Research article Special Issues

Innovative soliton solutions for a (2+1)-dimensional generalized KdV equation using two effective approaches

  • Received: 08 August 2024 Revised: 28 November 2024 Accepted: 04 December 2024 Published: 16 December 2024
  • MSC : 35B35, 35C07, 35C08, 35C09

  • In this paper, we analyze and provide innovative soliton solutions for a (2+1)-dimensional generalized Korteweg-de Vries (gKdV) problem. We obtain phase shifts and dispersion relations by using the generalized Arnous technique and the Riccati equation approach, thus allowing different soliton solutions to be developed. Several precise solutions with special structural properties, including kink and solitary soliton solutions, are included in our study. This detailed examination demonstrates the complex behavior of the model and its capability to explain a large scale of nonlinear wave occurrences in many physical settings. Thus, in scientific domains such as fluid mechanics, plasma physics, and wave propagation in media ranging from ocean surfaces to optical fibers, our results are crucial to comprehend the principles behind the production and propagation of many complicated phenomena. Finally, we provide 2D and 3D graphs for various solutions that have been obtained using Maple.

    Citation: Ibrahim Alraddadi, Faisal Alsharif, Sandeep Malik, Hijaz Ahmad, Taha Radwan, Karim K. Ahmed. Innovative soliton solutions for a (2+1)-dimensional generalized KdV equation using two effective approaches[J]. AIMS Mathematics, 2024, 9(12): 34966-34980. doi: 10.3934/math.20241664

    Related Papers:

  • In this paper, we analyze and provide innovative soliton solutions for a (2+1)-dimensional generalized Korteweg-de Vries (gKdV) problem. We obtain phase shifts and dispersion relations by using the generalized Arnous technique and the Riccati equation approach, thus allowing different soliton solutions to be developed. Several precise solutions with special structural properties, including kink and solitary soliton solutions, are included in our study. This detailed examination demonstrates the complex behavior of the model and its capability to explain a large scale of nonlinear wave occurrences in many physical settings. Thus, in scientific domains such as fluid mechanics, plasma physics, and wave propagation in media ranging from ocean surfaces to optical fibers, our results are crucial to comprehend the principles behind the production and propagation of many complicated phenomena. Finally, we provide 2D and 3D graphs for various solutions that have been obtained using Maple.



