Citation: Khudhayr A. Rashedi, Saima Noor, Tariq S. Alshammari, Imran Khan. Lump and kink soliton phenomena of Vakhnenko equation[J]. AIMS Mathematics, 2024, 9(8): 21079-21093. doi: 10.3934/math.20241024
[1] | M. Wang, Solitary wave solutions for variant Boussinesq equations, Phys. Lett. A, 199 (1995), 169–172. https://doi.org/10.1016/0375-9601(95)00092-H doi: 10.1016/0375-9601(95)00092-H |
[2] | M. Wang, Y. Zhou, Z. Li, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A, 216 (1996), 67–75. https://doi.org/10.1016/0375-9601(96)00283-6 doi: 10.1016/0375-9601(96)00283-6 |
[3] | Y. Qin, A. Khan, I. Ali, M. Al Qurashi, H. Khan, R. Shah, et al., An efficient analytical approach for the solution of certain fractional-order dynamical systems. Energies, 13 (2020), 2725. https://doi.org/10.3390/en13112725 |
[4] | E. Fan, Auto-Bäcklund transformation and similarity reductions for general variable coefficient KdV equations, Phys. Lett. A, 294 (2002), 26–30. https://doi.org/10.1016/S0375-9601(02)00033-6 doi: 10.1016/S0375-9601(02)00033-6 |
[5] | M. M. Al-Sawalha, R. Shah A. Khan, O. Y. Ababneh, T. Botmart, Fractional view analysis of Kersten-Krasil'shchik coupled KdV-mKdV systems with non-singular kernel derivatives, AIMS Mathematics, 7 (2022), 18334–18359. https://doi.org/10.3934/math.20221010 doi: 10.3934/math.20221010 |
[6] | S. A. Ei-Wakil, M. A. Abdou, New exact travelling wave solutions using modified extended tanh-function method, Chaos Soliton. Fract. 31 (2007), 840–852. https://doi.org/10.1016/j.chaos.2005.10.032 |
[7] | H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, R. Shah, Perturbed Gerdjikov–Ivanov equation: Soliton solutions via Backlund transformation, Optik, 298 (2024), 171576. https://doi.org/10.1016/j.ijleo.2023.171576 doi: 10.1016/j.ijleo.2023.171576 |
[8] | Y. Shang, Y. Huang, W. Yuan, The extended hyperbolic functions method and new exact solutions to the Zakharov equations, Appl. Math. Comput., 200 (2008), 110–122. https://doi.org/10.1016/j.amc.2007.10.059 doi: 10.1016/j.amc.2007.10.059 |
[9] | Q. Wang, Y. Chen, H. Zhang, A new Riccati equation rational expansion method and its application to (2+1)-dimensional Burgers equation, Chaos Soliton. Fract., 25 (2005), 1019–1028. https://doi.org/10.1016/j.chaos.2005.01.039 doi: 10.1016/j.chaos.2005.01.039 |
[10] | C. Yan, A simple transformation for nonlinear waves, Phys. Lett. A, 224 (1996), 77–84. https://doi.org/10.1016/S0375-9601(96)00770-0 doi: 10.1016/S0375-9601(96)00770-0 |
[11] | S. Liu, Z. Fu, S. Liu, Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A, 289 (2001), 69–74. https://doi.org/10.1016/S0375-9601(01)00580-1 doi: 10.1016/S0375-9601(01)00580-1 |
[12] | Y. Chen, B. Li, H. Zhang, Auto-Bäcklund transformation and exact solutions for modified nonlinear dispersive equations, Chaos Soliton. Fract., 17 (2003), 693–698. https://doi.org/10.1016/S0960-0779(02)00485-X doi: 10.1016/S0960-0779(02)00485-X |
[13] | G. T. Liu, T. Y. Fan, New applications of developed Jacobi elliptic function expansion methods, Phys. Lett. A, 345 (2005), 161–166. https://doi.org/10.1016/j.physleta.2005.07.034 doi: 10.1016/j.physleta.2005.07.034 |
[14] | A. Ebaid, Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method, Phys. Lett. A, 365 (2007), 213–219. https://doi.org/10.1016/j.physleta.2007.01.009 doi: 10.1016/j.physleta.2007.01.009 |
[15] | S. Zhang, Exp-function method for constructing explicit and exact solutions of a lattice equation, Appl. Math. Comput., 199 (2008), 242–249. https://doi.org/10.1016/j.amc.2007.09.051 doi: 10.1016/j.amc.2007.09.051 |
