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1. Introduction

Throughout this paper, we denote the complex m × n matrix space by Cm×n, the set of all
Hermitian matrices in Cm×m by Cm×m

H , the conjugate transpose, the range space, and the Moore-Penrose
generalized inverse of a matrix A by A∗, R(A) and A†, respectively. In is the n × n identity matrix and
A ≥ 0 (> 0) means that A ∈ Cn×n is Hermitian nonnegative definite (positive definite). PL represents
the orthogonal projector on the subspaceL. Given a matrix A ∈ Cm×n, EA = Im−AA† and FA = In−A†A
are two orthogonal projectors. Besides, ‖ · ‖F stands for the Frobenius norm.

A lot of work with the Hermitian solutions of the matrix equations have been published [1–7].
However, the problem of solving the Hermitian solution of the matrix inequality under the symmetric
matrix equation constraint is considered by only a few authors. To the best of our knowledge, the
constrained matrix inequality:

C∗XC ≥ D (> D), s.t. A∗XA = B, (1.1)

where A ∈ Cm×n, B ∈ Cn×n, C ∈ Cm×p and D ∈ Cp×p, and X ∈ Cm×m
H is an unknown matrix to be

determined, was first investigated by Liu [8]. Observe that Liu derived the necessary and sufficient
conditions for the solvability of (1.1) using the maximal and minimal ranks and inertias of the matrix
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polynomials. In this paper, we provide an alternative approach to find the Hermitian solution of (1.1).
Compared with the approach proposed by Liu [8], the method used in this paper is from a new
perspective, using the decompositions of matrices to reduce the calculations of the rank and inertia,
which makes it easier to obtain the representation of the Hermitian solution of (1.1).

In what follows, we discuss the necessary and sufficient conditions for the solvability of (1.1)
using the spectral decompositions (SDs) and the generalized singular value decomposition (GSVD) of
some matrices, and give an explicit representation of the general Hermitian solution of (1.1) when the
consistent conditions are satisfied. Further, one numerical example shows that the introduced method
is correct.

2. Preliminary lemmas

In order to solve the Hermitian solution of (1.1), we need the following lemmas.

Lemma 1. ( [9]) If A ∈ Cm×n and B ∈ Cn×n
H , then the matrix equation A∗XA = B has a solution X ∈ Cm×m

H
if and only if

R(B) ⊆ R(A∗). (2.1)

In which case, the general Hermitian solution can be expressed as

X = (A∗)†BA† + EAZ + Z∗EA, (2.2)

where Z ∈ Cm×m is an arbitrary matrix.

Lemma 2. ( [10, 11]) Assume that A1 ∈ C
p×m, A2 ∈ C

n×p and A3 ∈ C
p×p
H . Then the matrix equation

A1XA2 + (A1XA2)∗ = A3 has a solution if and only if

EA1 A3EA1 = 0, FA2 A3FA2 = 0, [A1, A2
∗][A1, A2

∗]†A3 = A3.

In this case, the general solution with respect to X ∈ Cm×n gives

X = A†1(Γ + FL̃S XFL̃A1A1
†)A2

† + Y − A1
†A1YA2A2

†,

where L̃ = FA2 A1A1
†, Γ = 1

2 A3(2Ip−A1A1
†)+ 1

2 (Ψ−Ψ∗)A1A1
†, and Ψ = 2L̃†FA2 A3 + (Ip− L̃†FA2)A3L̃†L̃,

Y ∈ Cm×n and S X ∈ C
p×p are arbitrary matrices with S ∗X = −S X.