    加载中


    [1] R. Hirota, The direct method in soliton theory, Cambridge University Press, 2004. http://doi.org/10.1017/CBO9780511543043
    [2] M. Jia, S. Y. Lou, Searching for missing D'alembert waves in nonlinear system: Nizhnik-Novikov-Veselov equation, Chaos Soliton. Fract., 140 (2020), 110135. http://doi.org/10.1016/j.chaos.2020.110135 doi: 10.1016/j.chaos.2020.110135
    [3] H. Qawaqneh, A. Altalbe, A. Bekir, K. U. Tariq, Investigation of soliton solutions to the truncated M-fractional (3+1)-dimensional Gross-Pitaevskii equation with periodic potential, AIMS Mathematics, 9 (2024), 23410–23433. http://doi.org/10.3934/math.20241138 doi: 10.3934/math.20241138
    [4] A. M. G. Ahmed, A. Adjiri, S. Manukure, Soliton solutions and a bi-Hamiltonian structure of the fifth-order nonlocal reverse-spacetime Sasa-Satsuma-type hierarchy via the Riemann-Hilbert approach, AIMS Mathematics, 9 (2024), 23234–23267. http://doi.org/10.3934/math.20241130 doi: 10.3934/math.20241130
    [5] B. Ren, Dynamics of a D'Alembert wave and a soliton molecule for an extended BLMP equation, Commun. Theor. Phys., 73 (2021), 035003. http://doi.org/10.1088/1572-9494/abda17 doi: 10.1088/1572-9494/abda17
    [6] B. Ren, J. Lin, D'Alembert wave and soliton molecule of the modified Nizhnik–Novikov–Veselov equation, Eur. Phys. J. Plus, 136 (2021), 123. http://doi.org/10.1140/epjp/s13360-021-01099-3 doi: 10.1140/epjp/s13360-021-01099-3
    [7] K. K. Ahmed, N. M. Badra, H. M. Ahmed, W. B. Rabie, Soliton solutions of generalized Kundu-Eckhaus equation with an extra-dispersion via improved modified extended tanh-function technique, Opt. Quant. Electron., 55 (2023), 299. http://doi.org/10.1007/s11082-023-04599-x doi: 10.1007/s11082-023-04599-x
    [8] A. S. Khalifa, W. B. Rabie, N. M. Badra, H. M. Ahmed, M. Mirzazadeh, M. S. Hashemi, et al., Discovering novel optical solitons of two CNLSEs with coherent and incoherent nonlinear coupling in birefringent optical fibers, Opt. Quant. Electron., 56 (2024), 1340. https://doi.org/10.1007/s11082-024-07237-2 doi: 10.1007/s11082-024-07237-2
    [9] K. K. Ahmed, N. M. Badra, H. M. Ahmed, W. B. Rabie, Unveiling optical solitons and other solutions for fourth-order (2+1)-dimensional nonlinear Schrödinger equation by modified extended direct algebraic method, J. Opt., (2024), 1–13. http://doi.org/10.1007/s12596-024-01690-8
    [10] C. Bhan, R. Karwasra, S. Malik, S. Kumar, A. H. Arnous, N. A. Shah, et al., Bifurcation, chaotic behavior, and soliton solutions to the KP-BBM equation through new Kudryashov and generalized Arnous methods, AIMS Mathematics, 9 (2024), 8749–8767. http://doi.org/10.3934/math.2024424 doi: 10.3934/math.2024424
    [11] S. U. Rehman, J. Ahmad, Dispersive multiple lump solutions and soliton's interaction to the nonlinear dynamical model and its stability analysis, Eur. Phys. J. D, 76 (2022), 14. http://doi.org/10.1140/epjd/s10053-022-00351-4 doi: 10.1140/epjd/s10053-022-00351-4
    [12] M. Alquran, New interesting optical solutions to the quadratic-cubic Schrödinger equation by using the Kudryashov-expansion method and the updated rational sine-cosine functions, Opt. Quant. Electron., 54 (2022), 666. http://doi.org/10.1007/s11082-022-04070-3 doi: 10.1007/s11082-022-04070-3
    [13] W. B. Rabie, K. K. Ahmed, N. M. Badra, H. M. Ahmed, M. Mirzazadeh, M. Eslami, New solitons and other exact wave solutions for coupled system of perturbed highly dispersive CGLE in birefringent fibers with polynomial nonlinearity law, Opt. Quant. Electron., 56 (2024), 875. http://doi.org/10.1007/s11082-024-06644-9 doi: 10.1007/s11082-024-06644-9
    [14] A. S. Khalifa, N. M. Badra, H. M. Ahmed, W. B. Rabie, Retrieval of optical solitons in fiber Bragg gratings for high-order coupled system with arbitrary refractive index, Optik, 287 (2023), 171116. http://doi.org/10.1016/j.ijleo.2023.171116 doi: 10.1016/j.ijleo.2023.171116
    [15] L. Li, F. Yu, The fourth-order dispersion effect on the soliton waves and soliton stabilities for the cubic-quintic Gross-Pitaevskii equation, Chaos Soliton. Fract., 179 (2024), 114377. http://doi.org/10.1016/j.chaos.2023.114377 doi: 10.1016/j.chaos.2023.114377
    [16] K. K. Ahmed, H. H. Hussein, H. M. Ahmed, W. B. Rabie, W. Alexan, Analysis of the dynamical behaviors for the generalized Bogoyavlvensky-Konopelchenko equation and its analytical solutions occurring in mathematical physics, Ain Shams Eng. J., 15 (2024), 103000. http://doi.org/10.1016/j.asej.2024.103000 doi: 10.1016/j.asej.2024.103000
    [17] L. Li, F. Yu, Q. Qin, Interaction and manipulation for non-autonomous bright soliton solution of the coupled derivative nonlinear Schrödinger equations with Riemann–Hilbert method, Appl. Math. Lett., 149 (2024), 108924. https://doi.org/10.1016/j.aml.2023.108924 doi: 10.1016/j.aml.2023.108924
    [18] K. K. Ahmed, N. M. Badra, H. M. Ahmed, W. B. Rabie, M. Mirzazadeh, M. Eslami, et al., Investigation of solitons in magneto-optic waveguides with Kudryashov's law nonlinear refractive index for coupled system of generalized nonlinear Schrödinger's equations using modified extended mapping method, Nonlinear. Anal.-Model., 29 (2024), 205–223. http://doi.org/10.15388/namc.2024.29.34070 doi: 10.15388/namc.2024.29.34070
    [19] A. S. Khalifa, H. M. Ahmed, N. M. Badra, W. B. Rabie, Exploring solitons in optical twin-core couplers with Kerr law of nonlinear refractive index using the modified extended direct algebraic method, Opt. Quant. Electron., 56 (2024), 1060. http://doi.org/10.1007/s11082-024-06882-x doi: 10.1007/s11082-024-06882-x
    [20] K. S. Nisar, O. A. Ilhan, S. T. Abdulazeez, J. Manafian, S. A. Mohammed, M. S. Osman, Novel multiple soliton solutions for some nonlinear PDEs via multiple Exp-function method, Results Phys., 21 (2021), 103769. http://doi.org/10.1016/j.rinp.2020.103769 doi: 10.1016/j.rinp.2020.103769
    [21] K. K. Ahmed, H. M. Ahmed, N. M. Badra, W. B. Rabie, Optical solitons retrieval for an extension of novel dual-mode of a dispersive non-linear Schrödinger equation, Optik, 307 (2024), 171835. http://doi.org/10.1016/j.ijleo.2024.171835 doi: 10.1016/j.ijleo.2024.171835
    [22] R. Alhami, M. Alquran, Extracted different types of optical lumps and breathers to the new generalized stochastic potential-KdV equation via using the Cole-Hopf transformation and Hirota bilinear method, Opt. Quant. Electron., 54 (2022), 553. http://doi.org/10.1007/s11082-022-03984-2 doi: 10.1007/s11082-022-03984-2
    [23] A. R. Seadawy, A. Yasmeen, N. Raza, S. Althobaiti, Novel solitary waves for fractional (2+1)-dimensional Heisenberg ferromagnetic model via new extended generalized Kudryashov method, Phys. Scr., 96 (2021), 125240. http://doi.org/10.1088/1402-4896/ac30a4 doi: 10.1088/1402-4896/ac30a4
    [24] Y. S. Özkan, E. Yaşar, On the exact solutions of nonlinear evolution equations by the improved $\tan \left(\frac{\phi}{2}\right) -$expansion method, Pramana-J. Phys., 94 (2020), 37. http://doi.org/10.1007/s12043-019-1883-3 doi: 10.1007/s12043-019-1883-3
    [25] W. X. Ma, $N-$soliton solutions and the Hirota conditions in (1+1)-dimensions, Int. J. Nonlin. Sci. Num., 23 (2022), 123–133. http://doi.org/10.1515/ijnsns-2020-0214 doi: 10.1515/ijnsns-2020-0214
    [26] B. P. Sebogodi, C. M. Khalique, Travelling wave solutions and conservation laws of the (2+1)-dimensional new generalized Korteweg–de Vries equation, Partial Differ. Equ. Appl. Math., 11 (2024), 100815. http://doi.org/10.1016/j.padiff.2024.100815 doi: 10.1016/j.padiff.2024.100815
    [27] N. Raza, A. Batool, M. Inc, New hyperbolic and rational form solutions of (2+1)-dimensional generalized Korteweg-de Vries model, J. Ocean Eng. Sci., 2022, In Press. http://doi.org/10.1016/j.joes.2022.04.021
    [28] H. Ma, S. Yue, A. Deng, D'Alembert wave, the Hirota conditions and soliton molecule of a new generalized KdV equation, J. Geom. Phys., 172 (2022), 104413. https://doi.org/10.1016/j.geomphys.2021.104413 doi: 10.1016/j.geomphys.2021.104413
    [29] R. Hirota, J. Satsuma, $N-$soliton solutions of model equations for shallow water waves, J. Phys. Soc. Jpn., 40 (1976), 611–612. https://doi.org/10.1143/JPSJ.40.611 doi: 10.1143/JPSJ.40.611
    [30] D. G. Crighton, Applications of KdV, In: KdV '95, Dordrecht, Springer, 1995. https://doi.org/10.1007/978-94-011-0017-5_2
    [31] N. Jannat, M. Kaplan, N. Raza, Abundant soliton-type solutions to the new generalized KdV equation via aut--Bäcklund transformations and extended transformed rational function technique, Opt. Quant. Electron., 54 (2022), 466. https://doi.org/10.1007/s11082-022-03862-x doi: 10.1007/s11082-022-03862-x
    [32] B. P. Sebogodi, C. M. Khalique, Travelling wave solutions and conservation laws of the (2+1)-dimensional new generalized Korteweg–de Vries equation, Partial Differ. Equ. Appl. Math., 11 (2024), 100815. https://doi.org/10.1016/j.padiff.2024.100815 doi: 10.1016/j.padiff.2024.100815
    [33] N. Raza, A. Batool, M. Inc, New hyperbolic and rational form solutions of (2+1)-dimensional generalized Korteweg-de Vries model, J. Ocean Eng. Sci., 2022, In Press. https://doi.org/10.1016/j.joes.2022.04.021
    [34] S. Malik, S. Kumar, Pure-cubic optical soliton perturbation with full nonlinearity by a new generalized approach, Optik, 258 (2022), 168865. https://doi.org/10.1016/j.ijleo.2022.168865 doi: 10.1016/j.ijleo.2022.168865
    [35] S. Malik, S. Kumar, A. Biswas, Y. Yıldırım, L. Moraru, S. Moldovanu, et al., Cubic-quartic optical solitons in fiber Bragg gratings with dispersive reflectivity having parabolic law of nonlinear refractive index by Lie symmetry, Symmetry, 14 (2022), 2370. https://doi.org/10.3390/sym14112370 doi: 10.3390/sym14112370
    [36] S. Malik, H. Almusawa, S. Kumar, A. M. Wazwaz, M. S. Osman, A (2+1)-dimensional Kadomtsev-Petviashvili equation with competing dispersion effect: Painlevé analysis, dynamical behavior and invariant solutions, Results Phys., 23 (2021), 104043. https://doi.org/10.1016/j.rinp.2021.104043 doi: 10.1016/j.rinp.2021.104043
    [37] Y. Yıldırım, A. Biswas, M. Ekici, H. Triki, O. Gonzalez-Gaxiola, A. K. Alzahrani, et al., Optical solitons in birefringent fibers for Radhakrishnan-Kundu-Lakshmanan equation with five prolific integration norms, Optik, 208 (2020), 164550. https://doi.org/10.1016/j.ijleo.2020.164550 doi: 10.1016/j.ijleo.2020.164550
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1177) PDF downloads(44) Cited by(0)

Article outline

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog