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Abstract: In this paper, we analyze and provide innovative soliton solutions for a (2+1)-dimensional
generalized Korteweg-de Vries (gKdV) problem. We obtain phase shifts and dispersion relations by
using the generalized Arnous technique and the Riccati equation approach, thus allowing different
soliton solutions to be developed. Several precise solutions with special structural properties,
including kink and solitary soliton solutions, are included in our study. This detailed examination
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been obtained using Maple.

Keywords: mathematical model; analytic solutions; soliton solutions; generalized KdV equation;
generalized Arnous method; Riccati equation method

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20241664


34967

Mathematics Subject Classification: 35B35, 35C07, 35C08, 35C09

1. Introduction

A family of self-reinforcing wave packets known as soliton solutions, which maintain the balance
between dispersive and nonlinear effects, are widely used in the physical and engineering
disciplines [1–4]. N-soliton solutions have been extensively studied in various nonlinear partial
differential (NLPD) systems, which may have numerous uses. The communications sector makes
extensive use of optical soliton dynamics. In the absence of online activity, the modern world is still,
as if life has come to an end. Consequently, a detailed analysis of the soliton’s scientific dynamics is
essential. For some wave equations that are part of the linear partial differential equations, the
D’Alembert solutions represent a significant foundational rule. The well-known wave equation’s
D’Alembert solutions may be viewed as a thorough investigation. Some NLPD systems provide the
D’Alembert traveling wave solution with a multitude of distinct functions [5, 6].

On the other hand, there are many interesting applications in science and technology to study and
model evolution equations and systems, both integrable and non-integrable. They provide a solid
basis to understand the intricate dynamics of various nonlinear natural systems. Over time, nonlinear
evolution equations (NLEEs) have developed into essential tools to model and study a wide range of
nonlinear natural and laboratory systems. Partial differential equations (PDEs) are frequently used to
represent these equations, thereby encompassing the fundamental concepts of nonlinear wave
propagation, including soliton interactions, rogue waves, and various complicated dynamical
phenomena [7–10]. The previously mentioned types of such equations may be applied to mimic a
broad range of stochastic dynamics in complex systems, either naturally occurring or artificially
constructed. For instance, the family of nonlinear Schrödinger equation (NLSE) and the integrable /
non-integrable group of the (non) planar Korteweg-de Vries (KdV) type equations were used to
comprehend the dynamical behavior of the waves’ propagation in shallow water, plasma waves, and
magneto-hydrodynamic waves [11–14]. For instance, to investigate wave dynamics, Li and Yu [15]
presented several families of non-autonomous soliton solutions with varying amplitude surfaces for
the cubic-quintic Gross–Pitaevskii equation. Ahmed et al. [16] examined the dynamical behaviors of
analytical solutions for the generalized Bogoyavlensky-Konopelchenko equation. A general approach
was proposed by Li et al. [17] to control soliton waves, with potential applications in optical media.

Initially focused on waves in shallow water, the study of solitary waves has expanded to
encompass a range of physical domains. These particular, nonlinear dispersive waves have generated
significant research interests in several disciplines, foremost fluid dynamics, optical fibers, plasma
physics, and other relevant scientific domains [18–22]. The improved tan

(
ϕ

2

)
−expansion strategy and

the new extended generalized Kudryashov approach are among the most widely accepted methods for
generating correct solutions to nonlinear partial differential equations (NLPDEs) [23, 24]. Solitary
wave solutions may be extracted from various nonlinear situations using these simple procedures.
These methods have the benefit of being applicable to problems with large balancing numbers.

In summary, bound solitons that consist of varying numbers of solitons constitute the major focus
of the soliton molecule study. This paper establishes several soliton solutions for a (2+1)-dimensional
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gKdV problem [25–27].
This work is organized as follows: An explanation of the model and its uses are provided in

Section 2. A summary of the two suggested alternatives is provided in Section 3, together with the
mathematical background. Section 4 provides several precise soliton solutions as well as additional
wave solutions for the model presented in (2.1) under a variety of assumptions. The discovered
answers are graphically shown in both 2D and 3D forms in Section 5. A discussion about the novelty
and innovations of the work is presented in Section 6. And finally, the paper’s conclusion and the
study viewpoint are presented in Section 7.

2. Description of the model and its applications

Water waves are among the most important natural phenomena. The acclaimed and well-known
KdV equation represents weak, nonlinear water wave propagation in long, shallow, narrow channels.
The mathematical foundation for the development of ideas about solitons and nonlinear dispersive
waves came from observations of water waves. Equations such as the KdV equation have been
immensely important because scholars, such as Korteweg and de Vries, utilized them to examine
shallow-water waves in canals and oceans and contributed the theoretical foundation for the idea of
solitary waves. Furthermore, KdV-type equations are now widely used models with a wide range of
applications [28].

This research represents a novel search for the exact solutions for the (2+1)-dimensional gKdV
problem, which can be read as follows [28]:

6δ1uxuxx + δ1uxxxx + 3δ2(uxut)x + δ2uxxxt + δ3uxx + δ4uyy + δ5uxt = 0, (2.1)

where δi, (i = 1, 2, 3, 4, 5) are nonzero constants. A class of gKdV equation may be obtained for one
object if δ4 = 0, while the Kadomtsev-Petviashvili equation can be obtained for another if
δ2 = δ3 = 0. In particular, the Hirota-Satsuma equation [29] associated with δ1 = 0 and the traditional
KdV equation [30] related with δ2 = δ3 = 0 are obtained. Five nonzero constants
δi, (where i = 1, 2, 3, 4, 5), in Eq (2.1) affect the (2+1)-dimensional generalized KdV equation’s
solutions. These constants have a major impact on the behavior of the solutions by affecting a number
of distinct factors, including dispersion, the interaction between different wave components, and the
intensity of nonlinear effects. Different kinds of precise solutions, such as solitons, periodic waves, or
other kinds of localized structures, can be obtained by varying these parameters. Each constant has a
different effect; some influence the solution’s spatial or temporal evolution, while others regulate the
nonlinearity and dispersion balance, which are essential for higher-dimensional wave propagation
phenomena. In [28], Ma et al. obtained N-soliton solutions for the (2+1)-dimensional gKdV
equation (2.1). In [31], the authors identified various types of exact solutions for the same equation
using the Hirota direct method. Additionally, Sebogodi and Khalique [32] applied the Lie symmetry
analysis, Kudryashov, and the simplest equation methods to derive multiple exact solutions of the
considered equation. Moreover, they provided conservation laws. Furthermore, Raza et al. [33]
employed the improved tan(ϕ/2)-expansion and extended the generalized Kudryashov methods to
obtain soliton solutions for Eq (2.1). The present study aims to examine Eq (2.1) using two efficient
approaches, which are the generalized Arnous technique and the Riccati equation approach.
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3. The applied approaches in brief

In this section, we present the salient features of the applied approaches that will be used in this
piece of work. First, consider the following NLPDE:

F (Υ,Υx, Υt, Υy, Υxx, Υxt, Υtt, . . . ) = 0, (3.1)

where F is a polynomial in the unknown function Υ = Υ(x, y, t) and its corresponding various partial
derivatives. To convert Eq (3.1) into an ordinary differential equation (ODE), we will assume the
following wave transformation:

Υ(x, y, t) = U(ρ), ρ = x + λ1y − λ2t, (3.2)

where λ1 and λ2 are arbitrary constants. By inserting Eq (3.2) into Eq (3.1), it produces a nonlinear
ODE with the following form:

P(U,U′,U′′,U′′′, . . . ) = 0. (3.3)

It is possible to pursue the exact traveling wave solutions of the equations by using the following
basic steps of the Riccati equation approach and the generalized Arnous method.