Lemma 3. ( [12, 13]) Given matrices Ã ∈ Cp×m and D̃ ∈ Cp×m. Let the singular value decomposition

(SVD) of the matrix Ã be Ã = P̃
[

Σ 0
0 0

]
Q̃∗, where Σ = diag(α1, · · · , αr) > 0, r = rank(Ã) and

P̃ = [P̃1, P̃2] ∈ Cp×p, Q̃ = [Q̃1, Q̃2] ∈ Cm×m are unitary matrices with P̃1 ∈ C
p×r, Q̃1 ∈ C

m×r and
Q̃2 ∈ C

m×(m−r). Then:
(i) The matrix equation ÃY = D̃ has a Hermitian nonnegative definite solution Y ∈ Cm×m

H if and only if
D̃Ã∗ ≥ 0, R(D̃) = R(D̃Ã∗), and the general nonnegative definite solution can be expressed as

Y = Y0 + FÃKFÃ,

where Y0 = Ã†D̃ + FÃ(Ã†D̃)∗ + FÃD̃∗(D̃Ã∗)†D̃FÃ, and K ∈ Cm×m
H is an arbitrary nonnegative

definite matrix.
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(ii) The matrix equation ÃY = D̃ has a Hermitian positive definite solution if and only if ÃÃ†D̃ =

D̃, P̃∗1D̃Ã∗P̃1 > 0, and the general positive definite solution is

Y = Y0 + FÃKFÃ,

where Y0 = Ã†D̃ + FÃ(Ã†D̃)∗ + FÃD̃∗(D̃Ã∗)†D̃FÃ, and K ∈ Cm×m
H is an arbitrary positive definite matrix.

3. Main results

According to Lemma 1, we know that the matrix equation A∗XA = B has a Hermitian solution if
and only if the condition (2.1) holds, then the general solution is given by (2.2), where Z ∈ Cm×m is an
arbitrary matrix. Substituting (2.2) into the first matrix inequality of (1.1) yields

C∗EAZC + C∗Z∗EAC ≥ D −C∗(A∗)†BA†C (> D −C∗(A∗)†BA†C). (3.1)

Clearly, the inequality (3.1) can be equivalently written as

GZC + C∗Z∗G∗ = K − D̃, (3.2)

where D̃ = −D + C∗(A∗)†BA†C, G = C∗EA and K ≥ 0 (> 0) is an unknown matrix to be determined.
By utilizing Lemma 2, we see that Eq (3.2) with respect to Z is solvable if and only if the following
three matrix equations hold simultaneously:

EGKEG = EGD̃EG, (3.3)

FCKFC = FCD̃FC, (3.4)

[G, C∗][G, C∗]†(K − D̃) = K − D̃. (3.5)

Now, we will seek the solvability conditions with respect to K ≥ 0 (> 0) such that (3.3)–(3.5) are
consistent. If let PL = [G, C∗][G, C∗]†, Eq (3.5) can be equivalently written as

(Ip − PL)K = (Ip − PL)D̃. (3.6)

From Lemma 3, Eq (3.6) has a Hermitian nonnegative definite solution K ∈ Cp×p if and only if

(Ip − PL)D̃(Ip − PL) ≥ 0, R
(
(Ip − PL)D̃

)
= R

(
(Ip − PL)D̃(Ip − PL)

)
, (3.7)

in this case, the general Hermitian nonnegative definite solution can be expressed as

K = K0 + PLS PL, (3.8)

where
K0 = D̃ − PLD̃PL + PLD̃(Ip − PL)[(Ip − PL)D̃(Ip − PL)]†(Ip − PL)D̃PL, (3.9)

and S ∈ Cp×p
H is an arbitrary nonnegative matrix.

Assume that the SD of Ip − PL is

Ip − PL = Q
[

Is 0
0 0

]
Q∗ = Q1Q∗1, (3.10)
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where s = rank(Ip − PL) and Q = [Q1, Q2] is a unitary matrix with Q1 ∈ C
p×s and Q2 ∈ C

p×(p−s). By
Lemma 3, Eq (3.6) has a Hermitian positive definite solution if and only if

Q∗1D̃Q1 > 0, (3.11)

then the general Hermitian positive definite solution can be formulated as

K = K0 + PLS PL, (3.12)

where K0 is given by (3.9), and S is an arbitrary Hermitian positive definite matrix. Due to L =

R(G) + R(C∗), then
PLGG† = GG† = GG†PL, PLC†C = C†C = C†CPL.

Substituting (3.8) ((3.12)) into (3.3) and (3.4), we can obtain that

(PL −GG†)S (PL −GG†) = (Ip −GG†)W(Ip −GG†), (3.13)
(PL −C†C)S (PL −C†C) = (Ip −C†C)W(Ip −C†C), (3.14)

where W = D̃ − K0. According to (3.9), it follows that

(PL −GG†)W(PL −GG†) = (Ip −GG†)W(Ip −GG†), (3.15)
(PL −C†C)W(PL −C†C) = (Ip −C†C)W(Ip −C†C). (3.16)

By Eqs (3.15) and (3.16), Eqs (3.13) and (3.14) are equivalent to

(PL −GG†)S (PL −GG†) = (PL −GG†)W(PL −GG†), (3.17)
(PL −C†C)S (PL −C†C) = (PL −C†C)W(PL −C†C). (3.18)

It is easily verified that PL −GG† and PL −C†C are orthogonal projection operators, then there exists
unitary matrices U and V such that

PL −GG† = U
[

Ia 0
0 0

]
U∗ = U1U∗1, PL −C†C = V

[
Ib 0
0 0

]
V∗ = V1V∗1 , (3.19)

where a = rank(PL−GG†), b = rank(PL−C†C), U1 ∈ C
p×a and V1 ∈ C

p×b are full column rank unitary
matrices. Substituting (3.19) into (3.17) and (3.18), we can get that

U∗1S U1 = U∗1WU1, V∗1S V1 = V∗1WV1. (3.20)

Let the GSVD [14] of the matrix pair [U1, V1] be:

U1 = M∆1N∗1 , V1 = M∆2N∗2 , (3.21)

where M ∈ Cp×p is a nonsingular matrix, and N1 ∈ C
a×a, N2 ∈ C

b×b are unitary matrices, and

∆1 =


I 0
0 Υ

0 0
0 0


a − e

e
f − a
p − f

,

a − e e

∆2 =


0 0
Θ 0
0 I
0 0


a − e

e
f − a
p − f

,

e b − e
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f = rank([U1, V1]) = a + b − e, Υ = diag(δ1, δ2, · · · , δe) and Θ = diag(ϑ1, ϑ2, · · · , ϑe) with
1 > δ1 ≥ δ2 ≥ · · · ≥ δe > 0, 0 < ϑ1 ≤ ϑ2 ≤ · · · ≤ ϑe < 1, δ2

i + ϑ2
i = 1, i = 1, 2, · · · , e.

Substituting (3.21) into (3.20) and partitioning the matrix M∗WM as:

M∗WM =


M11 M12 M13 M14

M∗
12 M22 M23 M24

M∗
13 M∗

23 M33 M34

M∗
14 M∗

24 M∗
34 M44


a − e

e
f − a
p − f

.

a − e e f − a p − f

(3.22)

Then, it follows from Lemma 2.6 of [15] that:
(i) Equation (3.20) has a solution S ≥ 0 if and only if[

M11 M12

M∗
12 M22

]
≥ 0,

[
M22 M23

M∗
23 M33

]
≥ 0, (3.23)

and the general Hermitian nonnegative definite solution of Eq (3.20) is

S = (M∗)−1
[

Ω(S 13) Ω(S 13)J1

J∗1Ω(S 13) J2 + J∗1Ω(S 13)J1

]
M−1, (3.24)

where

Ω(S 13) ,


M11 M12 S 13

M∗
12 M22 M23

S ∗13 M∗
23 M33

 , (3.25)

with
S 13 = M12M†

22M23 + (M11 − M12M†

22M∗
12)

1
2 J3(M33 − M∗

23M†

22M23)
1
2 , (3.26)

and J1 ∈ C
f×(p− f ), J2 ∈ C

(p− f )×(p− f ) are arbitrary matrices with J2 ≥ 0, and J3 ∈ C
(a−e)×( f−a) is an

arbitrary contraction matrix (that is, the maximum singular value with respect to J3 cannot exceed 1).
(ii) Equation (3.20) has a Hermitian positive solution of S if and only if[

M11 M12

M∗
12 M22

]
> 0,

[
M22 M23

M∗
23 M33

]
> 0, (3.27)

and the representation of the general solution for Eq (3.20) can be expressed as

S = (M∗)−1
[

Ω(S 13) J4

J∗4 J5 + J∗4[Ω(S 13)]−1J4

]
M−1, (3.28)

where Ω(S 13) is given by (3.25) with

S 13 = M12M−1
22 M23 + (M11 − M12M−1

22 M∗
12)

1
2 J6(M33 − M∗

23M−1
22 M23)

1
2 , (3.29)

and J4 ∈ C
f×(p− f ), J5 ∈ C

(p− f )×(p− f ) are arbitrary matrices with J5 > 0, and J6 ∈ C
(a−e)×( f−a) is an arbitrary

strict contraction matrix (that is, the maximum singular value with respect to J6 is less than 1).
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Furthermore, when the conditions (3.3)–(3.5) hold simultaneously, the general expression with
respect to Z in Eq (3.2) is

Z = G†(Γ + FL̃NXFL̃GG†)C† + Y −G†GYCC†, (3.30)

where
Γ =

1
2

(PLS PL −W)(2Ip −GG†) +
1
2

(Ψ − Ψ∗)GG†, (3.31)

with
Ψ = 2L̃†FC(PLS PL −W) + (Ip − L̃†FC)(PLS PL −W)L̃†L̃, (3.32)

and S is given by Eq (3.24) ((3.28)), L̃ = FCGG†, and Y ∈ Cm×m, NX ∈ C
p×p are arbitrary matrices with

N∗X = −NX. By substituting (3.30) into (2.2), we can get the Hermitian solution of (1.1).
With the above discussion, we can obtain the following theorem.

Theorem 1. Given matrices A ∈ Cm×n, B ∈ Cn×n, C ∈ Cm×p and D ∈ Cp×p. Let D̃ = −D+C∗(A∗)†BA†C,
G = C∗EA, L = R(G) + R(C∗), and let the SDs of the matrices Ip − PL, PL − GG† and PL − C†C be
respectively given by (3.10) and (3.19). Suppose that the GSVD of the matrix pair [U1, V1] is given
by (3.21), and the partition of the matrix M∗WM is given by (3.22). Then,

(i) The matrix inequality C∗XC ≥ D s.t. A∗XA = B has a Hermitian solution if and only if the
conditions (2.1), (3.7) and (3.23) hold, in which case, the general Hermitian solution X ∈ Cm×m

H can be
expressed as

X = (A∗)†BA† + EAG†(Γ + FL̃NXFL̃GG†)C† + EAY − EAG†GYCC†

+ (C†)∗(Γ∗ −GG†FL̃NXFL̃)(G†)∗EA + Y∗EA −CC†Y∗G†GEA, (3.33)

where W = D̃ − K0, L̃ = FCGG†, and K0, S , Ω(S 13), S 13, Γ and Ψ are respectively given by (3.9),
(3.24)–(3.26), (3.31) and (3.32), and NX ∈ C

p×p, Y ∈ Cm×m, J1 ∈ C
f×(p− f ) and J2 ∈ C

(p− f )×(p− f ) are
arbitrary matrices with N∗X = −NX and J2 ≥ 0, and J3 ∈ C

(a−e)×( f−a) is an arbitrary contraction matrix.
(ii) The matrix inequality C∗XC > D s.t. A∗XA = B has a Hermitian solution X ∈ Cm×m

H if and
only if the conditions (2.1), (3.11) and (3.27) are satisfied, in this case, the Hermitian solution can be
expressed as

X = (A∗)†BA† + EAG†(Γ + FL̃NXFL̃GG†)C† + EAY − EAG†GYCC†

+ (C†)∗(Γ∗ −GG†FL̃NXFL̃)(G†)∗EA + Y∗EA −CC†Y∗G†GEA, (3.34)

where W = D̃ − K0, L̃ = FCGG†, and K0, S , Ω(S 13), S 13, Γ and Ψ are respectively given by (3.9),
(3.28), (3.25), (3.29), (3.31) and (3.32), and NX ∈ C

p×p, Y ∈ Cm×m, J4 ∈ C
f×(p− f ) and J5 ∈ C

(p− f )×(p− f )

are arbitrary matrices with N∗X = −NX and J5 > 0, and J6 ∈ C
(a−e)×( f−a) is an arbitrary strict

contraction matrix.

4. Numerical algorithm and numerical example

According to Theorem 1, we can describe the numerical algorithm to solve the Hermitian solution
of (1.1) as follows.
Algorithm 1.
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(1) Input matrices A, B, C and D.
(2) If the condition (2.1) holds, then continue; or else, (1.1) has no solution X ∈ Cm×m

H .
(3) Compute matrices D̃, G and Ip − PL.
(4) If the condition (3.7) holds, then continue; or else, the matrix inequality C∗XC ≥ D s.t. A∗XA =

B has no solution X.
(5) Compute the SD of the matrix Ip − PL by (3.10).
(6) If the condition (3.11) holds, then continue; or else, the matrix inequality C∗XC > D s.t. A∗XA =

B has no solution X.
(7) Compute the matrices K0 and W in the light of (3.9), (3.13) and (3.14), respectively.
(8) Compute the SDs of the matrices PL −GG† and PL −C†C by (3.19).
(9) Compute the GSVD of the matrix pair [U1, V1] by (3.21).
(10) Compute the matrix M∗WM by (3.22).
(11) (i) If the condition (3.23) holds, then continue; or else, the matrix inequality C∗XC ≥ D s.t.

A∗XA = B has no solution X.
(ii) If the condition (3.27) holds, then continue; or else, the matrix inequality C∗XC > D s.t. A∗XA = B
has no solution X.

(12) (i) Select matrices J1, J2 ≥ 0 and a contraction matrix J3, compute matrices S , Ω(S 13) and S 13

based on (3.24)–(3.26), respectively.
(ii) Select matrices J4, J5 > 0 and a strict contraction matrix J6, compute matrices S , Ω(S 13) and S 13

by (3.28), (3.25) and (3.29), respectively.
(13) Calculate matrices Z, Γ and Ψ on the basis of (3.30)–(3.32), respectively.
(14) (i) Select matrices NX and Y , compute the Hermitian solution of C∗XC ≥ D s.t. A∗XA = B in

the light of (3.33).
(ii) Select matrices NX and Y , compute the Hermitian solution of C∗XC > D s.t. A∗XA = B based
on (3.34).
Remark 1. Through careful statistics, the amount of computations required by Algorithm 1 is about
146p3 +84m3 +46m2 p+22mp2 +2mnp+n2 p+9n3 +9mn2 +5m2n flops, where the generalized inverse
matrices C†, G† and L̃† are calculated by the SVDs of the matrices C, G and L̃. Further, to compute the
time complexity of Algorithm 1, the readers can see a survey [16].
Example 1. Let m = 6, n = 5 and p = 7. The matrices A, B, C and D are presented by

A =



0.6937 0.4421 0.2510 0.5662 0.8973
0.3921 0.5509 0.2658 0.4114 0.4982
0.8097 1.0134 0.7290 0.6978 0.8002
0.3821 0.7560 0.2989 0.8028 0.7199
0.9898 1.2502 1.0575 1.2697 1.1179
0.9704 1.1141 0.5695 1.1198 1.3391


,

B =


5.0119 6.0743 3.9509 5.8627 6.2797
6.0743 7.3551 4.7827 7.1049 7.6140
3.9509 4.7827 3.1096 4.6212 4.9531
5.8627 7.1049 4.6212 6.8579 7.3460
6.2797 7.6140 4.9531 7.3460 7.8667


,
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C =



0.7991 0.6564 0.4484 0.5550 0.4410 0.2278 0.4740
1.0514 0.7819 1.6430 0.5919 1.7605 1.1620 1.2337
0.8563 0.7862 0.8861 0.5520 0.7799 0.4598 0.8968
0.6053 0.4850 0.8488 0.3291 0.7518 0.5847 0.7347
0.7185 0.7218 0.9206 0.4474 0.7571 0.4532 0.9563
1.1549 0.8773 1.3560 0.6328 1.1260 0.9894 1.1950


,

D =



−5.2636 −7.9819 −2.6335 −2.2506 −1.2401 −10.0230 −0.1972
−7.9819 −11.1637 −5.6897 −3.8471 −3.8013 −12.9962 −2.3591
−2.6335 −5.6897 −0.2158 −0.8759 0.9846 −7.5319 1.9655
−2.2506 −3.8471 −0.8759 −1.0109 −0.1707 −5.1224 0.3619
−1.2401 −3.8013 0.9846 −0.1707 1.6595 −5.5533 2.6673
−10.0230 −12.9962 −7.5319 −5.1224 −5.5533 −15.5151 −4.0797
−0.1972 −2.3591 1.9655 0.3619 2.6673 −4.0797 3.0450


.

It is easy to validate that the stated conditions (2.1), (3.7) and (3.23) are satisfied. In fact,
‖FAB‖F = 1.6310 × 10−15, the eigenvalues of the matrix (Ip − PL)D̃(Ip − PL) are 0.0000, 0.0000,
0.0000, 0.0000, 0.1016, 0.2585, 4.3461, ‖E(Ip−PL)D̃(Ip − PL)D̃(Ip − PL)‖F = 1.3311 × 10−15, and

‖E(Ip−PL)D̃(Ip−PL)(Ip − PL)D̃‖F = 1.8544 × 10−15, the eigenvalues of the matrix
[

M11 M12

M∗
12 M22

]
=[

0.4079 −0.2813
−0.2813 0.1940

]
are 0.6018, 2.1184 × 10−5, and the matrix

[
M22 M23

M∗
23 M33

]
is 0. According

to Algorithm 1 and choosing the matrices J1 = 0, J2 = I5, NX = 0 and Y = I6, we can obtain that

X =



3.7060 6.0203 15.4870 9.2670 −8.1450 −12.5926
6.0203 −12.7748 4.5979 49.2869 −10.9899 −16.3238

15.4870 4.5979 16.3503 −0.5303 −1.4077 −21.2418
9.2670 49.2869 −0.5303 −7.4863 2.6776 −23.5101
−8.1450 −10.9899 −1.4077 2.6776 −1.7205 12.6190
−12.5926 −16.3238 −21.2418 −23.5101 12.6190 32.0736


.

The absolute error is estimated by

‖A∗XA − B‖F = 2.6065 × 10−14,

and the eigenvalues of (C∗XC − D) are 0.0000, 0.1172, 0.1505, 0.3321, 0.5119, 4.4760, 72.3055,
which implies that X is the Hermitian solution of the matrix equality C∗XC ≥ D s.t. A∗XA = B.

5. Conclusions

In this paper, we have established the necessary and sufficient conditions (see (2.1), (3.7), (3.23),
and (2.1), (3.11), and (3.27)) for the Hermitian solution of (1.1), and achieve the explicit representation
of the general Hermitian solution by the SD and the GSVD when the stated conditions are satisfied.
One numerical example verifies the correctness of the introduced method.
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