[16] | V. O. Vakhnenko, E. J. Parkes, A. J. Morrison, A Bäcklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation, Chaos Soliton. Fract., 17 (2003), 683–692. https://doi.org/10.1016/S0960-0779(02)00483-6 doi: 10.1016/S0960-0779(02)00483-6 |
[17] | E. Fan, Travelling wave solutions in terms of special functions for nonlinear coupled evolution systems, Phys. Lett. A, 300 (2002), 243–249. https://doi.org/10.1016/S0375-9601(02)00776-4 doi: 10.1016/S0375-9601(02)00776-4 |
[18] | E. Fan, Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics, Chaos Soliton. Fract., 16 (2003), 819–839. https://doi.org/10.1016/S0960-0779(02)00472-1 doi: 10.1016/S0960-0779(02)00472-1 |
[19] | S. Zhang, A further improved extended Fan sub-equation method for (2+1)-dimensional breaking soliton equations, Appl. Math. Comput. 199 (2008), 259–267. https://doi.org/10.1016/j.amc.2007.09.052 |
[20] | Y. Zhou, M. Wang, Y. Wang, Periodic wave solutions to a coupled KdV equations with variable coefficients, Phys. Lett. A, 308 (2003), 31–36. https://doi.org/10.1016/S0375-9601(02)01775-9 doi: 10.1016/S0375-9601(02)01775-9 |
[21] | M. Wang, Y. Zhou, The periodic wave solutions for the Klein-Gordon-Schrödinger equations, Phys. Lett. A, 318 (2003), 84–92. https://doi.org/10.1016/j.physleta.2003.07.026 doi: 10.1016/j.physleta.2003.07.026 |
[22] | Sirendaoreji, J. Sun, Auxiliary equation method for solving nonlinear partial differential equations, Phys. Lett. A, 309 (2003), 387–396. https://doi.org/10.1016/S0375-9601(03)00196-8 doi: 10.1016/S0375-9601(03)00196-8 |
[23] | Sirendaoreji, New exact travelling wave solutions for the Kawahara and modified Kawahara equations, Chaos Soliton. Fract., 19 (2004), 147–150. https://doi.org/10.1016/S0960-0779(03)00102-4 doi: 10.1016/S0960-0779(03)00102-4 |
[24] | M. Alqhtani, K. M. Saad, R. Shah, W. Weera, W. M. Hamanah, Analysis of the fractional-order local Poisson equation in fractal porous media, Symmetry, 14 (2022), 1323. https://doi.org/10.3390/sym14071323 doi: 10.3390/sym14071323 |
[25] | M. Naeem, H. Rezazadeh, A. A. Khammash, R. Shah, S. Zaland, Analysis of the fuzzy fractional-order solitary wave solutions for the KdV equation in the sense of Caputo-Fabrizio derivative, J. Math., 2022 (2022), 3688916. https://doi.org/10.1155/2022/3688916 doi: 10.1155/2022/3688916 |
[26] | T. Botmart, R. P. Agarwal, M. Naeem, A. Khan, R. Shah, On the solution of fractional modified Boussinesq and approximate long wave equations with non-singular kernel operators, AIMS Mathematics, 7 (2022), 12483–12513. https://doi.org/10.3934/math.2022693 doi: 10.3934/math.2022693 |
[27] | P. Sunthrayuth, N. H. Aljahdaly, A. Ali, R. Shah, I. Mahariq, A. M. Tchalla, $\phi$-Haar wavelet operational matrix method for fractional relaxation-oscillation equations containing $\phi$-Caputo fractional derivative, J. Funct. Space., 2021 (2021), 7117064. https://doi.org/10.1155/2021/7117064 doi: 10.1155/2021/7117064 |
[28] | S. Alshammari, M. M. Al-Sawalha, R. Shah, Approximate analytical methods for a fractional-order nonlinear system of Jaulent-Miodek equation with energy-dependent Schrödinger potential, Fractal Fract., 7 (2023), 140. https://doi.org/10.3390/fractalfract7020140 doi: 10.3390/fractalfract7020140 |
[29] | C. Zhu, M. Al-Dossari, S. Rezapour, S. A. M. Alsallami, B. Gunay, Bifurcations, chaotic behavior, and optical solutions for the complex Ginzburg–Landau equation, Results Phys., 59 (2024), 107601. https://doi.org/10.1016/j.rinp.2024.107601 doi: 10.1016/j.rinp.2024.107601 |