3.1. Generalized Arnous method

The generalized Arnous technique provides a number of useful benefits for decomposing
complicated nonlinear systems when used to solve the (2+1)-dimensional generalized KdV equation.
This technique makes it easier to derive analytical solutions that are both accurate and approximative,
which is essential to comprehend how waves behave in multidimensional domains. Its ability to be
applied to equations in higher dimensions makes it possible to more effectively analyze phenomena
such as wave propagation and solitons. Additionally, the technique minimizes the processing effort,
which makes it a useful tool to resolve complex issues in nonlinear optics, fluid dynamics, and other
domains where KdV-type equations are applied. The fundamental ideas of the generalized Arnous
approach are as follows [34, 35]:
Algorithm 3.1.1. Assume that the solution of Eq (3.3) can be expressed as follows

U(ρ) = α0 +

N∑
j=0

α j + β j (Φ′(ρ)) j

(Φ(ρ)) j , (3.4)

where the constants α0, α j, β j( j = 1, 2, . . . ,N) will be evaluated later. Additionally, the function Φ(ρ)
obeys the following constraint: [

Φ′(ρ)
]2
=

[
Φ(ρ)2 − χ

]
ln(κ)2, (3.5)

with

Φ(n)(ρ) =


Φ(ρ) ln(κ)n, n : even,

Φ′(ρ) ln(κ)n−1, n : odd,
n ≥ 2, (3.6)

where κ > 0, κ , 1, and χ is an arbitrary constant. The Eq (3.5) has a solution of the following form:

Φ(ρ) = k ln(κ)κρ +
χ

4k ln(κ)κρ
, (3.7)
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where k is an arbitrary parameter.
Algorithm 3.1.2. By applying the homogeneous balancing principle on Eq (3.3), the positive integer
N in Eq (3.4) can be estimated.
Algorithm 3.1.3. Add (3.4) to (3.3) together with (3.5) and its derivatives. This substitution gives us a

polynomial of the form
1
Φ(ρ)

(
Φ′(ρ)
Φ(ρ)

)
. By collecting all terms of the same powers and equating them

to zero in this polynomial, one may now extract the unknown parameters α0, α j, β j ( j = 1, 2, . . . ,N).
This produces an over-determined system of algebraic equations. We obtain the exact solutions for
Eq (3.1) after solving the derived system.

3.2. Riccati equation approach

A strong and organized technique to solve the (2+1)-dimensional generalized KdV equation is
offered by the Riccati equation methodology, which is particularly useful for locating precise solutions
to nonlinear PDEs. One of its main features is its capacity to simplify complicated, nonlinear equations
into more understandable forms. This makes it easier to acquire solutions for soliton, periodic, and
other waves. By changing certain parameters in the Riccati equation, this flexible method may be used
to obtain a wide range of precise answers. Additionally, it offers an easy-to-use and straightforward
framework to study higher-dimensional wave propagation in nonlinear optics, fluid dynamics, and
plasma physics. Below is an overview of the Riccati equation approach as stated by [36, 37].
Algorithm 3.2.1. Equation (3.3) satisfies the following solution:

U(ρ) =
N∑

i=0

AiR(ρ)i, (3.8)

where A0, A1, ..., AN are unknown constants which will be estimated. To obtain the positive integer N,
we have to apply the homogeneous balancing principle on Eq (3.3). The used function R(ρ) should
satisfy the following Riccati equation:

R′(ρ) = B0 + B1R(ρ) + B2R(ρ)2, (3.9)

where B0, B1, and B2 are real-valued constants. Then, the solutions of Eq (3.9) can be expressed as
follows:

R(ρ) = −
B1

2B2
−

√
µ

2B2
tanh

( √µ
2
ρ + ρ0

)
, µ > 0,

R(ρ) = −
B1

2B2
−

√
µ

2B2
coth

( √µ
2
ρ + ρ0

)
, µ > 0,

R(ρ) = −
B1

2B2
+

√
−µ

2B2
tan

( √
−µ

2
ρ + ρ0

)
, µ < 0,

R(ρ) = −
B1

2B2
−

√
−µ

2B2
cot

( √
−µ

2
ρ + ρ0

)
, µ < 0,

R(ρ) = −
B1

2B2
−

1
B2ρ + ρ0

, µ = 0,

(3.10)
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where µ = B2
1 − 4B0B2.

Algorithm 3.2.2. Equations (3.8) and (3.9) can be inserted into Eq (3.3) to obtain the strategic
equations. We obtain significant outcomes by resolving these strategic equations. Additionally, the
solutions to Eq (3.1) may be obtained with the aid of Eq (3.10).

4. Implementing two efficient approaches on Eq (2.1)

This section applies the two efficient approaches on Eq (2.1) to present the newly created soliton
solutions for this proposed model.

Let us assume the travelling wave solution of Eq (2.1) has the following form:

u(x, y, t) = U(ρ), ρ = x + λ1y − λ2t. (4.1)

By inserting Eq (4.1) in Eq (2.1), we can acquire the following non-linear ODE:(
(−6δ2λ2 + 6δ1) U′ + δ4λ

2
1 − δ5λ2 + δ3

)
U′′ − (δ2λ2 − δ1) U′′′′ = 0. (4.2)

Integrating Eq (4.2) once w.r.t. ρ gives the following:

(−δ2λ2 + δ1) U′′′ + 3 (−δ2λ2 + δ1)
(
U′

)2
+

(
δ4λ

2
1 − δ5λ2 + δ3

)
U′ = 0, (4.3)

thereby treating the integral constant as 0. Now, balancing (U′)2 with U′′′, we obtain that N = 1.

4.1. Analytical solutions using the generalized Arnous approach

The generalized Arnous (GA) technique is used in this portion to solve the gKdV equation.
According to the GA approach, the solution to Eq (4.3) is as follows:

U(ρ) = α0 +

1∑
j=0

α j + β j (Φ′(ρ)) j

(Φ(ρ)) j = α0 +
α1 + β1Φ

′(ρ)
Φ(ρ)

, (4.4)

where α0, α1, and β1 are arbitrary constants that, when present, ensure that either α1 , 0 or β1 ,

0 simultaneously. An expression in terms of 1
Φ(ρ)

(
Φ′(ρ)
Φ(ρ)

)
is obtained. Equations (3.5) and (3.6) are

substituted, together with Eq (4.4) into Eq (4.3). The result is an algebraic system of equations that, as
the following example demonstrates, combine terms of the same power and equalize them to zero:

0 = 6χ (β1 − 1) (δ2λ2 − δ1) ln(κ)2 α1,

0 =
(
(δ2λ2 − δ1) ln(κ)2

− δ4λ
2
1 + δ5λ2 − δ3

)
α1,

0 = 3
(
χ2 (β1 − 2) β1 (δ2λ2 − δ1) ln(κ)2

− χα2
1 (δ2λ2 − δ1)

)
ln(κ)2 ,

0 = 4 ln(κ)4 β1 (δ2λ2 − δ1) χ −
(
3 (δ2λ2 − δ1)α2

1 + χβ1

(
−δ4λ

2
1 + δ5λ2 − δ3

))
ln(κ)2 .

(4.5)

Utilizing the Maple software to resolve the system (4.5), we are able to acquire the following sets
of solutions:

(4.1.1) α1 = 0, β1 = 2, λ2 =
4 ln(κ)2 δ1 + δ4λ

2
1 + δ3

4 ln(κ)2 δ2 + δ5
.
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(4.1.2) α1 =
√
−χ ln(κ) , β1 = 1, λ2 =

ln(κ)2 δ1 + δ4λ
2
1 + δ3

ln(κ)2 δ2 + δ5
.

Through the solution set (4.1.1), we can express the solutions of Eq (4.3) as follows:

U4.1.1(ρ) = α0 +

4
(

4µ ln(κ)2κ2ρ

κρ
−

4µ2 ln(κ)2κ2ρ+χ

2µ κρ

)
µ ln(κ) κρ

4µ2 ln(κ)2 κ2ρ + χ
. (4.6)

Thus, based on Eqs (3.2) and (4.6), the soliton solution of Eq (2.1) may be expressed as follows:

u4.1.1(x, y, t) =
8
(
ln(κ) + α0

2

)
ln(κ)2 µ2κ

−
2t(4 ln(κ)2δ1+δ4λ

2
1+δ3)

4 ln(κ)2δ2+δ5
+2λ1y+2x

− 2χ
(
ln(κ) − α0

2

)
4µ2 ln(κ)2 κ

−
2t(4 ln(κ)2δ1+δ4λ

2
1+δ3)

4 ln(κ)2δ2+δ5
+2λ1y+2x

+ χ

. (4.7)

By taking χ = ±4µ2, the above solution can be reduced to kink and singular soliton solutions,
respectively, as

u(1)
4.1.1(x, y, t) = α0 − 2 tanh

x + λ1y −

(
4δ1 + δ4λ

2
1 + δ3

)
4δ2 + δ5

t

 , (4.8)

and

u(2)
4.1.1(x, y, t) = α0 − 2 coth

x + λ1y −

(
4δ1 + δ4λ

2
1 + δ3

)
4δ2 + δ5

t

 . (4.9)

Through the solution set (4.1.2), we can express the solutions of Eq (4.3) as follows:

U4.1.2(ρ) = α0 +

4
(

2µ ln(κ)2κ2ρ

κρ
−

4µ2 ln(κ)2κ2ρ+χ

4µ κρ +
√
−χ ln(κ)

)
µ ln(κ) κρ

4µ2 ln(κ)2 κ2ρ + χ
. (4.10)

Thus, based on Eqs (3.2) and (4.10), the soliton solution of Eq (2.1) may be expressed as follows:

u4.1.2(x, y, t) =
4 ln(κ)2 µ2 (ln(κ) + α0) κ2ρ + 4 ln(κ)2 κρ

√
−χ µ − χ (ln(κ) − α0)

4µ2 ln(κ)2 κ2ρ + χ
, (4.11)

where ρ = − t(ln(κ)2δ1+δ4λ
2
1+δ3)

ln(κ)2δ2+δ5
+ λ1y + x. By considering χ = −4µ2, the above solution can be reduced to

the following singular soliton solutions:

u(1)
4.1.2(x, y, t) = α0 − coth

x + λ1y −

(
δ1 + δ4λ

2
1 + δ3

)
δ2 + δ5

t

 . (4.12)

4.2. Analytical solutions using the Riccati equation approach

The (2+1)-dimensional gKdV equation in Eq (2.1) is solved in this subsection using the Riccati
equation technique. According to the Riccati equation method, the solution to Eq (4.3) can be
expressed as follows:

U(ρ) =
1∑

i=0

AiR(ρ)i = A0 + A1 · R(ρ) , (4.13)
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where A0 and A1 are the indefinite constants to be examined such that A1 , 0.
We obtain the following system by substituting Eq (4.13) and Eq (3.9) into Eq (4.3) and then setting

the coefficients of the same power to zero:

0 = (−δ2λ2 + δ1) A1

(
2B2

0B2 + B0B2
1

)
+ 3 (−δ2λ2 + δ1) A2

1B2
0 +

(
δ4λ

2
1 − δ5λ2 + δ3

)
A1B0,

0 = (−δ2λ2 + δ1) A1

(
8B0B1B2 + B3

1

)
+ 6 (−δ2λ2 + δ1) A2

1B0B1 +
(
δ4λ

2
1 − δ5λ2 + δ3

)
A1B1,

0 = (−δ2λ2 + δ1) A1

(
4B0B2

2 + 5B2
1B2 + 2

(
2B0B2 + B2

1

)
B2

)
+ 3 (−δ2λ2 + δ1) A2

1

(
2B0B2 + B2

1

)
+

(
δ4λ

2
1 − δ5λ2 + δ3

)
A1B2,

0 = 12 (−δ2λ2 + δ1) A1B1B2
2 + 6 (−δ2λ2 + δ1) A2

1B1B2,

0 = 6 (−δ2λ2 + δ1) A1B3
2 + 3 (−δ2λ2 + δ1) A2

1B2
2.

(4.14)

The following can be discovered by resolving the algebraic system of equations described above:

A1 = −2B2, λ2 =
−4B0B2δ1 + B2

1δ1 + δ4λ
2
1 + δ3

−4B0B2δ2 + B2
1δ2 + δ5

.

According to Eq (3.10), one can find the following possible solutions:
(i) A kink soliton solution such that −4B0B2 + B2

1 > 0:

u4.2,1(x, y, t) =A0 + B1 −

√
−4B0B2 + B2

1

× tanh


((
−4B0B2δ1 + B2

1δ1 + δ4λ
2
1 + δ3

)
t − (λ1y + x)

(
−4B0B2δ2 + B2

1δ2 + δ5

)) √
−4B0B2 + B2

1

−8B0B2δ2 + 2B2
1δ2 + 2δ5

 .
(4.15)

(ii) A singular soliton solution such that −4B0B2 + B2
1 > 0:

u4.2,2(x, y, t) =A0 + B1 −

√
−4B0B2 + B2

1

× coth


((
−4B0B2δ1 + B2

1δ1 + δ4λ
2
1 + δ3

)
t − (λ1y + x)

(
−4B0B2δ2 + B2

1δ2 + δ5

)) √
−4B0B2 + B2

1

−8B0B2δ2 + 2B2
1δ2 + 2δ5

 .
(4.16)

(iii) A singular periodic solution such that 4B0B2 − B2
1 > 0:

u4.2,3(x, y, t) =A0 + B1 +

√
4B0B2 − B2

1

× tan


((
−4B0B2δ1 + B2

1δ1 + δ4λ
2
1 + δ3

)
t − (λ1y + x)

(
−4B0B2δ2 + B2

1δ2 + δ5

)) √
4B0B2 − B2

1

−8B0B2δ2 + 2B2
1δ2 + 2δ5

 .
(4.17)

(iv) A singular periodic solution such that 4B0B2 − B2
1 > 0:

u4.2,4(x, y, t) =A0 + B1 −

√
4B0B2 − B2

1

× cot


((
−4B0B2δ1 + B2

1δ1 + δ4λ
2
1 + δ3

)
t − (λ1y + x)

(
−4B0B2δ2 + B2

1δ2 + δ5

)) √
4B0B2 − B2

1

−8B0B2δ2 + 2B2
1δ2 + 2δ5

 .
(4.18)

(v) A rational wave solution such that B2 , 0:

u4.2,5(x, y, t) = A0 − 2B2

− B1

2B2
−

1(
−

t(δ4λ2
1+δ3)
δ5

+ λ1y + x
)

B2

 . (4.19)
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5. Graphical simulations of the extracted solutions

This investigation represents a novel study for the (2+1)-dimensional gKdV equation (2.1), which
can play an essential role in various physical phenomena. By implementing the generalized Arnous
method on the considered model, we have obtained two soliton solutions as shown in (4.7) and (4.11).
We have derived many other soliton solutions as shown in (4.15)–(4.19) by using the Riccati equation
approach. In this part of the manuscript, we shall see the dynamical behavior of some obtained
solutions by demonstrating 3D plots (see Figures 1–5). To show the effect of time on the extracted
solutions, 2D representations with varying t levels are also presented (see Figures 1–5).

Figure 1. Graphical representation of solution (4.7) with α0 = 0.7, χ = 1.3, µ = 0.4, λ1 =

3, κ = 2.4, δ j = 1( j = 1, 2, . . . , 5) and y = 0.

Figure 2. Graphical representation of solution (4.11) with α0 = 0.7, χ = −1.3, µ = 0.4, λ1 =

3, κ = 2.4, δ j = 1( j = 1, 2, . . . , 5) and y = 0.
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Figure 3. Graphical representation of solution (4.15) with A0 = 0.5, B0 = 0.5, B1 = 1.4, B2 =

0.1, λ1 = 3, δ j = 1( j = 1, 2, . . . , 5) and y = 0.

Figure 4. Graphical representation of solution (4.17) with A0 = 0.5, B0 = 1.5, B1 = 0.4, B2 =

0.1, λ1 = 3, δ3 = −4.08, δ j = 1( j = 1, 2, 4, 5) and y = 0.

Figure 5. Graphical representation of solution (4.19) with A0 = 0.5, B0 = 0.1, B1 = 0.8, B2 =

1.6, λ1 = 3, δ j = 1( j = 1, 2, . . . , 5) and y = 0.
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6. Novelty and innovations of the work

The study of solutions to the (2+1)-dimensional gKdV using the generalized Arnous technique
and the Riccati equation approach provides several benefits and applications, along with a deeper
understanding of the complex dynamics of the equation.

6.1. Potential benefits

The combination of the generalized Arnous technique and the Riccati equation approach allows for
a more streamlined process to find the exact solutions to the (2+1)-dimensional gKdV equation. By
simplifying these solutions, researchers can more easily interpret the underlying dynamics, which can
be otherwise complex to analyze in higher-dimensional, nonlinear systems. These methods provide
exact or nearly exact solutions, which offer a higher precision than the approximate or numerical
solutions. Such exact solutions are valuable to develop benchmarks to validate numerical simulations
and other analytical approximations in related studies.

6.2. More understanding of the obtained solutions

The implemented approaches lead to a more comprehensive understanding of the
(2+1)-dimensional gKdV equation by enabling the discovery of various types of exact solutions, such
as solitary waves, periodic waves, and even rogue wave forms. By analyzing these solutions,
researchers can examine how different initial conditions or system parameters affect wave behaviors,
stability, and the energy distribution. This insight contributes to a broader theoretical knowledge and
provides guidance for practical implementations in physics, engineering, and beyond.

6.3. Practical applications of the solutions

The applications of exact solutions to the (2+1)-dimensional gKdV equation, which were obtained
through the implemented approaches, span several advanced fields. In fluid dynamics, these solutions
enhance the understanding of wave behaviors such as dispersion and breaking in shallow water, which
is crucial for oceanography and environmental engineering. In plasma physics, they describe soliton
propagation and wave stability, thus aiding the development of stable plasma containment methods
which are important for nuclear fusion and space science. Additionally, in nonlinear optics, these
solutions predict the behavior of optical pulses and solitons, thus supporting the design of efficient
optical waveguides and telecommunications devices. Collectively, these applications leverage the
precision of exact solutions to accurately model wave phenomena in various physical contexts.

7. Conclusions

In conclusion, this study introduced new soliton solutions for a (2+1)-dimensional gKdV problem
using the generalized Arnous technique and the Riccati equation approach. The research yieled some
soliton solutions, including kink and singular solitary solitons. These solutions highlight the complex
behavior of the gKdV model and its relevance in explaining nonlinear wave phenomena across diverse
fields, such as fluid mechanics, physics of plasmas, and wave propagation in different media. When
we compared our results with those previously reported in the literature, we found that we obtained

AIMS Mathematics Volume 9, Issue 12, 34966–34980.



34977

numerous soliton solutions that had not been discovered earlier. Moreover, the proposed model in Eq
(2.1) had not been investigated before using the approaches implemented in this study. Additionally,
the study included 2D and 3D visualizations using Maple, thus providing a deeper understanding of
the solutions’ structures and dynamics. The solutions and methods presented herein are crucial for
ongoing research and practical applications in various scientific and engineering fields, thus providing
a foundational understanding of the mechanisms governing the production and propagation of complex
wave phenomena.
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