Δ+˜F23Θ1Δ).

    Clearly, f(M13,M23,L32)=min if and only if

    f(M13,M23,L32)M13=0, f(M13,M23,L32)M23=0, f(M13,M23,L32)L32=0.

    When f(M13,M23,L32)M13=0, we arrive at

    M13=P2M23+P3L32+P4, (3.11)

    where

    P1=(Ips+S11S11+S12Θ2S12)1,P2=P1(S11S21Θ+S12Θ2S22Θ),P3=P1S12Θ2Δ,P4=P1(˜M13+S11˜F13+S12Θ1˜F23).

    When f(M13,M23,L32)M23=0, we obtain

    M23=P6M13+P7L32+P8, (3.12)

    where

    P5=(Is+ΘS21S21Θ+ΘS22Θ2S22Θ)1,P6=P5(ΘS21S11+ΘS22Θ2S12),P7=P5ΘS22Θ2Δ,P8=P5(˜M23+ΘS21˜F13+ΘS22Θ1˜F23).

    When f(M13,M23,L32)L32=0, we get

    L32=M13P10+M23P11+P12, (3.13)

    where

    P9=(Is+ΔΘ2Δ)1,P10=S12Θ2ΔP9,P11=ΘS22Θ2ΔP9,P12=(˜L32˜F23Θ1Δ)P9.

    Substituting (3.13) into (3.11) leads to

    M13=P14M23+P15, (3.14)

    where

    P13=(IpsP3P10)1,P14=P13(P2+P3P11),P15=P13(P3P12+P4).

    Substituting (3.13) and (3.14) into (3.12), we have

    M23=(IsP6P14P7P10P14P7P11)1(P6P15+P7P10P15+P7P12+P8). (3.15)

    From (3.8), we have

    f(G12)=2tr[(Θ1ΔG12+˜L21)(Θ1ΔG12+˜L21)+(G12˜G12)(G12˜G12)].

    Consequently,

    f(G12)G12=4(G12ΔΘ2Δ+˜L21Θ1Δ+G12˜G12),

    when f(G12)G12=0, we conclude that

    G12=(˜G12˜L21Θ1Δ)(Is+ΔΘ2Δ)1. (3.16)

    From (3.10), we have

    f(G23)=2tr[(Θ1ΔG23+˜L23)(Θ1ΔG23+˜L23)+(G23˜G23)(G23˜G23)].

    Thus,

    f(G23)G23=4(ΔΘ2ΔG23+ΔΘ1˜L23+G23˜G23),

    when f(G23)G23=0, we can get

    G23=(Is+ΔΘ2Δ)1(˜G23ΔΘ1˜L23). (3.17)

    Solving the minimization problem f(G22) by using Lemma 3.1, we have

    G22=Δ(N12S12+N22S22Θ˜F22Θ)Δ+Θ2˜G22Θ2ΔΘ˜L22Θ2Θ2˜L22ΘΔ. (3.18)

    Theorem 3.1. Given matrices MA,KASRn×n. If the solvability conditions of (2.22) are satisfied, then the solution of Problem BAP is

    ˆM=[Muu000], ˆK=[KuuKuϕKuϕKϕϕ], (3.19)

    where

    Muu=U[M11M12M13M12M22M23M13M23M33]U,   Kuu=U[F11F12F13F12F22F23F13F23F33]U, (3.20)
    Kuϕ=U[L11L12L13L21L22L23L31L32L33]V,   Kϕϕ=V[G11G12G13G12G22G23G13G23G33]V, (3.21)

    and M13, M23, L32, G12, G22, G23 are given by (3.14), (3.15), (3.13), (3.6), (3.18), (3.17), respectively.

    According to Theorems 2.1 and 3.1, we can describe a numerical algorithm to solve Problem BAP.

    Algorithm 1
    1: Input Ω,Z,MA,KA.
    2: Compute the GSVD of the matrix pair [Z1,Z2] by (2.1) .
    3: Compute Nij,Sij,i,j=1,2 by (2.7) .
    4: If the conditions (2.22) are satisfied, go to Step 5 ; otherwise, Problem IEP has no solution, and stop.
    5: Compute ˜Mhk,˜Fhk,˜Ghk,˜Lhk,h,k=1,2,3 by (3.3) – (3.6).
    6: Compute M13, M23, L32, G12, G22 and G23 by (3.14), (3.15), (3.13), (3.6), (3.18) and (3.17), respectively.
    7: Compute Muu, Kuu and Kuϕ, Kϕϕ by (3.20) and (3.21), respectively.
    8: Compute ˆM,ˆK by (3.19) .

     | Show Table
    DownLoad: CSV

    Example 4.1. Let n=10, p=3, and the matrices Ω, Z, MA and KA be given by

    Ω=diag{0.5339, 4.5445, 179.7010},
    Z=[0.53152.502115.60290.55590.92881.43480.34280.087211.30650.02580.74761.42030.36911.58757.16390.30370.22761.31910.67841.47943.54770.05470.23521.06130.29820.56330.97790.15590.31110.6216],
    MA=[1/31/6000000001/62/31/6000000001/62/31/6000000001/62/31/6000000001/62/31/6000000001/62/300000000000000000000000000000000000000000000],
    KA=[23230000003633000000234023000033014330000002340230000330143300000023402300003301433000000234000000033014].

    It is easy to verify that the conditions (2.22) hold. By applying Algorithm 1, we can obtain the unique solution (ˆM,ˆK) of Problem BAP as follows:

    ˆM=[0.12000.05680.19420.01360.08040.100200000.05680.77580.16250.05810.27300.202400000.19420.16250.49890.04120.35910.216300000.01360.05810.04120.62940.02000.017700000.08040.27300.35910.02000.39030.239100000.10020.20240.21630.01770.23910.858700000000000000000000000000000000000000000000],
    ˆK=[2.11393.03151.87442.96380.00260.25160.00480.00270.00240.00613.03155.87193.09243.05670.23040.32430.01290.02700.00200.06501.87443.09244.09130.07621.56213.23440.03960.07760.01510.04782.96383.05670.076214.01942.93822.97530.00800.02200.00000.04010.00260.23041.56212.93824.33240.22132.02423.12030.02270.16630.25160.32433.23442.97530.221313.69723.24193.02300.11120.12810.00480.01290.03960.00802.02423.24194.11220.11601.94153.18180.00270.02700.07760.02203.12033.02300.116013.95712.95922.95350.00240.00200.01510.00000.02270.11121.94152.95924.02870.07350.00610.06500.04780.04010.16630.12813.18182.95350.073513.9135],

    and

    ˆMZΩˆKZ=3.8215×1013, 

    which implies that ˆMZΩ=ˆKZ reproduces the desired eigenvalues and eigenvectors.

    Example 4.2. Let n=8, p=3, and the matrices Ω, Z, MA and KA be given by

       Ω=diag{1.5206, 2.5270, 91.3913},   Z=[0.53550.37120.67891.08820.83030.38680.96981.22712.19751.30250.09501.59190.79940.78729.51281.06840.80122.08461.05790.65951.83570.55410.32120.7364],MA=[1.34020.51460.58140.68660.76200.9819000.51460.49610.25830.55760.45780.4649000.58140.25830.63440.33070.30110.5966000.68660.55760.33071.01260.84090.6567000.76200.45780.30110.84091.08290.6275000.98190.46490.59660.65670.62751.0743000000000000000000],KA=[0.71580.65630.60490.65710.57761.17110.68200.82920.65630.81110.71710.76920.75291.20610.78160.98080.60490.71710.77050.84190.68581.23600.84611.03360.65710.76920.84191.14590.61781.25660.84301.13890.57760.75290.68580.61781.08021.12650.69291.06511.17111.20611.23601.25661.12652.32071.57271.59290.68200.78160.84610.84300.69291.57271.29341.11640.82920.98081.03361.13891.06511.59291.11641.5667].

    It can easily be seen that the conditions (2.22) hold. By applying Algorithm 1, we can obtain the unique solution (ˆM,ˆK) of Problem BAP as follows:

    ˆM=[0.98420.39680.32410.54260.14210.9505000.39680.21520.13950.32170.07220.5171000.32410.13950.37010.24590.11100.3585000.54260.32170.24590.80480.11611.0165000.14210.07220.11100.11610.07450.2885000.95050.51710.35851.01650.28851.9346000000000000000000],ˆK=[1.14700.76941.25970.48150.90140.94800.64460.76890.76941.07901.04980.80360.63041.06321.03411.16801.25971.04981.73050.75541.19540.91080.90581.19590.48150.80360.75541.13480.24961.26450.96081.11390.90140.63041.19540.24961.63050.74940.51270.65450.94801.06320.91081.26450.74942.49841.27021.39830.64461.03410.90580.96080.51271.27020.64140.85310.76891.16801.19591.11390.65451.39830.85311.3044],

    and

    ˆMZΩˆKZ=8.0674×1014.

    Observe that the prescribed eigenvalues and eigenvectors have been embedded in the new model ˆMZΩ=ˆKZ.

    A direct updating method for the piezoelectric smart structural models has been established by applying the generalized singular value decomposition. This method makes use of the constrained minimization theory to formulate the minimization error function such that the resulting changes to mass and stiffness matrices are a minimum. The updated model can accurately reproduce the measured eigenstructure data. The approach was verified by two numerical examples and the reasonable results were obtained.

    The authors declare that we have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare that there is no conflict of interest.

    The authors are grateful to three referees for their careful reading of the manuscript and making useful comments and suggestions which greatly improved the original presentation.



    [1] S. Narayanan, V. Balamurugan, Finite element modelling of piezolaminated smart structures for active vibration control with distributed sensors and actuators, J. Sound Vib., 262 (2003), 529–562. https://doi.org/10.1016/S0022-460X(03)00110-X doi: 10.1016/S0022-460X(03)00110-X
    [2] W. Gao, J. J. Chen, H. B. Ma, X. S. Ma, Optimal placement of active bars in active vibration control for piezoelectric intelligent truss structures with random parameters, Comput. Stuct., 81 (2003), 53–60. https://doi.org/10.1016/S0045-7949(02)00331-0 doi: 10.1016/S0045-7949(02)00331-0
    [3] H. S. Tzou, C. I. Tseng, Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: A piezoelectric finite element approach, J. Sound Vib., 138 (1990), 17–34. https://doi.org/10.1016/0022-460X(90)90701-Z doi: 10.1016/0022-460X(90)90701-Z
    [4] W. I. Liao, J. X. Wang, G. Song, H. Gu, C. Olmi, Y. L. Mo, et al., Structural health monitoring of concrete columns subjected to seismic excitations using piezoceramic-based sensors, Smart Mater. Struct., 20 (2011), 125015. https://doi.org/10.1088/0964-1726/20/12/125015 doi: 10.1088/0964-1726/20/12/125015
    [5] C. Willberg, U. Gabbert, Development of a three-dimensional piezoelectric isogeometric finite element for smart structure applications, Acta Mech., 223 (2012), 1837–1850. https://doi.org/10.1007/s00707-012-0644-x doi: 10.1007/s00707-012-0644-x
    [6] G. Song, H. Gu, Y. L. Mo, T. T. C. Hsu, H. Dhonde, Concrete structural health monitoring using embedded piezoceramic transducers, Smart Mater. Struct., 16 (2007), 959–968. https://doi.org/10.1088/0964-1726/16/4/003 doi: 10.1088/0964-1726/16/4/003
    [7] R. P. Thornburgh, A. Chattopadhyay, A. Ghoshal, Transient vibration of smart structures using a coupled piezoelectric-mechanical theory, J. Sound Vib., 274 (2004), 53–72. https://doi.org/10.1016/S0022-460X(03)00648-5 doi: 10.1016/S0022-460X(03)00648-5
    [8] H. F. Tiersten, Hamilton's principle for linear piezoelectric media, P. IEEE, 55 (1967), 1523–1524. https://doi.org/10.1109/PROC.1967.5887 doi: 10.1109/PROC.1967.5887
    [9] J. E. Mottershead, M. I. Friswell, Model updating in structural dynamics: A survey, J. Sound Vib., 167 (1993), 347–375. https://doi.org/10.1006/jsvi.1993.1340 doi: 10.1006/jsvi.1993.1340
    [10] J. Fish, W. Chen, Modeling and simulation of piezocomposites, Comput. Method Appl. M., 192 (2003), 3211–3232. https://doi.org/10.1016/S0045-7825(03)00343-8 doi: 10.1016/S0045-7825(03)00343-8
    [11] S. X. Xu, T. S. Koko, Finite element analysis and design of actively controlled piezoelectric smart structures, Finite Elem. Anal. Des., 40 (2004), 241–262. https://doi.org/10.1016/S0168-874X(02)00225-1 doi: 10.1016/S0168-874X(02)00225-1
    [12] K. Zhao, A. Liao, Updating the undamped piezoelectric smart structure system with no-spillover, Appl. Math. Lett., 107 (2020), 106435. https://doi.org/10.1016/j.aml.2020.106435 doi: 10.1016/j.aml.2020.106435
    [13] C. C. Paige, M. A. Saunders, Towards a generalized singular value decompostion, SIAM J. Numer. Anal., 18 (1981), 398–405. https://doi.org/10.1137/07180 doi: 10.1137/07180
    [14] G. H. Golub, C. F. Van Loan, Matrix computations, 4 Eds., Baltimore: The Johns Hopkins University Press, 2013.
    [15] J. P. Aubin, Applied functional analysis, New York: Wiley, 1979.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1107) PDF downloads(34) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog