Research article Special Issues

Lump and kink soliton phenomena of Vakhnenko equation

  • Received: 10 May 2024 Revised: 20 June 2024 Accepted: 24 June 2024 Published: 01 July 2024
  • MSC : 34G20, 35A20, 35A22, 35R11

  • Understanding natural processes often involves intricate nonlinear dynamics. Nonlinear evolution equations are crucial for examining the behavior and possible solutions of specific nonlinear systems. The Vakhnenko equation is a typical example, considering that this equation demonstrates kink and lump soliton solutions. These solitons are possible waves with several intriguing features and have been characterized in other naturalistic nonlinear systems. The solution of nonlinear equations demands advanced analytical techniques. This work ultimately sought to find and study the kink and lump soliton solutions using the Riccati–Bernoulli sub-ode method for the Vakhnenko equation (VE). The results obtained in this work are lump and kink soliton solutions presented in hyperbolic trigonometric and rational functions. This work reveals the effectiveness and future of our method for solving complex solitary wave problems.

    Citation: Khudhayr A. Rashedi, Saima Noor, Tariq S. Alshammari, Imran Khan. Lump and kink soliton phenomena of Vakhnenko equation[J]. AIMS Mathematics, 2024, 9(8): 21079-21093. doi: 10.3934/math.20241024

    Related Papers:

  • Understanding natural processes often involves intricate nonlinear dynamics. Nonlinear evolution equations are crucial for examining the behavior and possible solutions of specific nonlinear systems. The Vakhnenko equation is a typical example, considering that this equation demonstrates kink and lump soliton solutions. These solitons are possible waves with several intriguing features and have been characterized in other naturalistic nonlinear systems. The solution of nonlinear equations demands advanced analytical techniques. This work ultimately sought to find and study the kink and lump soliton solutions using the Riccati–Bernoulli sub-ode method for the Vakhnenko equation (VE). The results obtained in this work are lump and kink soliton solutions presented in hyperbolic trigonometric and rational functions. This work reveals the effectiveness and future of our method for solving complex solitary wave problems.


    加载中


    [1] M. Wang, Solitary wave solutions for variant Boussinesq equations, Phys. Lett. A, 199 (1995), 169–172. https://doi.org/10.1016/0375-9601(95)00092-H doi: 10.1016/0375-9601(95)00092-H
    [2] M. Wang, Y. Zhou, Z. Li, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A, 216 (1996), 67–75. https://doi.org/10.1016/0375-9601(96)00283-6 doi: 10.1016/0375-9601(96)00283-6
    [3] Y. Qin, A. Khan, I. Ali, M. Al Qurashi, H. Khan, R. Shah, et al., An efficient analytical approach for the solution of certain fractional-order dynamical systems. Energies, 13 (2020), 2725. https://doi.org/10.3390/en13112725
    [4] E. Fan, Auto-Bäcklund transformation and similarity reductions for general variable coefficient KdV equations, Phys. Lett. A, 294 (2002), 26–30. https://doi.org/10.1016/S0375-9601(02)00033-6 doi: 10.1016/S0375-9601(02)00033-6
    [5] M. M. Al-Sawalha, R. Shah A. Khan, O. Y. Ababneh, T. Botmart, Fractional view analysis of Kersten-Krasil'shchik coupled KdV-mKdV systems with non-singular kernel derivatives, AIMS Mathematics, 7 (2022), 18334–18359. https://doi.org/10.3934/math.20221010 doi: 10.3934/math.20221010
    [6] S. A. Ei-Wakil, M. A. Abdou, New exact travelling wave solutions using modified extended tanh-function method, Chaos Soliton. Fract. 31 (2007), 840–852. https://doi.org/10.1016/j.chaos.2005.10.032
    [7] H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, R. Shah, Perturbed Gerdjikov–Ivanov equation: Soliton solutions via Backlund transformation, Optik, 298 (2024), 171576. https://doi.org/10.1016/j.ijleo.2023.171576 doi: 10.1016/j.ijleo.2023.171576
    [8] Y. Shang, Y. Huang, W. Yuan, The extended hyperbolic functions method and new exact solutions to the Zakharov equations, Appl. Math. Comput., 200 (2008), 110–122. https://doi.org/10.1016/j.amc.2007.10.059 doi: 10.1016/j.amc.2007.10.059
    [9] Q. Wang, Y. Chen, H. Zhang, A new Riccati equation rational expansion method and its application to (2+1)-dimensional Burgers equation, Chaos Soliton. Fract., 25 (2005), 1019–1028. https://doi.org/10.1016/j.chaos.2005.01.039 doi: 10.1016/j.chaos.2005.01.039
    [10] C. Yan, A simple transformation for nonlinear waves, Phys. Lett. A, 224 (1996), 77–84. https://doi.org/10.1016/S0375-9601(96)00770-0 doi: 10.1016/S0375-9601(96)00770-0
    [11] S. Liu, Z. Fu, S. Liu, Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A, 289 (2001), 69–74. https://doi.org/10.1016/S0375-9601(01)00580-1 doi: 10.1016/S0375-9601(01)00580-1
    [12] Y. Chen, B. Li, H. Zhang, Auto-Bäcklund transformation and exact solutions for modified nonlinear dispersive equations, Chaos Soliton. Fract., 17 (2003), 693–698. https://doi.org/10.1016/S0960-0779(02)00485-X doi: 10.1016/S0960-0779(02)00485-X
    [13] G. T. Liu, T. Y. Fan, New applications of developed Jacobi elliptic function expansion methods, Phys. Lett. A, 345 (2005), 161–166. https://doi.org/10.1016/j.physleta.2005.07.034 doi: 10.1016/j.physleta.2005.07.034
    [14] A. Ebaid, Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method, Phys. Lett. A, 365 (2007), 213–219. https://doi.org/10.1016/j.physleta.2007.01.009 doi: 10.1016/j.physleta.2007.01.009
    [15] S. Zhang, Exp-function method for constructing explicit and exact solutions of a lattice equation, Appl. Math. Comput., 199 (2008), 242–249. https://doi.org/10.1016/j.amc.2007.09.051 doi: 10.1016/j.amc.2007.09.051
    [16] V. O. Vakhnenko, E. J. Parkes, A. J. Morrison, A Bäcklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation, Chaos Soliton. Fract., 17 (2003), 683–692. https://doi.org/10.1016/S0960-0779(02)00483-6 doi: 10.1016/S0960-0779(02)00483-6
    [17] E. Fan, Travelling wave solutions in terms of special functions for nonlinear coupled evolution systems, Phys. Lett. A, 300 (2002), 243–249. https://doi.org/10.1016/S0375-9601(02)00776-4 doi: 10.1016/S0375-9601(02)00776-4
    [18] E. Fan, Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics, Chaos Soliton. Fract., 16 (2003), 819–839. https://doi.org/10.1016/S0960-0779(02)00472-1 doi: 10.1016/S0960-0779(02)00472-1
    [19] S. Zhang, A further improved extended Fan sub-equation method for (2+1)-dimensional breaking soliton equations, Appl. Math. Comput. 199 (2008), 259–267. https://doi.org/10.1016/j.amc.2007.09.052
    [20] Y. Zhou, M. Wang, Y. Wang, Periodic wave solutions to a coupled KdV equations with variable coefficients, Phys. Lett. A, 308 (2003), 31–36. https://doi.org/10.1016/S0375-9601(02)01775-9 doi: 10.1016/S0375-9601(02)01775-9
    [21] M. Wang, Y. Zhou, The periodic wave solutions for the Klein-Gordon-Schrödinger equations, Phys. Lett. A, 318 (2003), 84–92. https://doi.org/10.1016/j.physleta.2003.07.026 doi: 10.1016/j.physleta.2003.07.026
    [22] Sirendaoreji, J. Sun, Auxiliary equation method for solving nonlinear partial differential equations, Phys. Lett. A, 309 (2003), 387–396. https://doi.org/10.1016/S0375-9601(03)00196-8 doi: 10.1016/S0375-9601(03)00196-8
    [23] Sirendaoreji, New exact travelling wave solutions for the Kawahara and modified Kawahara equations, Chaos Soliton. Fract., 19 (2004), 147–150. https://doi.org/10.1016/S0960-0779(03)00102-4 doi: 10.1016/S0960-0779(03)00102-4
    [24] M. Alqhtani, K. M. Saad, R. Shah, W. Weera, W. M. Hamanah, Analysis of the fractional-order local Poisson equation in fractal porous media, Symmetry, 14 (2022), 1323. https://doi.org/10.3390/sym14071323 doi: 10.3390/sym14071323
    [25] M. Naeem, H. Rezazadeh, A. A. Khammash, R. Shah, S. Zaland, Analysis of the fuzzy fractional-order solitary wave solutions for the KdV equation in the sense of Caputo-Fabrizio derivative, J. Math., 2022 (2022), 3688916. https://doi.org/10.1155/2022/3688916 doi: 10.1155/2022/3688916
    [26] T. Botmart, R. P. Agarwal, M. Naeem, A. Khan, R. Shah, On the solution of fractional modified Boussinesq and approximate long wave equations with non-singular kernel operators, AIMS Mathematics, 7 (2022), 12483–12513. https://doi.org/10.3934/math.2022693 doi: 10.3934/math.2022693
    [27] P. Sunthrayuth, N. H. Aljahdaly, A. Ali, R. Shah, I. Mahariq, A. M. Tchalla, $\phi$-Haar wavelet operational matrix method for fractional relaxation-oscillation equations containing $\phi$-Caputo fractional derivative, J. Funct. Space., 2021 (2021), 7117064. https://doi.org/10.1155/2021/7117064 doi: 10.1155/2021/7117064
    [28] S. Alshammari, M. M. Al-Sawalha, R. Shah, Approximate analytical methods for a fractional-order nonlinear system of Jaulent-Miodek equation with energy-dependent Schrödinger potential, Fractal Fract., 7 (2023), 140. https://doi.org/10.3390/fractalfract7020140 doi: 10.3390/fractalfract7020140
    [29] C. Zhu, M. Al-Dossari, S. Rezapour, S. A. M. Alsallami, B. Gunay, Bifurcations, chaotic behavior, and optical solutions for the complex Ginzburg–Landau equation, Results Phys., 59 (2024), 107601. https://doi.org/10.1016/j.rinp.2024.107601 doi: 10.1016/j.rinp.2024.107601
    [30] C. Zhu, M. Al-Dossari, S. Rezapour, B. Gunay, On the exact soliton solutions and different wave structures to the (2+1) dimensional Chaffee–Infante equation, Results Phys., 57 (2024), 107431. https://doi.org/10.1016/j.rinp.2024.107431 doi: 10.1016/j.rinp.2024.107431
    [31] C. Zhu, M. Al-Dossari, S. Rezapour, S. Shateyi, B. Gunay, Analytical optical solutions to the nonlinear Zakharov system via logarithmic transformation. Results Phys., 56 (2024), 107298. https://doi.org/10.1016/j.rinp.2023.107298
    [32] L. Liu, S. Zhang, L. Zhang, G. Pan, J. Yu, Multi-UUV maneuvering counter-game for dynamic target scenario based on fractional-order recurrent neural network. IEEE T. Cybernetics, 53 (2023), 4015-4028. https://doi.org/10.1109/TCYB.2022.3225106
    [33] Y. Kai, Z. Yin, Linear structure and soliton molecules of Sharma-Tasso-Olver-Burgers equation. Phys. Lett. A, 452 (2022), 128430. https://doi.org/10.1016/j.physleta.2022.128430
    [34] W. Liu, X. Bai, H. Yang, R. Bao, J. Liu, Tendon driven bistable origami flexible gripper for high-speed adaptive grasping, IEEE Robot. Autom. Let., 9 (2024), 5417–5424. https://doi.org/10.1109/LRA.2024.3389413 doi: 10.1109/LRA.2024.3389413
    [35] A. Parker, On soliton solutions of the Kaup-Kupershmidt equation. I. Direct bilinearisation and solitary wave, Physica D, 137 (2000), 25–33. https://doi.org/10.1016/S0167-2789(99)00166-9 doi: 10.1016/S0167-2789(99)00166-9
    [36] A. Wazwaz, New kinks and soliton solutions to the (2+1)-dimensional Konopelchenko-Dubrovsky equation, Math. Comput. Model., 45 (2007), 473–479. https://doi.org/10.1016/j.mcm.2006.06.006 doi: 10.1016/j.mcm.2006.06.006
    [37] C. Li, Y. Zeng, Soliton solutions to a higher order Ito equation: Pfaffian technique, Phys. Lett. A, 363 (2007), 1–4. https://doi.org/10.1016/j.physleta.2006.10.080 doi: 10.1016/j.physleta.2006.10.080
    [38] D. Huang, D. Li, H. Zhang, Explicit N-fold Darboux transformation and multi-soliton solutions for the (1+1)-dimensional higherorder Broer–Kaup system, Chaos Soliton. Fract., 33 (2007), 1677–1685. https://doi.org/10.1016/j.chaos.2006.03.015 doi: 10.1016/j.chaos.2006.03.015
    [39] Y. Liu, S. Zeng, Discontinuous initial value and Whitham modulation for the generalized Gerdjikov-Ivanov equation, Wave Motion, 127 (2024), 103276. https://doi.org/10.1016/j.wavemoti.2024.103276 doi: 10.1016/j.wavemoti.2024.103276
    [40] V. A. Vakhnenko, Solitons in a nonlinear model medium, J. Phys. A: Math. Gen., 25 (1992), 4181. https://doi.org/10.1088/0305-4470/25/15/025 doi: 10.1088/0305-4470/25/15/025
    [41] E. J. Parkes, The stability of solutions of Vakhnenko equation, J. Phys. A: Math. Gen., 26 (1993), 6469. https://doi.org/10.1088/0305-4470/26/22/040 doi: 10.1088/0305-4470/26/22/040
    [42] V. O. Vakhnenko, E. J. Parkes, The two loop soliton solution of the Vakhnenko equation, Nonlinearity, 11 (1998), 1457. https://doi.org/10.1088/0951-7715/11/6/001 doi: 10.1088/0951-7715/11/6/001
    [43] V. O. Vakhnenko, E. J. Parkes, A. J. Morrison, A Backlund transformation and the inverse scattering transform method for the generalised Vakhnenko equation, Chaos Soliton. Fract., 17 (2003), 683–692. https://doi.org/10.1016/S0960-0779(02)00483-6 doi: 10.1016/S0960-0779(02)00483-6
    [44] A. J. Morrison, E. J. Parkes, The N-soliton solution of the modified generalized Vakhnenko equation (a new nonlinear evolution equation), Chaos Soliton. Fract., 16 (2003), 13–26. https://doi.org/10.1016/S0960-0779(02)00314-4 doi: 10.1016/S0960-0779(02)00314-4
    [45] Y. Liu, Z. Li, K. Wang, Symbolic computation of exact solutions for a nonlinear evolution equation, Chaos Soliton. Fract., 31 (2007), 1173–1180. https://doi.org/10.1016/j.chaos.2005.09.055 doi: 10.1016/j.chaos.2005.09.055
    [46] A. R. Seadawy, S. Ahmed, S. T. R. Rizvi, K. Ali, Various forms of lumps and interaction solutions to generalized Vakhnenko Parkes equation arising from high-frequency wave propagation in electromagnetic physics, J. Geom. Phys., 176 (2022), 104507. https://doi.org/10.1016/j.geomphys.2022.104507 doi: 10.1016/j.geomphys.2022.104507
    [47] M. A. E. Abdelrahman, M. A. Sohaly, Solitary waves for the modified Korteweg-de Vries equation in deterministic case and random case, J. Phys. Math., 8 (2017), 1000214. https://doi.org/10.1016/10.4172/2090-0902.1000214 doi: 10.1016/10.4172/2090-0902.1000214
    [48] M. A. E. Abdelrahman, M. A. Sohaly, Solitary waves for the nonlinear Schrödinger problem with the probability distribution function in the stochastic input case, Eur. Phys. J. Plus., 132 (2017), 339. https://doi.org/10.1140/epjp/i2017-11607-5 doi: 10.1140/epjp/i2017-11607-5
    [49] X. F. Yang, Z. C. Deng, Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Differ. Equ., 2015 (2015), 117. https://doi.org/10.1186/s13662-015-0452-4 doi: 10.1186/s13662-015-0452-4
    [50] A. A. Alderremy, R. Shah, N. Iqbal, S. Aly, K. Nonlaopon, Fractional series solution construction for nonlinear fractional reaction-diffusion Brusselator model utilizing Laplace residual power series, Symmetry, 14 (2022), 1944. https://doi.org/10.3390/sym14091944 doi: 10.3390/sym14091944
    [51] H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, R. Shah, Perturbed Gerdjikov-Ivanov equation: Soliton solutions via Bäcklund transformation. Optik, 298 (2024), 171576. https://doi.org/10.1016/j.ijleo.2023.171576
    [52] M. Naeem, O. F. Azhar, A. M. Zidan, K. Nonlaopon, Numerical analysis of fractional-order parabolic equations via Elzaki transform. J. Funct. Space., 2021 (2021), 3484482. https://doi.org/10.1155/2021/3484482
    [53] M. Alqhtani, K. M. Saad, R. Shah, W. M. Hamanah, Discovering novel soliton solutions for (3+1)-modified fractional Zakharov-Kuznetsov equation in electrical engineering through an analytical approach. Opt. Quant. Electron., 55 (2023), 1149. https://doi.org/10.1007/s11082-023-05407-2
    [54] S. Noor, W. Albalawi, R. Shah, M. M. Al-Sawalha, S. M. Ismaeel, S. A. El-Tantawy, On the approximations to fractional nonlinear damped Burger's-type equations that arise in fluids and plasmas using Aboodh residual power series and Aboodh transform iteration methods, Front. Phys., 12 (2024), 1374481. https://doi.org/10.3389/fphy.2024.1374481 doi: 10.3389/fphy.2024.1374481
    [55] S. Noor, A. S. Alshehry, A. Shafee, R. Shah, Families of propagating soliton solutions for (3+1)-fractional Wazwaz-BenjaminBona-Mahony equation through a novel modification of modified extended direct algebraic method, Phys. Scr., 99 (2024), 045230. https://doi.org/10.1088/1402-4896/ad23b0 doi: 10.1088/1402-4896/ad23b0
    [56] D. Lu, Q. Shi, New Jacobi elliptic functions solutions for the combined KdV-mKdV equation, Int. J. Nonlinear Sci., 10 (2010), 320–325.
    [57] Y. Zhang, Solving STO and KD equations with modified Riemann-Liouville derivative using improved ($G/G'$)-expansion function method, Int. J. Appl. Math., 45 (2015), 16–22.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(569) PDF downloads(33) Cited by(0)

Article outline

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog