In this paper, the necessary and sufficient conditions under which the matrix inequality $ C^*XC\geq D\ (>D) $ subject to the linear constraint $ A^*XA = B $ is solvable are deduced by means of the spectral decompositions of some matrices and the generalized singular value decomposition of a matrix pair. An explicit expression of the general Hermitian solution is also provided. One numerical example demonstrates the effectiveness of the proposed method.
Citation: Yinlan Chen, Wenting Duan. The Hermitian solution to a matrix inequality under linear constraint[J]. AIMS Mathematics, 2024, 9(8): 20163-20172. doi: 10.3934/math.2024982
In this paper, the necessary and sufficient conditions under which the matrix inequality $ C^*XC\geq D\ (>D) $ subject to the linear constraint $ A^*XA = B $ is solvable are deduced by means of the spectral decompositions of some matrices and the generalized singular value decomposition of a matrix pair. An explicit expression of the general Hermitian solution is also provided. One numerical example demonstrates the effectiveness of the proposed method.
[1] | C. G. Khatri, S. K. Mitra, Hermitian and nonnegative definite solutions of linear matrix equations, SIAM J. Appl. Math., 31 (1976), 579–585. https://doi.org/10.1137/0131050 doi: 10.1137/0131050 |
[2] | H. Dai, On the symmetric solutions of linear matrix equations, Linear Alge. Appl., 131 (1990), 1–7. https://doi.org/10.1016/0024-3795(90)90370-R doi: 10.1016/0024-3795(90)90370-R |
[3] | A. Navarra, P. L. Odell, D. M. Young, A representation of the general common solution to the matrix equations $A_1XB_1 = C_1$ and $A_2XB_2 = C_2$ with applications, Comput. Math. Appl., 41 (2001), 929–935. https://doi.org/10.1016/S0898-1221(00)00330-8 doi: 10.1016/S0898-1221(00)00330-8 |
[4] | Y. Deng, Z. Bai, Y. Gao, Iterative orthogonal direction methods for Hermitian minimum norm solutions of two consistent matrix equations, Numerical Linear Alge. Appl., 13 (2006), 801–823. https://doi.org/10.1002/nla.496 doi: 10.1002/nla.496 |
[5] | J. Xu, H. Zhang, L. Liu, H. Zhang, Y. Yuan, A unified treatment for the restricted solutions of the matrix equation $AXB = C$, AIMS Math., 5 (2020), 6594–6608. https://doi.org/10.3934/math.2020424 doi: 10.3934/math.2020424 |
[6] | F. Zhang, Y. Li, W. Guo, J. Zhao, Least squares solutions with special structure to the linear matrix equation $AXB = C$, Appl. Math. Comput., 217 (2011), 10049–10057. https://doi.org/10.1016/j.amc.2011.04.081 doi: 10.1016/j.amc.2011.04.081 |
[7] | H. Dai, P. Lancaster, Linear matrix equations from an inverse problem of vibration theory, Linear Alge. Appl., 246 (1996), 31–47. https://doi.org/10.1016/0024-3795(94)00311-4 doi: 10.1016/0024-3795(94)00311-4 |
[8] | X. Liu, The Hermitian solution of $AXA^* = B$ subject to $CXC^*\geq D$, Appl. Math. Comput., 270 (2015), 890–898. https://doi.org/10.1016/j.amc.2015.08.102 doi: 10.1016/j.amc.2015.08.102 |
[9] | X. Liu, H. Yang, An expression of the general common least-squares solution to a pair of matrix equations with applications, Comput. Math. Appl., 61 (2011), 3071–3078. https://doi.org/10.1016/j.camwa.2011.03.096 doi: 10.1016/j.camwa.2011.03.096 |
[10] | K. Yasuda, R. E. Skelton, Assigning controllability and observability Gramians in feedback control, J. Guidance Control Dyn., 14 (1991), 878–885. https://doi.org/10.2514/3.20727 doi: 10.2514/3.20727 |
[11] | Y. Liu, Y. Tian, Max-min problems on the ranks and inertias of the matrix expressions $A-BXC\pm (BXC)^*$ with applications, J. Opt. Theory Appl., 148 (2011), 593–622. https://doi.org/10.1007/s10957-010-9760-8 doi: 10.1007/s10957-010-9760-8 |
[12] | C. G. Khatri, S. K. Mitra, Hermitian and nonnegative definite solutions of linear matrix equations, SIAM J. Appl. Math., 31 (1976), 579–585. https://doi.org/10.1137/0131050 doi: 10.1137/0131050 |
[13] | H. Dai, Symmetric positive definite solutions of matrix equations $(AX, XB) = (C, D)$ and $AXB = C$, Tran. Nanjing Univ. Aero. Astr., 13 (1996), 175–179. |
[14] | C. C. Paige, M. A. Saunders, Towards a generalized singular value decomposition, SIAM J. Numerical Anal., 18 (1981), 398–405. https://doi.org/10.1137/0718026 doi: 10.1137/0718026 |
[15] | Y. Yuan, H. Zhang, L. Liu, The Re-nnd and Re-pd solutions to the matrix equations $AX = C$, $XB = D$, Linear Mult. Algebra, 70 (2020), 3543–3552. https://doi.org/10.1080/03081087.2020.1845596 doi: 10.1080/03081087.2020.1845596 |
[16] | J. Respondek, Matrix black box algorithms a survey, Bull. Polish Acad. Sci. Tech. Sci., 70 (2022), e140535. |