[30] | C. Zhu, M. Al-Dossari, S. Rezapour, B. Gunay, On the exact soliton solutions and different wave structures to the (2+1) dimensional Chaffee–Infante equation, Results Phys., 57 (2024), 107431. https://doi.org/10.1016/j.rinp.2024.107431 doi: 10.1016/j.rinp.2024.107431 |
[31] | C. Zhu, M. Al-Dossari, S. Rezapour, S. Shateyi, B. Gunay, Analytical optical solutions to the nonlinear Zakharov system via logarithmic transformation. Results Phys., 56 (2024), 107298. https://doi.org/10.1016/j.rinp.2023.107298 |
[32] | L. Liu, S. Zhang, L. Zhang, G. Pan, J. Yu, Multi-UUV maneuvering counter-game for dynamic target scenario based on fractional-order recurrent neural network. IEEE T. Cybernetics, 53 (2023), 4015-4028. https://doi.org/10.1109/TCYB.2022.3225106 |
[33] | Y. Kai, Z. Yin, Linear structure and soliton molecules of Sharma-Tasso-Olver-Burgers equation. Phys. Lett. A, 452 (2022), 128430. https://doi.org/10.1016/j.physleta.2022.128430 |
[34] | W. Liu, X. Bai, H. Yang, R. Bao, J. Liu, Tendon driven bistable origami flexible gripper for high-speed adaptive grasping, IEEE Robot. Autom. Let., 9 (2024), 5417–5424. https://doi.org/10.1109/LRA.2024.3389413 doi: 10.1109/LRA.2024.3389413 |
[35] | A. Parker, On soliton solutions of the Kaup-Kupershmidt equation. I. Direct bilinearisation and solitary wave, Physica D, 137 (2000), 25–33. https://doi.org/10.1016/S0167-2789(99)00166-9 doi: 10.1016/S0167-2789(99)00166-9 |
[36] | A. Wazwaz, New kinks and soliton solutions to the (2+1)-dimensional Konopelchenko-Dubrovsky equation, Math. Comput. Model., 45 (2007), 473–479. https://doi.org/10.1016/j.mcm.2006.06.006 doi: 10.1016/j.mcm.2006.06.006 |
[37] | C. Li, Y. Zeng, Soliton solutions to a higher order Ito equation: Pfaffian technique, Phys. Lett. A, 363 (2007), 1–4. https://doi.org/10.1016/j.physleta.2006.10.080 doi: 10.1016/j.physleta.2006.10.080 |
[38] | D. Huang, D. Li, H. Zhang, Explicit N-fold Darboux transformation and multi-soliton solutions for the (1+1)-dimensional higherorder Broer–Kaup system, Chaos Soliton. Fract., 33 (2007), 1677–1685. https://doi.org/10.1016/j.chaos.2006.03.015 doi: 10.1016/j.chaos.2006.03.015 |
[39] | Y. Liu, S. Zeng, Discontinuous initial value and Whitham modulation for the generalized Gerdjikov-Ivanov equation, Wave Motion, 127 (2024), 103276. https://doi.org/10.1016/j.wavemoti.2024.103276 doi: 10.1016/j.wavemoti.2024.103276 |
[40] | V. A. Vakhnenko, Solitons in a nonlinear model medium, J. Phys. A: Math. Gen., 25 (1992), 4181. https://doi.org/10.1088/0305-4470/25/15/025 doi: 10.1088/0305-4470/25/15/025 |
[41] | E. J. Parkes, The stability of solutions of Vakhnenko equation, J. Phys. A: Math. Gen., 26 (1993), 6469. https://doi.org/10.1088/0305-4470/26/22/040 doi: 10.1088/0305-4470/26/22/040 |
[42] | V. O. Vakhnenko, E. J. Parkes, The two loop soliton solution of the Vakhnenko equation, Nonlinearity, 11 (1998), 1457. https://doi.org/10.1088/0951-7715/11/6/001 doi: 10.1088/0951-7715/11/6/001 |
[43] | V. O. Vakhnenko, E. J. Parkes, A. J. Morrison, A Backlund transformation and the inverse scattering transform method for the generalised Vakhnenko equation, Chaos Soliton. Fract., 17 (2003), 683–692. https://doi.org/10.1016/S0960-0779(02)00483-6 doi: 10.1016/S0960-0779(02)00483-6 |
[44] | A. J. Morrison, E. J. Parkes, The N-soliton solution of the modified generalized Vakhnenko equation (a new nonlinear evolution equation), Chaos Soliton. Fract., 16 (2003), 13–26. https://doi.org/10.1016/S0960-0779(02)00314-4 doi: 10.1016/S0960-0779(02)00314-4 |
[45] | Y. Liu, Z. Li, K. Wang, Symbolic computation of exact solutions for a nonlinear evolution equation, Chaos Soliton. Fract., 31 (2007), 1173–1180. https://doi.org/10.1016/j.chaos.2005.09.055 doi: 10.1016/j.chaos.2005.09.055 |
[46] | A. R. Seadawy, S. Ahmed, S. T. R. Rizvi, K. Ali, Various forms of lumps and interaction solutions to generalized Vakhnenko Parkes equation arising from high-frequency wave propagation in electromagnetic physics, J. Geom. Phys., 176 (2022), 104507. https://doi.org/10.1016/j.geomphys.2022.104507 doi: 10.1016/j.geomphys.2022.104507 |
[47] | M. A. E. Abdelrahman, M. A. Sohaly, Solitary waves for the modified Korteweg-de Vries equation in deterministic case and random case, J. Phys. Math., 8 (2017), 1000214. https://doi.org/10.1016/10.4172/2090-0902.1000214 doi: 10.1016/10.4172/2090-0902.1000214 |
[48] | M. A. E. Abdelrahman, M. A. Sohaly, Solitary waves for the nonlinear Schrödinger problem with the probability distribution function in the stochastic input case, Eur. Phys. J. Plus., 132 (2017), 339. https://doi.org/10.1140/epjp/i2017-11607-5 doi: 10.1140/epjp/i2017-11607-5 |
[49] | X. F. Yang, Z. C. Deng, Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Differ. Equ., 2015 (2015), 117. https://doi.org/10.1186/s13662-015-0452-4 doi: 10.1186/s13662-015-0452-4 |
[50] | A. A. Alderremy, R. Shah, N. Iqbal, S. Aly, K. Nonlaopon, Fractional series solution construction for nonlinear fractional reaction-diffusion Brusselator model utilizing Laplace residual power series, Symmetry, 14 (2022), 1944. https://doi.org/10.3390/sym14091944 doi: 10.3390/sym14091944 |
[51] | H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, R. Shah, Perturbed Gerdjikov-Ivanov equation: Soliton solutions via Bäcklund transformation. Optik, 298 (2024), 171576. https://doi.org/10.1016/j.ijleo.2023.171576 |
[52] | M. Naeem, O. F. Azhar, A. M. Zidan, K. Nonlaopon, Numerical analysis of fractional-order parabolic equations via Elzaki transform. J. Funct. Space., 2021 (2021), 3484482. https://doi.org/10.1155/2021/3484482 |
[53] | M. Alqhtani, K. M. Saad, R. Shah, W. M. Hamanah, Discovering novel soliton solutions for (3+1)-modified fractional Zakharov-Kuznetsov equation in electrical engineering through an analytical approach. Opt. Quant. Electron., 55 (2023), 1149. https://doi.org/10.1007/s11082-023-05407-2 |
[54] | S. Noor, W. Albalawi, R. Shah, M. M. Al-Sawalha, S. M. Ismaeel, S. A. El-Tantawy, On the approximations to fractional nonlinear damped Burger's-type equations that arise in fluids and plasmas using Aboodh residual power series and Aboodh transform iteration methods, Front. Phys., 12 (2024), 1374481. https://doi.org/10.3389/fphy.2024.1374481 doi: 10.3389/fphy.2024.1374481 |
[55] | S. Noor, A. S. Alshehry, A. Shafee, R. Shah, Families of propagating soliton solutions for (3+1)-fractional Wazwaz-BenjaminBona-Mahony equation through a novel modification of modified extended direct algebraic method, Phys. Scr., 99 (2024), 045230. https://doi.org/10.1088/1402-4896/ad23b0 doi: 10.1088/1402-4896/ad23b0 |
[56] | D. Lu, Q. Shi, New Jacobi elliptic functions solutions for the combined KdV-mKdV equation, Int. J. Nonlinear Sci., 10 (2010), 320–325. |
[57] | Y. Zhang, Solving STO and KD equations with modified Riemann-Liouville derivative using improved ($G/G'$)-expansion function method, Int. J. Appl. Math., 45 (2015), 16–22. |