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Abstract: A direct method for simultaneously updating mass and stiffness matrices of the undamped
piezoelectric smart structural models based on incomplete modal measured data is presented. By
applying the generalized singular value decomposition and some matrix derivatives, the optimal
approximate mass and stiffness matrices which satisfy the required eigenvalue equation and the
orthogonality relation are found under the Frobenius norm sense. The method is computationally
efficient as neither iteration nor eigenanalysis is required. Numerical results are included to illustrate
the effectiveness of the proposed method.

Keywords: piezoelectric smart structure; generalized singular value decomposition; model updating
Mathematics Subject Classification: 15A24, 65F18

1. Introduction

Throughout this paper, Rm×n, ORn×n and SRn×n denote the sets of all m × n real matrices, all n × n
orthogonal matrices and all n×n symmetric matrices, respectively. A⊤ and tr(A) stand for the transpose
and the trace of a matrix A, respectively. In denotes the identity matrix of size n.

Piezoelectric smart materials are a class of materials with piezoelectric effect. Due to the
development of smart materials and structures, these materials are endowed with strong vitality.
Piezoelectric smart materials can rapidly transform pressure, vibration into electrical signals, or
electrical signals into vibration signals, that is, the piezoelectric elements can be used as both sensors
and actuators, which realizes the unity of the sensing elements and the action elements, and make
them widely used in engineering. For example, piezoelectric materials are applied in active vibration
control [1, 2], distributed dynamic measurement [3] and structural health monitoring [4–6], etc.

By using the finite element techniques, the global equation of motion for the undamped piezoelectric
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smart structure system with n degrees of freedom can be written as [7]:

MAv̈ + KAv = f . (1.1)

The matrices MA,KA, and the vectors v, f are of the form

MA =

[
M̃uu 0
0 0

]
, KA =

[
K̃uu K̃uϕ

K̃⊤uϕ K̃ϕϕ

]
, v =

[
u
ϕ

]
, f =

[
fu

fϕ

]
, (1.2)

where M̃uu ∈ SR
nu×nu is the structural mass matrix, K̃uu ∈ SR

nu×nu is the structural stiffness matrix,
K̃uϕ ∈ R

nu×nϕ (nu + nϕ = n) is the piezoelectric coupling matrix, K̃ϕϕ ∈ SR
nϕ×nϕ is the dielectric stiffness

matrix, u ∈ Rnu denotes the mechanical displacement vector, ϕ ∈ Rnϕ denotes the electrical potential
vector, fu ∈ R

nu denotes the mechanical external force vector and fϕ ∈ Rnϕ denotes the external electric
charge vector. It is known that the vibration of the mathematical model (1.1) is characterized by
eigenvalues and eigenvectors of the following generalized inverse eigenvalue problem:

ω

[
M̃uu 0
0 0

] [
z1

z2

]
=

[
K̃uu K̃uϕ

K̃⊤uϕ K̃ϕϕ

] [
z1

z2

]
. (1.3)

In general, owning to the difficulty in accurately determining some structural parameters, the
unreasonable coupling simplification [8] and the mathematical description error of geometry and
boundary conditions [9], the piezoelectric smart structure model established by finite element
techniques may not truly describe the actual characteristics of the structure. Therefore, we need to
update the model by applying the measured modal data such that the updated model can better reflect
the physical structure and the measured results. Mathematically, the problem of updating piezoelectric
smart structure model can be formulated as the following problem.
Problem IEP. Let Ω = diag(ω1, ..., ωp) ∈ Rp×p and Z = [Z⊤1 ,Z

⊤
2 ]⊤ ∈ Rn×p be the measured

eigenvalue and eigenvector matrices, where Z1 ∈ R
nu×p, Z2 ∈ R

nϕ×p and rank(Z1) = p. Find matrices

M =
[

Muu 0
0 0

]
, K =

[
Kuu Kuϕ

K⊤uϕ Kϕϕ

]
∈ SRn×n such that

MZΩ = KZ, Z⊤1 MuuZ1 = Ip. (1.4)

It is well known that the numerical model is a “good” representation of the structure, we hope to find
a model that is closest to the original model. Thus, we should further consider the following best
approximate problem:
Problem BAP. Given matrices MA,KA ∈ SR

n×n. Find (M̂, K̂) ∈ κS such that

∥M̂ − MA∥
2 + ∥K̂ − KA∥

2 = min
(M,K)∈κS

(
∥M − MA∥

2 + ∥K − KA∥
2
)
, (1.5)

where ∥ · ∥ is the Frobenius norm and κS is the solution set of Problem IEP.
Fish and Chen [10] developed the solution procedures for large-scale transient analysis of

piezocomposites by using the representative volume element-based multilevel method. Xu and
Koko [11] presented a general purpose design scheme of actively controlled piezoelectric smart
structures by finite element modal analysis. More recently, Zhao and Liao [12] solved the updating
problem of undamped piezoelectric smart structure systems with no-spillover and derived a set
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of parametric solutions. Nevertheless, the problem of BAP seems rarely to be discussed in the
literatures, which motivates us to provide a numerical method to solve problems IEP and BAP. By
applying the generalized singular value decomposition(GSVD) of a matrix pair, the expression of the
general solution of Problem IEP is derived when the solvability conditions are satisfied and the best
approximate solution of Problem BAP is obtained. Finally, two numerical examples are given to verify
the correctness of the results.

2. The solution to Problem IEP

Note that rank(Z1) = p, then the GSVD [13,14] of the matrix pair [Z⊤1 ,Z
⊤
2 ] is of the following form:

Z1 = UΣ1N, Z2 = VΣ2N, (2.1)

where N ∈ Rp×p is nonsingular, and

Σ1 =


I 0
0 Θ

0 0


p − s

s
nu − p

p − s s

,
Σ2 =


0 0
0 ∆

0 0


p − s

s
nϕ − p

p − s s

,

U =
[

U1 U2 U3

]
∈ ORnu×nu , V =

[
V1 V2 V3

]
∈ ORnϕ×nϕ ,

and
Θ = diag(θ1, · · · , θs), ∆ = diag(δ1, · · · , δs)

with
1 > θ1 ≥ θ2 ≥ · · · ≥ θs > 0, 0 < δ1 ≤ δ2 ≤ · · · ≤ δs < 1,
θ2

i + δ
2
i = 1, i = 1, · · · , s.

By (2.1), Eq (1.4) can be equivalently written as[
Muu 0
0 0

] [
UΣ1N
VΣ2N

]
Ω =

[
Kuu Kuϕ

K⊤uϕ Kϕϕ

] [
UΣ1N
VΣ2N

]
, (2.2)

N⊤Σ⊤1 U⊤MuuUΣ1N = Ip, (2.3)

that is,

MuuUΣ1NΩ = KuuUΣ1N + KuϕVΣ2N, (2.4)
K⊤uϕUΣ1N + KϕϕVΣ2N = 0, (2.5)
Σ⊤1 U⊤MuuUΣ1 = N−⊤N−1. (2.6)

Let

NΩN−1 =

[
S 11 S 12

S 21 S 22

]
p − s

s
p − s s

,
N−⊤N−1 =

[
N11 N12

N⊤12 N22

]
p − s

s
p − s s

, (2.7)
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U⊤MuuU =


M11 M12 M13

M⊤12 M22 M23

M⊤13 M⊤23 M33


p − s

s
nu − p

p − s s nu − p

, (2.8)

U⊤KuuU =


F11 F12 F13

F⊤12 F22 F23

F⊤13 F⊤23 F33


p − s

s
nu − p

p − s s nu − p

, (2.9)

V⊤KϕϕV =


G11 G12 G13

G⊤12 G22 G23

G⊤13 G⊤23 G33


p − s

s
nϕ − p

p − s s nϕ − p

, (2.10)

U⊤KuϕV =


L11 L12 L13

L21 L22 L23

L31 L32 L33


p − s

s
nu − p

p − s s nϕ − p

. (2.11)

Thus, Eqs (2.4) − (2.6) are equivalent to
F11 F12 F13

F⊤12 F22 F23

F⊤13 F⊤23 F33




I 0
0 Θ

0 0

 +


L11 L12 L13

L21 L22 L23

L31 L32 L33




0 0
0 ∆

0 0

 =
M11 M12 M13

M⊤12 M22 M23

M⊤13 M⊤23 M33




I 0
0 Θ

0 0


[

S 11 S 12

S 21 S 22

]
,

(2.12)


L⊤11 L⊤21 L⊤31
L⊤12 L⊤22 L⊤32
L⊤13 L⊤23 L⊤33




I 0
0 Θ

0 0

 +


G11 G12 G13

G⊤12 G22 G23

G⊤13 G⊤23 G33




0 0
0 ∆

0 0

 = 0, (2.13)

[
I 0 0
0 Θ 0

] 
M11 M12 M13

M⊤12 M22 M23

M⊤13 M⊤23 M33




I 0
0 Θ

0 0

 =
[

N11 N12

N⊤12 N22

]
. (2.14)

Comparing two sides of (2.12) − (2.14), we have

M11 = N11, M12 = N12Θ
−1, M22 = Θ

−1N22Θ
−1, (2.15)

F11 = N11S 11 + N12S 21, (2.16)
F12 = (N11S 12 + N12S 22)Θ−1, F⊤12 = Θ

−1(N⊤12S 11 + N22S 21), (2.17)
F13 = S ⊤11M13 + S ⊤21ΘM23, F22 = Θ

−1(N⊤12S 12 + N22S 22 + ∆G22∆)Θ−1, (2.18)
F23 = Θ

−1(S ⊤12M13 + S ⊤22ΘM23 − ∆L⊤32), (2.19)
L11 = 0, L12 = 0, L13 = 0, (2.20)
L21 = −Θ

−1∆G⊤12, L22 = −Θ
−1∆G22, L23 = −Θ

−1∆G23. (2.21)

In summary, we can state the follwing theorem.
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Theorem 2.1. Suppose that Ω = diag(ω1, ..., ωp) ∈ Rp×p and Z = [Z⊤1 ,Z
⊤
2 ]⊤ ∈ Rn×p are the measured

eigenvalue and eigenvector matrices, where Z1 ∈ R
nu×p, Z2 ∈ R

nϕ×p and rank(Z1) = p. Let the GSVD of
the matrix pair [Z⊤1 ,Z

⊤
2 ] be given by (2.1). Then Problem IEP is solvable if and only if

N11S 11 + N12S 21 = S ⊤11N11 + S ⊤21N⊤12,

S ⊤12N11 + S ⊤22N⊤12 = N⊤12S 11 + N22S 21,

N⊤12S 12 + N22S 22 = S ⊤12N12 + S ⊤22N22.

(2.22)

In this case, the solution set of Problem IEP can be expressed as

κS =

{
(M,K) : M =

[
Muu 0
0 0

]
, K =

[
Kuu Kuϕ

K⊤uϕ Kϕϕ

] }
, (2.23)

where

Muu = U


M11 M12 M13

M⊤12 M22 M23

M⊤13 M⊤23 M33

 U⊤, Kuu = U


F11 F12 F13

F⊤12 F22 F23

F⊤13 F⊤23 F33

 U⊤ , (2.24)

Kuϕ = U


L11 L12 L13

L21 L22 L23

L31 L32 L33

 V⊤, Kϕϕ = V


G11 G12 G13

G⊤12 G22 G23

G⊤13 G⊤23 G33

 V⊤ , (2.25)

Mh3(h = 1, 2), L3k(k = 1, 2, 3), G12,G13,G23 are arbitrary matrices, and M33, F33, Gkk(k = 1, 2, 3) are
arbitrary symmetric matrices; and M21, F12, F13, F23, Lhk(h = 1, 2, k = 1, 2, 3) and Mkk, Fkk(k = 1, 2)
are given by (2.15)–(2.21).

3. The solution to Problem BAP

In order to solve Problem BAP, the following lemma is needed.

Lemma 3.1. Let A, B ∈ SRs×s, C ∈ Rs×s, and Θ = diag(θ1, · · · , θs) ∈ Rs×s, ∆ = diag(δ1, · · · , δs) ∈ Rs×s

satisfy θ2
i + δ

2
i = 1, i = 1, · · · , s. Then

Ψ(G22) = ∥Θ−1∆G22∆Θ
−1 + A∥2 + ∥G22 − B∥2 + 2∥Θ−1∆G22 +C∥2 = min,

s. t. G22 = G⊤22

if and only if
G22 = −∆ΘAΘ∆ + Θ2BΘ2 − ∆ΘCΘ2 − Θ2C⊤Θ∆. (3.1)

Proof. Let A = [ai j], B = [bi j], C = [ci j] ∈ Rs×s, and G22 = [gi j] ∈ Rs×s. Then

Ψ(G22) :=
s∑

i=1

s∑
j=1

(
(
δi

θi
gi j
δ j

θ j
+ ai j)2 + (gi j − bi j)2 + 2(

δi

θi
gi j + ci j)2

)
.

Now we minimize the quantities

ψi j = ( δi
θi

gi j
δ j

θ j
+ ai j)2 + (gi j − bi j)2 + 2( δi

θi
gi j + ci j)2

+( δ j

θ j
g ji

δi
θi
+ a ji)2 + (g ji − b ji)2 + 2( δ j

θ j
g ji + c ji)2, 1 ≤ i, j ≤ s.
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By direct calculation, we have the minimizers

gi j = −δiθiai jθ jδ j + θ
2
i bi jθ

2
j − δiθici jθ

2
j − θ

2
jc jiθiδi, 1 ≤ i, j ≤ s. (3.2)

By rewriting (3.2) in matrix form, we can get (3.1). □

It is easy to verify that κS is a closed convex subset of Rn×n × Rn×n. From the best approximate
theorem [15], we know that there exists a unique solution (M̂, K̂) ∈ κS to Problem BAP. For the given
matrices MA,KA ∈ SR

n×n, write

U⊤M̃uuU =


M̃11 M̃12 M̃13

M̃⊤12 M̃22 M̃23

M̃⊤13 M̃⊤23 M̃33


p − s

s
nu − p

p − s s nu − p

, (3.3)

U⊤K̃uuU =


F̃11 F̃12 F̃13

F̃⊤12 F̃22 F̃23

F̃⊤13 F̃⊤23 F̃33


p − s

s
nu − p

p − s s nu − p

, (3.4)

V⊤K̃ϕϕV =


G̃11 G̃12 G̃13

G̃⊤12 G̃22 G̃23

G̃⊤13 G̃⊤23 G̃33


p − s

s
nϕ − p

p − s s nϕ − p

, (3.5)

U⊤K̃uϕV =


L̃11 L̃12 L̃13

L̃21 L̃22 L̃23

L̃31 L̃32 L̃33


p − s

s
nu − p

p − s s nϕ − p

. (3.6)

Then
∥M − MA∥

2 + ∥K − KA∥
2

= ∥Muu − M̃uu∥
2 + ∥Kuu − K̃uu∥

2 + 2∥Kuϕ − K̃uϕ∥
2 + ∥Kϕϕ − K̃ϕϕ∥

2

=

∥∥∥∥∥∥∥∥∥


M11 M12 M13

M⊤12 M22 M23

M⊤13 M⊤23 M33

 − U⊤M̃uuU

∥∥∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥∥∥


F11 F12 F13

F⊤12 F22 F23

F⊤13 F⊤23 F33

 − U⊤K̃uuU

∥∥∥∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥∥∥∥


L11 L12 L13

L21 L22 L23

L31 L32 L33

 − U⊤K̃uϕV

∥∥∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥∥∥


G11 G12 G13

G⊤12 G22 G23

G⊤13 G⊤23 G33

 − V⊤K̃ϕϕV⊤

∥∥∥∥∥∥∥∥∥
2

.

Therefore, ∥M − MA∥
2 + ∥K − KA∥

2 = min if and only if

M33 = M̃33, F33 = F̃33, L31 = L̃31, L33 = L̃33,

G11 = G̃11,G13 = G̃13,G33 = G̃33,

f (M13,M23, L32) = 2∥M13 − M̃13∥
2 + 2∥M23 − M̃23∥

2 + 2∥S ⊤11M13 + S ⊤21ΘM23 − F̃13∥
2

+2∥Θ−1(S ⊤12M13 + S ⊤22ΘM23 − ∆L⊤32) − F̃23∥
2 + 2∥L32 − L̃32∥

2 = min,
(3.7)
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f (G12) = 2∥Θ−1∆G⊤12 + L̃21∥
2 + 2∥G12 − G̃12∥

2 = min, (3.8)

f (G22) = ∥Θ−1(N⊤12S 12 + N22S 22 + ∆G22∆)Θ−1 − F̃22∥
2

+∥G22 − G̃22∥
2 + 2∥Θ−1∆G22 + L̃22∥

2 = min,
(3.9)

f (G23) = 2∥Θ−1∆G23 + L̃23∥
2 + 2∥G23 − G̃23∥

2 = min . (3.10)

From (3.7), we have

f (M13,M23, L32) = 2tr[(M13 − M̃13)⊤(M13 − M̃13) + (M23 − M̃23)⊤(M23 − M̃23)
+(S ⊤11M13 + S ⊤21ΘM23 − F̃13)⊤(S ⊤11M13 + S ⊤21ΘM23 − F̃13)
+(Θ−1(S ⊤12M13 + S ⊤22ΘM23 − ∆L⊤32) − F̃23)⊤

(Θ−1(S ⊤12M13 + S ⊤22ΘM23 − ∆L⊤32) − F̃23) + (L32 − L̃32)⊤(L32 − L̃32)].

Thus,

∂ f (M13,M23,L32)
∂M13

= 4(M13 − M̃13 + S 11S ⊤11M13 + S 11S ⊤21ΘM23 − S 11F̃13

+S 12Θ
−2S ⊤12M13 + S 12Θ

−2S ⊤22ΘM23 − S 12Θ
−2∆L⊤32 − S 12Θ

−1F̃23),
∂ f (M13,M23,L32)

∂M23
= 4(M23 − M̃23 + ΘS 21S ⊤11M13 + ΘS 21S ⊤21ΘM23 − ΘS 21F̃13

+ΘS 22Θ
−2S ⊤12M13 + ΘS 22Θ

−2S ⊤22ΘM23 − ΘS 22Θ
−2∆L⊤32 − ΘS 22Θ

−1F̃23),
∂ f (M13,M23,L32)

∂L32
= 4(L32 − L̃32 − M⊤13S 12Θ

−2∆ − M⊤23ΘS 22Θ
−2∆ + L32∆Θ

−2∆ + F̃⊤23Θ
−1∆).

Clearly, f (M13,M23, L32) = min if and only if

∂ f (M13,M23, L32)
∂M13

= 0,
∂ f (M13,M23, L32)

∂M23
= 0,

∂ f (M13,M23, L32)
∂L32

= 0.

When ∂ f (M13,M23,L32)
∂M13

= 0, we arrive at

M13 = P2M23 + P3L⊤32 + P4, (3.11)

where
P1 = (Ip−s + S 11S ⊤11 + S 12Θ

−2S ⊤12)−1, P2 = −P1(S 11S ⊤21Θ + S 12Θ
−2S ⊤22Θ),

P3 = P1S 12Θ
−2∆, P4 = P1(M̃13 + S 11F̃13 + S 12Θ

−1F̃23).

When ∂ f (M13,M23,L32)
∂M23

= 0, we obtain

M23 = P6M13 + P7L⊤32 + P8, (3.12)

where
P5 = (Is + ΘS 21S ⊤21Θ + ΘS 22Θ

−2S ⊤22Θ)−1,

P6 = −P5(ΘS 21S ⊤11 + ΘS 22Θ
−2S ⊤12),

P7 = P5ΘS 22Θ
−2∆,

P8 = P5(M̃23 + ΘS 21F̃13 + ΘS 22Θ
−1F̃23).

When ∂ f (M13,M23,L32)
∂L32

= 0, we get

L32 = M⊤13P10 + M⊤23P11 + P12, (3.13)
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where
P9 = (Is + ∆Θ

−2∆)−1, P10 = S 12Θ
−2∆P9,

P11 = ΘS 22Θ
−2∆P9, P12 = (L̃32 − F̃⊤23Θ

−1∆)P9.

Substituting (3.13) into (3.11) leads to

M13 = P14M23 + P15, (3.14)

where

P13 = (Ip−s − P3P⊤10)−1, P14 = P13(P2 + P3P⊤11), P15 = P13(P3P⊤12 + P4).

Substituting (3.13) and (3.14) into (3.12), we have

M23 = (Is − P6P14 − P7P⊤10P14 − P7P⊤11)−1(P6P15 + P7P⊤10P15 + P7P⊤12 + P8). (3.15)

From (3.8), we have

f (G12) = 2tr[(Θ−1∆G⊤12 + L̃21)⊤(Θ−1∆G⊤12 + L̃21) + (G12 − G̃12)⊤(G12 − G̃12)].

Consequently,

∂ f (G12)
∂G12

= 4(G12∆Θ
−2∆ + L̃⊤21Θ

−1∆ +G12 − G̃12),

when ∂ f (G12)
∂G12

= 0, we conclude that

G12 = (G̃12 − L̃⊤21Θ
−1∆)(Is + ∆Θ

−2∆)−1. (3.16)

From (3.10), we have

f (G23) = 2tr[(Θ−1∆G23 + L̃23)⊤(Θ−1∆G23 + L̃23) + (G23 − G̃23)⊤(G23 − G̃23)].

Thus,

∂ f (G23)
∂G23

= 4(∆Θ−2∆G23 + ∆Θ
−1L̃23 +G23 − G̃23),

when ∂ f (G23)
∂G23

= 0, we can get

G23 = (Is + ∆Θ
−2∆)−1(G̃23 − ∆Θ

−1L̃23). (3.17)

Solving the minimization problem f (G22) by using Lemma 3.1, we have

G22 = −∆(N⊤12S 12 + N22S 22 − ΘF̃22Θ)∆ + Θ2G̃22Θ
2 − ∆ΘL̃22Θ

2 − Θ2L̃⊤22Θ∆. (3.18)

Theorem 3.1. Given matrices MA,KA ∈ SR
n×n. If the solvability conditions of (2.22) are satisfied, then

the solution of Problem BAP is

M̂ =
[

Muu 0
0 0

]
, K̂ =

[
Kuu Kuϕ

K⊤uϕ Kϕϕ

]
, (3.19)
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where

Muu = U


M11 M12 M13

M⊤12 M22 M23

M⊤13 M⊤23 M33

 U⊤, Kuu = U


F11 F12 F13

F⊤12 F22 F23

F⊤13 F⊤23 F33

 U⊤ , (3.20)

Kuϕ = U


L11 L12 L13

L21 L22 L23

L31 L32 L33

 V⊤, Kϕϕ = V


G11 G12 G13

G⊤12 G22 G23

G⊤13 G⊤23 G33

 V⊤ , (3.21)

and M13, M23, L32, G12, G22,G23 are given by (3.14), (3.15), (3.13), (3.16), (3.18), (3.17), respectively.

4. Numerical examples

According to Theorems 2.1 and 3.1, we can describe a numerical algorithm to solve Problem BAP.

Algorithm 1
1: Input Ω,Z,MA,KA.
2: Compute the GSVD of the matrix pair [Z⊤1 ,Z

⊤
2 ] by (2.1).

3: Compute Ni j, S i j, i, j = 1, 2 by (2.7).
4: If the conditions (2.22) are satisfied, go to Step 5; otherwise, Problem IEP has no solution, and

stop.
5: Compute M̃hk, F̃hk, G̃hk, L̃hk, h, k = 1, 2, 3 by (3.3)–(3.6).
6: Compute M13, M23, L32, G12, G22 and G23 by (3.14), (3.15), (3.13), (3.16), (3.18) and (3.17),

respectively.
7: Compute Muu, Kuu and Kuϕ, Kϕϕ by (3.20) and (3.21), respectively.
8: Compute M̂, K̂ by (3.19).

Example 4.1. Let n = 10, p = 3, and the matrices Ω, Z, MA and KA be given by

Ω = diag {0.5339, 4.5445, 179.7010} ,

Z =



−0.5315 2.5021 −15.6029
0.5559 −0.9288 1.4348
0.3428 −0.0872 −11.3065
−0.0258 −0.7476 1.4203
−0.3691 −1.5875 −7.1639
−0.3037 −0.2276 1.3191
−0.6784 −1.4794 −3.5477

0.0547 0.2352 1.0613
−0.2982 −0.5633 −0.9779

0.1559 0.3111 0.6216



,
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MA =



1/3 1/6 0 0 0 0 0 0 0 0
1/6 2/3 1/6 0 0 0 0 0 0 0
0 1/6 2/3 1/6 0 0 0 0 0 0
0 0 1/6 2/3 1/6 0 0 0 0 0
0 0 0 1/6 2/3 1/6 0 0 0 0
0 0 0 0 1/6 2/3 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



,

KA =



2 3 −2 3 0 0 0 0 0 0
3 6 −3 3 0 0 0 0 0 0
−2 −3 4 0 −2 3 0 0 0 0

3 3 0 14 −3 3 0 0 0 0
0 0 −2 −3 4 0 −2 3 0 0
0 0 3 3 0 14 −3 3 0 0
0 0 0 0 −2 −3 4 0 −2 3
0 0 0 0 3 3 0 14 −3 3
0 0 0 0 0 0 −2 −3 4 0
0 0 0 0 0 0 3 3 0 14



.

It is easy to verify that the conditions (2.22) hold. By applying Algorithm 1, we can obtain the unique
solution (M̂, K̂) of Problem BAP as follows:

M̂ =



0.1200 0.0568 −0.1942 0.0136 0.0804 0.1002 0 0 0 0
0.0568 0.7758 0.1625 −0.0581 −0.2730 −0.2024 0 0 0 0
−0.1942 0.1625 0.4989 0.0412 −0.3591 −0.2163 0 0 0 0

0.0136 −0.0581 0.0412 0.6294 0.0200 0.0177 0 0 0 0
0.0804 −0.2730 −0.3591 0.0200 0.3903 0.2391 0 0 0 0
0.1002 −0.2024 −0.2163 0.0177 0.2391 0.8587 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



,

K̂ =



2.1139 3.0315 −1.8744 2.9638 −0.0026 −0.2516 0.0048 −0.0027 0.0024 −0.0061
3.0315 5.8719 −3.0924 3.0567 0.2304 0.3243 −0.0129 0.0270 −0.0020 −0.0650
−1.8744 −3.0924 4.0913 0.0762 −1.5621 3.2344 −0.0396 0.0776 −0.0151 −0.0478

2.9638 3.0567 0.0762 14.0194 −2.9382 2.9753 0.0080 0.0220 0.0000 0.0401
−0.0026 0.2304 −1.5621 −2.9382 4.3324 −0.2213 −2.0242 3.1203 −0.0227 0.1663
−0.2516 0.3243 3.2344 2.9753 −0.2213 13.6972 −3.2419 3.0230 −0.1112 0.1281

0.0048 −0.0129 −0.0396 0.0080 −2.0242 −3.2419 4.1122 0.1160 −1.9415 3.1818
−0.0027 0.0270 0.0776 0.0220 3.1203 3.0230 0.1160 13.9571 −2.9592 2.9535

0.0024 −0.0020 −0.0151 0.0000 −0.0227 −0.1112 −1.9415 −2.9592 4.0287 0.0735
−0.0061 −0.0650 −0.0478 0.0401 0.1663 0.1281 3.1818 2.9535 0.0735 13.9135



,
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and

∥M̂ZΩ − K̂Z∥ = 3.8215 × 10−13,

which implies that M̂ZΩ = K̂Z reproduces the desired eigenvalues and eigenvectors.
Example 4.2. Let n = 8, p = 3, and the matrices Ω, Z, MA and KA be given by

Ω = diag {1.5206, 2.5270, 91.3913} ,

Z =



−0.5355 −0.3712 −0.6789
1.0882 −0.8303 0.3868
−0.9698 −1.2271 2.1975

1.3025 0.0950 −1.5919
0.7994 0.7872 −9.5128
−1.0684 0.8012 2.0846
−1.0579 0.6595 1.8357

0.5541 0.3212 0.7364


,

MA =



1.3402 0.5146 0.5814 0.6866 0.7620 0.9819 0 0
0.5146 0.4961 0.2583 0.5576 0.4578 0.4649 0 0
0.5814 0.2583 0.6344 0.3307 0.3011 0.5966 0 0
0.6866 0.5576 0.3307 1.0126 0.8409 0.6567 0 0
0.7620 0.4578 0.3011 0.8409 1.0829 0.6275 0 0
0.9819 0.4649 0.5966 0.6567 0.6275 1.0743 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,

KA =



0.7158 0.6563 0.6049 0.6571 0.5776 1.1711 0.6820 0.8292
0.6563 0.8111 0.7171 0.7692 0.7529 1.2061 0.7816 0.9808
0.6049 0.7171 0.7705 0.8419 0.6858 1.2360 0.8461 1.0336
0.6571 0.7692 0.8419 1.1459 0.6178 1.2566 0.8430 1.1389
0.5776 0.7529 0.6858 0.6178 1.0802 1.1265 0.6929 1.0651
1.1711 1.2061 1.2360 1.2566 1.1265 2.3207 1.5727 1.5929
0.6820 0.7816 0.8461 0.8430 0.6929 1.5727 1.2934 1.1164
0.8292 0.9808 1.0336 1.1389 1.0651 1.5929 1.1164 1.5667


.

It can easily be seen that the conditions (2.22) hold. By applying Algorithm 1, we can obtain the unique
solution (M̂, K̂) of Problem BAP as follows:

M̂ =



0.9842 0.3968 0.3241 0.5426 0.1421 0.9505 0 0
0.3968 0.2152 0.1395 0.3217 0.0722 0.5171 0 0
0.3241 0.1395 0.3701 0.2459 0.1110 0.3585 0 0
0.5426 0.3217 0.2459 0.8048 0.1161 1.0165 0 0
0.1421 0.0722 0.1110 0.1161 0.0745 0.2885 0 0
0.9505 0.5171 0.3585 1.0165 0.2885 1.9346 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,
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K̂ =



1.1470 0.7694 1.2597 0.4815 0.9014 0.9480 0.6446 0.7689
0.7694 1.0790 1.0498 0.8036 0.6304 1.0632 1.0341 1.1680
1.2597 1.0498 1.7305 0.7554 1.1954 0.9108 0.9058 1.1959
0.4815 0.8036 0.7554 1.1348 0.2496 1.2645 0.9608 1.1139
0.9014 0.6304 1.1954 0.2496 1.6305 0.7494 0.5127 0.6545
0.9480 1.0632 0.9108 1.2645 0.7494 2.4984 1.2702 1.3983
0.6446 1.0341 0.9058 0.9608 0.5127 1.2702 0.6414 0.8531
0.7689 1.1680 1.1959 1.1139 0.6545 1.3983 0.8531 1.3044


,

and
∥M̂ZΩ − K̂Z∥ = 8.0674 × 10−14.

Observe that the prescribed eigenvalues and eigenvectors have been embedded in the new model
M̂ZΩ = K̂Z.

5. Conclusions

A direct updating method for the piezoelectric smart structural models has been established by
applying the generalized singular value decomposition. This method makes use of the constrained
minimization theory to formulate the minimization error function such that the resulting changes to
mass and stiffness matrices are a minimum. The updated model can accurately reproduce the measured
eigenstructure data. The approach was verified by two numerical examples and the reasonable results
were obtained.
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