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Abstract: A direct method for simultaneously updating mass and stiffness matrices of the undamped
piezoelectric smart structural models based on incomplete modal measured data is presented. By
applying the generalized singular value decomposition and some matrix derivatives, the optimal
approximate mass and stiffness matrices which satisfy the required eigenvalue equation and the
orthogonality relation are found under the Frobenius norm sense. The method is computationally
efficient as neither iteration nor eigenanalysis is required. Numerical results are included to illustrate
the effectiveness of the proposed method.
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1. Introduction

Throughout this paper, R, OR™" and SR™" denote the sets of all m X n real matrices, all n X n
orthogonal matrices and all n X n symmetric matrices, respectively. AT and tr(A) stand for the transpose
and the trace of a matrix A, respectively. I, denotes the identity matrix of size n.

Piezoelectric smart materials are a class of materials with piezoelectric effect. Due to the
development of smart materials and structures, these materials are endowed with strong vitality.
Piezoelectric smart materials can rapidly transform pressure, vibration into electrical signals, or
electrical signals into vibration signals, that is, the piezoelectric elements can be used as both sensors
and actuators, which realizes the unity of the sensing elements and the action elements, and make
them widely used in engineering. For example, piezoelectric materials are applied in active vibration
control [1,2], distributed dynamic measurement [3] and structural health monitoring [4—6], etc.

By using the finite element techniques, the global equation of motion for the undamped piezoelectric
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smart structure system with n degrees of freedom can be written as [7]:
MAij+KAV:f. (11)

The matrices My, K,, and the vectors v, f are of the form

_ Muu 0 _ f(uu f(uqﬁ _ u _ fu
MA_[ 0 0]’KA_[[~(J¢ [~(¢¢],v—[¢],f—[f¢], (12

where M, € SR™™ is the structural mass matrix, K,, € SR™ is the structural stiffness matrix,
K5 € R"™" (n, + ng = n) is the piezoelectric coupling matrix, K4y € SR™*" is the dielectric stiffness
matrix, # € R™ denotes the mechanical displacement vector, ¢ € R denotes the electrical potential
vector, f, € R™ denotes the mechanical external force vector and f, € R" denotes the external electric
charge vector. It is known that the vibration of the mathematical model (1.1) is characterized by
eigenvalues and eigenvectors of the following generalized inverse eigenvalue problem:

Muu 0 <1 _ Kuu Ku¢ <1

o oalli e = lE) &
In general, owning to the difficulty in accurately determining some structural parameters, the
unreasonable coupling simplification [8] and the mathematical description error of geometry and
boundary conditions [9], the piezoelectric smart structure model established by finite element
techniques may not truly describe the actual characteristics of the structure. Therefore, we need to
update the model by applying the measured modal data such that the updated model can better reflect
the physical structure and the measured results. Mathematically, the problem of updating piezoelectric
smart structure model can be formulated as the following problem.
Problem IEP. Let Q = diag(wi,...,wp) € R and Z = [Z],Z]]" € R™” be the measured
eigenvalue and eigenvector matrices, where Z; € R™*?  Z, € R"*? and rank(Z,) = p. Find matrices

Muu 0 Kuu Ku¢ ] X
M = , K = € SR™" such that
[ 0 0 ] [ Kis Koo

MZQ =KZ, ZIM,Z =1, (1.4)

It is well known that the numerical model is a “good” representation of the structure, we hope to find
a model that is closest to the original model. Thus, we should further consider the following best
approximate problem:

Problem BAP. Given matrices M4, K4 € SR™". Find (M, K) € ks such that

IV = MAIP + IR = KxlP = min (I\M = Mu|l* + IK = K4lP?). (1.5)
(M,K)eks
where || - || is the Frobenius norm and «g is the solution set of Problem IEP.

Fish and Chen [10] developed the solution procedures for large-scale transient analysis of
piezocomposites by using the representative volume element-based multilevel method. Xu and
Koko [11] presented a general purpose design scheme of actively controlled piezoelectric smart
structures by finite element modal analysis. More recently, Zhao and Liao [12] solved the updating
problem of undamped piezoelectric smart structure systems with no-spillover and derived a set
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of parametric solutions. Nevertheless, the problem of BAP seems rarely to be discussed in the
literatures, which motivates us to provide a numerical method to solve problems IEP and BAP. By
applying the generalized singular value decomposition(GSVD) of a matrix pair, the expression of the
general solution of Problem IEP is derived when the solvability conditions are satisfied and the best
approximate solution of Problem BAP is obtained. Finally, two numerical examples are given to verify
the correctness of the results.

2. The solution to Problem IEP

Note that rank(Z;) = p, then the GSVD [13, 14] of the matrix pair [Z], Z] ] is of the following form:

Z] = Ule, 22 = VZzN, (21)
where N € R”*? is nonsingular, and
I 0 p—s 00 p—s
Z] =10 O S 22 =10 A S
00 n,—p ~ 00 ng—p °’
p—Ss S p—s s

U :[ U U, Us ]e@R”"X"“, V:[ Vi V, Vi ]e OR™""s

and
@ = diag(eh Tt Hs)? A = diag(61’ R 6s)

with
1>6i>26,>--->26,>0, 0<61 <0, <--- <6, <1,
01.2+6f:1,i:1,---,s.

By (2.1), Eq (1.4) can be equivalently written as

M, O UxXN | K Kug UX N
7o e e | 2
N'2/U"M,UZ\N =1, (2.3)
that is,
M, ,UZ,NQ = K,,UZ,N + K, VE,N, (2.4)
>U™M,UZ, =N"N", (2.6)
Let
- Su Si pP—s T AT Ni N p—Ss
NQN-! = NN =
[ Sa Sx ] s ) N1T2 Ny S 5 (2.7)

p—s s p—s5 s
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My My, M p—S
UTM,MU = M;—Z M22 M23 S
M?—S M;; M33 n,—p ’
p—-s s n,—p
Fin Fip Fi3 p—s
UTKWU = Firz F22 F23 N
FII; F;3 F33 n,—p ’
p—-s s n,—-p
G G Gps p—Ss
VTK(M,V = (;12 G22 G23 S
G, Gy G ng—p ’
p—S S ng—p
Ly Ly, Ly p—5
UKV =| Ly Ly Ly s
L3y L3z Lss ny—p
p—s § ng—p
Thus, Eqgs (2.4) — (2.6) are equivalent to
[ Fiy Fio Fis |[1 O Ly Ly Lz [|0 O
Firz Fy Fys 0 O |+ Ly Ly Lo 0 A=
! F?—S F;; F33 0 0 L31 L32 L33 0 0
My My, M I 0 Sy Su
M), My M 0 ® [ Sy S ],
] MIT3 M2T3 Mz 0 0
LTI L;—l L;—l I 0 Gll G12 G13 0 0
Lirz ng Lg—z 0 O |+ G;—Z Gy G23 0 A= 0,
T T T T T
L13 L23 L33 0 0 G13 G23 Gs3 00
My, M, M 1
1 00 MITI M” M” 0 g [N N
0 @ 0 12 22 23 - NT N22 .
MIT3 MZT3 M3 0 0 12

Comparing two sides of (2.12) — (2.14), we have
My; = Nij, My = Np®~', My, = ©7'N»,@®~',

Fi1 =NuSi +NiaSa,
Fia = (N;1S12+ NipS»)@7 !, Fl, =07 (NLS 11 + NpSa),

Fi3=S8S M3+ S8,,0My, Fyy =0 (NS 12+ NpSayp + AGpA)O ™,

Fpy = O (S ,My3 + S5,0My; — AL3),
Lll = O, L12 = O» L13 = 0’
Ly = -07'AG],, Ly, = -07'AGy, Ly; = -07'AGx.

In summary, we can state the follwing theorem.
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(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)
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2.17)
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Theorem 2.1. Suppose that Q = diag(w, ...,wp) € R”P and Z = [Z],Z] 1" € R™" are the measured
eigenvalue and eigenvector matrices, where Z, € R"*?, 7, € R"*P and rank(Z,) = p. Let the GSVD of
the matrix pair [Z],Z] ] be given by (2.1). Then Problem IEP is solvable if and only if

NiS1i+NipSo = SlTlNll +SleN1T2,
STZN“ + S;leTZ = N;—ZS“ + N»Soi, (222)
NS 12+ NSy = SN2 + S5, No.

In this case, the solution set of Problem IEP can be expressed as

O P P T
where
My My M | [ Fi1 Fip Fi3
M, =U M;—z My, My |U", K,=U F;—Z Fy Fyy |UT , (2.24)
M1T3 M2T3 M3 | L F1T3 F2T3 F33
Ly Ly L | [ Gii Gi» Gp3
Kip=U| Ly Ly Ly |V, Ku=V|Gl, Gn Gy |V, (2.25)
L3y Lz L3 | | GI; G); Gx

Ms(h = 1,2), Ly (k = 1,2,3), G2, Gy3, Gos are arbitrary matrices, and Mss3, Fs3, G(k = 1,2,3) are
arbitrary symmetric matrices; and My, Fia, Fi3, Fo3, Lig(h = 1,2,k = 1,2,3) and My, Fi(k = 1,2)
are given by (2.15)—(2.21).

3. The solution to Problem BAP

In order to solve Problem BAP, the following lemma is needed.

Lemma 3.1. Let A, B € SR™, C € R™, and © = diag(d,,--- ,6,) € R®®, A = diag(dy,--- , ;) € R¥®
satisfy@l.2+(5i2 =1,i=1,---,s. Then

W(Gr) = 107'AGAO™" + A + |G, — B +2/107'AGx, + C|* = min,

S. t. G22 = G;Z

if and only if
Gy = —AGABGA + O’BO? — AOCO? — O*CTOA. (3.1)

Pl"OOf. LetA = [a,‘j], B = [bij]’ C= [Cij] € R™ and Gy = [gij] € R*. Then
N S 5l 5 . 61
Y(Gr) = Z Z ((5&1/9—]’ +a;j)* + (g — bij)* + 2(581'/ + Cij)Z)-
i=1 j=1 ! J !
Now we minimize the quantities

0; S di
Yij = (G 8ijg + aij)* + (gij = bij)* + 2(3gij + ¢ij)’
0 0; 0 [N
+(9_;gji§i +ap)’ +(gji—bp)* + z(g_j.gji +ci)? 1<i,j<s.
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By direct calculation, we have the minimizers

8ij = —5i9ia,~j916j + leb,ﬂf — 6i9icij9? - 956']','9,'51', 1< l,] <s. (32)

By rewriting (3.2) in matrix form, we can get (3.1). O

It is easy to verify that ks is a closed convex subset of R™" x R™", From the best approximate
theorem [15], we know that there exists a unique solution (M, K) € ks to Problem BAP. For the given
matrices My, Ky € SR™", write

Ailn AZIIZ A:[13 p—s
UTMuuU = M?—Z M22 M23 S 33
M, ML My | ne-p (33)
13 23 33 u— P
p-s s m-p
f?u 1?12 fin p—S
UTKuuU = {TZ I‘j22 Ij23 S (34)
Fir3 F;_3 F33 | n,—p
p—Ss § n,—p
G:n (:;12 (:;13 2
4 K¢¢V - (21T2 szz G~23 s (3.5)
G1T3 G;3 G33 ng —p
p—s S ng—p
1:411 1:112 1:413 p—Ss
U'KyV=| Ly Ly Ly s
Z31 Z32 1:33 n,—p (3.6)
p—s s ng—p
Then
||M—MA~||2+||K—KA||2~ ) 3
= ”Muu - Muu||2 + ”Kuu - uu||2 + 2”Ku¢ - Ku¢||2 + ”K¢¢ - K¢¢||2
2 2
My My, M . Fi Fp Fis 3
= Mirz My, My |- UTMWU + F;rz Fy Fy |- UTKWU
M, ML, Msy FT, FL Fy
Ly Ly, L3 3 [ Gi1 G2 Gis )
+ 2 Ly, Ly Ly |— UTKquV + Girz Gy Gy |- VTK¢¢VT
L3y Lz L3 | G; G,; G33
Therefore, |M — My||* + ||[K — K4||*> = min if and only if
Ms; = M3, Fy3 = Fs3, Ly = Ly, Lz = Lss,
G = G11,Gi3 = G13,G33 = G,
f(Mi3, Mas, Lyy) = 2\\My3 — Mis|? + 2|[Mas — Mos|* + 21IS [, M3 + S 7,0Mas — Fis) 3.7)

+21071(S,M 13 + S 3,0Ms3 — ALL,) — Fas|* + 2||Ls, — Lso|l* = min,
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f(G1p) =2107'AGT, + Loy |* + 2|IG 12 — Gall* = min, (3.8)
f(Gy) = ||®_1(N52512 + NpSa + AngA)Q_l — FylP (3.9)
+IG2 — Gall* + 2[07'AGy + Lo |* = min, '
f(G2) =207 AGas + Los|I* + 2IIGa3 — Gosl/* = min. (3.10)
From (3.7), we have
f(Mi3, My, Lyy) = 2t[(My3 — M13)" (M5 - My3) + (Maz — My3)" (Mas - M»3)
+H(S | Mz +S7,0Mx — Fi3)"(S ITIM13~+ S7,OMy3 — Fi3)
+(®_1(S I2M13 + S;—2®M23 - AL;—Z) - F23)T
(O (S ,Mi3 + S5,0My; — AL) — Fo3) + (Lso — L3o) " (Lsy — L)1
Thus,
—af(MSMA?’L”) =4(My5— M3+ S1uST M5+ S1155,0May — S 11 Fis
+S 12®_ZS T2M13 +S 12®_ZS;—2®M23 -8 12®_2AL;—2 -5 12®_1F23),
MM{;’TA;?LI&) =4(My; — M23 + @SQ]SLMB + @SQ]S;—l@MQ:‘, - ®521F13 3
+0OS 22®_2S ITZM13 + 0OS 22®_2S 2Tz®M23 - 0S5 22®_2AL3T2 - 0S 22®_1F23),
UCMln) = 4(Lyy — Lyp — M[,S 12072A — M3,05 02A + LyyA®2A + F1,07'A).
Clearly, f(M,3, M»3, L3;) = min if and only if
0f (M3, M3, L3y) _0 0f (M3, My, L3y) _0 0f (M3, My, L3y) _0
When W = 0, we arrive at
13
M3 = PoMos + P3Ly, + Py, (3.11)
where
P, = (Ip—s + S]]Sirl + S12®_ZSI2)_1, P, = —Pl(S”S;]@ + S12®_ZS;2®),
P; = Pi1S1n07%A, Py=Pi(My3+S11Fi5+ 51,07 Fy).
When &M l50) (MSK”’L”) = 0, we obtain
23
M23 = P6M13 + P7L;—2 + Pg, (312)
where
Ps = (I, + 05,50 + ®S22®‘252Tz®)‘1,
Ps = —P5(OS 21S1r1 + 0S5 22®_2S ;—2),
P7 = P5®522®_2A,
Py = Ps(Ma; + OS5, F13 + 05,07 Fs).
Of(My3,Ma3,L32) __
When W =0, we get
L32:MLP10+M;3P11+P12, (313)
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where
Py = (Is + A@_ZA)_I, Py = S12®_2AP9,
PU = ®522®_2AP9, P12 = (Z32 - F;;@_]A)Pg

Substituting (3.13) into (3.11) leads to
M3 = P1uMpy; + Pis, (3.14)

where

Pi3 = (Iy—s — P3P]))™", Pu=P;3(Py+ PsP]), Pis=P;(PsP], + P4).
Substituting (3.13) and (3.14) into (3.12), we have

M23 = (Is — P6P14 — P7P-1|—OP14 — P7P-1rl)_l(P6P15 +P7P—1|—OP15 +P7P—lr2 + Pg) (315)

From (3.8), we have

F(Gy) = 2t[(@7'AG, + L))" (O@7'AGT, + L)) + (G12 — G12) (G112 — G12)].

Consequently,
af (G - -
f(Gi) _ 4G AOA + L] 07'A+ G, — Gy),
aG12
when % = 0, we conclude that
12

G = (G- L,07'A) I, + AO2A) . (3.16)

From (3.10), we have

F(Ga3) = 2u[(O@7'AGp3 + Lp3) (@' AGys + L13) + (Gos — G3) (Gos — G3)].

Thus,
Af(G 8 5
];(G z) 4(AOAGy; + AO™ Loy + Gz — Go3),
23
when 292) — 0, we can get

0G23
Ga = (I, + AOA) 1(Gys — AO™' Lyy). (3.17)

Solving the minimization problem f(G»;) by using Lemma 3.1, we have
Gy = —A(N;—ZS 12+ N»Sap— @Fzz@)A + ®2G~22®2 — A@Zzg@z - ®2Z4;—2®A (318)

Theorem 3.1. Given matrices My, K4 € SR™". If the solvability conditions of (2.22) are satisfied, then
the solution of Problem BAP is

9 Muu 0 % Kuu Ku¢ ]
M = , K = , (3.19)
[ ] lKuT(;) Koy
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where

My My, M |

My, =U| M|, My M
M, My, M;; |
Ly Lip Lz |

Kigy=U| Ly Ly Ly
Lyy Lz L3 |

VT

Ku,=U

Koy =V

Fi
Fa
F3,
G
Gn
Gy,

ur, (3.20)

VT, (3.21)

and M3, M3, L3y, G, Gay, Gos are given by (3.14), (3.15), (3.13), (3.16), (3.18), (3.17), respectively.

4.

Numerical examples

According to Theorems 2.1 and 3.1, we can describe a numerical algorithm to solve Problem BAP.

Algorithm 1

B A

4

Input Q,Z, M4, K,.

Compute the GSVD of the matrix pair [Z], Z] ] by (2.1).

Compute Nij’ S,‘j, i, ] = 1, 2 by (27)

If the conditions (2.22) are satisfied, go to Step 5; otherwise, Problem IEP has no solution, and

stop.

Compute th, Fhk, G~hka th, h, k= 1, 2, 3 by (33)—(36)
Compute M3, My, L3y, Gz, Gy and Goz by (3.14), (3.15), (3.13), (3.16), (3.18) and (3.17),

respectively.

Compute M,,,, K,, and K4, K, by (3.20) and (3.21), respectively.
s: Compute M, K by (3.19).

Example 4.1. Let n = 10, p = 3, and the matrices Q, Z, M, and K, be given by

Q = diag {0.5339, 4.5445, 179.7010},

[ —0.5315
0.5559
0.3428
—-0.0258
—-0.3691
—-0.3037
-0.6784

0.0547
—-0.2982

0.1559

AIMS Mathematics

2.5021
—-0.9288
-0.0872
-0.7476
—-1.5875
-0.2276
—-1.4794

0.2352
-0.5633

0.3111

—-15.6029 |

1.4348
—11.3065
1.4203
-7.1639
1.3191
-3.5477
1.0613
-0.9779

0.6216 |
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| r

[ 1/3 1/6 0 O O O 00 0O
1/6 2/3 1/6 0 O O O 0 O O
1/6 2/3 1/6 0 O 0 0 0 O
0 1/6 2/3 1/6 0 0 0 O O
0O 0 1/6 2/3 1/6 0 0 0 O
0O 0 0 1/6 2/3 0 0 0 0}
o o o o0 0 0O0°O00O
o 0 o O o0 00O00O0
o 0 o O o0 0O0O00O0
o o0 o o0 0 0O0°O00O
3 -2 3 0 0 O 0 0 O
6 -3 3 0 0 O O O O
-3 4 -2 3 0 0 0 O
3 014 -3 3 0 0 0 O
0 -2-3 4 0-2 3 0 O
0 3 3 0 14 -3 3 0 O
0o 0 0 -2 -3 4 0 -2 3
o 0 0 3 3 0 14 -3 3
o 0 0 0 0 -2-3 4 0
o 0o 0 O o0 3 3 0 14

It is easy to verify that the conditions (2.22) hold. By applying Algorithm 1, we can obtain the unique
solution (M, K) of Problem BAP as follows:

0.0568
0.7758
0.1625

2.1139
3.0315
~1.8744
2.9638
~0.0026
~0.2516
0.0048
~0.0027
0.0024
| —0.0061

>
I

0.1200
0.0568
—-0.1942
0.0136
0.0804
0.1002
0

0
0
0

3.0315
5.8719
-3.0924
3.0567
0.2304
0.3243
—-0.0129
0.0270
-0.0020
—-0.0650

AIMS Mathematics

—-0.058
-0.273

1
0

-0.2024

-1.8744
-3.0924
4.0913
0.0762
—-1.5621
3.2344
—-0.0396
0.0776
-0.0151
—-0.0478

0

0
0
0

-0.1942  0.0136  0.0804 0.1002 O
0.1625 -0.0581 -0.2730 -0.2024 0
0.4989 0.0412 -0.3591 -0.2163 O
0.0412  0.6294 0.0200 0.0177 O
-0.3591 0.0200 0.3903 0.2391 O
-0.2163  0.0177 0.2391 0.8587 O
0 0 0 00

0 0 0 00

0 0 0 00

0 0 0 00

29638 -0.0026 -0.2516  0.0048 —0.0027
3.0567  0.2304 0.3243 -0.0129  0.0270
0.0762 -1.5621  3.2344 -0.0396  0.0776
14.0194 -29382 2.9753  0.0080  0.0220
-2.9382 43324 -0.2213 -2.0242  3.1203
29753 -0.2213 13.6972 -3.2419  3.0230
0.0080 -2.0242 -3.2419 4.1122  0.1160
0.0220  3.1203  3.0230 0.1160 13.9571
0.0000 -0.0227 -0.1112 -1.9415 -2.9592
0.0401  0.1663  0.1281  3.1818  2.9535

Volume 8,

S OO OO OO OO
S OO OO O OO oo

o
=N eoloNoNoNoBeoheolhole)

0.0024 —0.0061 |
-0.0020 —0.0650
-0.0151 —0.0478
0.0000  0.0401
-0.0227  0.1663
-0.1112  0.1281
-1.9415  3.1818
-2.9592  2.9535
4.0287  0.0735
0.0735 13.9135 |
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and
IMZQ — KZ|| = 3.8215 x 1073,

which implies that MZQ = KZ reproduces the desired eigenvalues and eigenvectors.
Example 4.2. Let n = 8, p = 3, and the matrices Q, Z, M, and K4 be given by

Q = diag {1.5206, 2.5270, 91.3913},

[ -0.5355 -0.3712 -0.6789 |
1.0882 -0.8303  0.3868
-0.9698 -1.2271  2.1975
1.3025  0.0950 -1.5919
0.7994  0.7872 -9.5128
-1.0684 0.8012  2.0846
-1.0579 0.6595  1.8357
0.5541 0.3212  0.7364

[ 1.3402 0.5146 0.5814 0.6866 0.7620 0.9819
0.5146 0.4961 0.2583 0.5576 0.4578 0.4649
0.5814 0.2583 0.6344 0.3307 0.3011 0.5966
0.6866 0.5576 0.3307 1.0126 0.8409 0.6567
0.7620 0.4578 0.3011 0.8409 1.0829 0.6275
0.9819 0.4649 0.5966 0.6567 0.6275 1.0743

0 0 0 0 0 0

0 0 0 0 0 0 0 0

[ 0.7158 0.6563 0.6049 0.6571 0.5776 1.1711 0.6820 0.8292 |
0.6563 0.8111 0.7171 0.7692 0.7529 1.2061 0.7816 0.9808
0.6049 0.7171 0.7705 0.8419 0.6858 1.2360 0.8461 1.0336
0.6571 0.7692 0.8419 1.1459 0.6178 1.2566 0.8430 1.1389
0.5776 0.7529 0.6858 0.6178 1.0802 1.1265 0.6929 1.0651
1.1711 1.2061 1.2360 1.2566 1.1265 2.3207 1.5727 1.5929
0.6820 0.7816 0.8461 0.8430 0.6929 1.5727 1.2934 1.1164

| 0.8292 0.9808 1.0336 1.1389 1.0651 1.5929 1.1164 1.5667 |

S OO O O o O
el el eoleoBelNelel

It can easily be seen that the conditions (2.22) hold. By applying Algorithm 1, we can obtain the unique
solution (M, K) of Problem BAP as follows:

[ 0.9842 0.3968 0.3241 0.5426 0.1421 0.9505
0.3968 0.2152 0.1395 0.3217 0.0722 0.5171
0.3241 0.1395 0.3701 0.2459 0.1110 0.3585
0.5426 0.3217 0.2459 0.8048 0.1161 1.0165
0.1421 0.0722 0.1110 0.1161 0.0745 0.2885
0.9505 0.5171 0.3585 1.0165 0.2885 1.9346

0 0 0 0 0 0

0 0 0 0 0 0

S OO O OO oo
S OO O OO oo
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[ 1.1470 0.7694 1.2597 0.4815 0.9014 0.9480 0.6446 0.7689 |
0.7694 1.0790 1.0498 0.8036 0.6304 1.0632 1.0341 1.1680
1.2597 1.0498 1.7305 0.7554 1.1954 0.9108 0.9058 1.1959
0.4815 0.8036 0.7554 1.1348 0.2496 1.2645 0.9608 1.1139
0.9014 0.6304 1.1954 0.2496 1.6305 0.7494 0.5127 0.6545 |’
0.9480 1.0632 09108 1.2645 0.7494 2.4984 1.2702 1.3983
0.6446 1.0341 0.9058 0.9608 0.5127 1.2702 0.6414 0.8531

| 0.7689 1.1680 1.1959 1.1139 0.6545 1.3983 0.8531 1.3044 |

=
Il

and
IMZQ — KZ|| = 8.0674 x 1074,

Observe that the prescribed eigenvalues and eigenvectors have been embedded in the new model
MZQ = KZ.

5. Conclusions

A direct updating method for the piezoelectric smart structural models has been established by
applying the generalized singular value decomposition. This method makes use of the constrained
minimization theory to formulate the minimization error function such that the resulting changes to
mass and stiffness matrices are a minimum. The updated model can accurately reproduce the measured
eigenstructure data. The approach was verified by two numerical examples and the reasonable results
were obtained.
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