Anomalous diffusion (AD) describes transport phenomena where the mean-square displacement (MSD) of a particle does not scale linearly with time, deviating from classical diffusion. This behavior, often linked to non-equilibrium phenomena, sheds light on the underlying mechanisms in various systems, including biological and financial domains.
Integrating insights from anomalous diffusion into financial analysis could significantly improve our understanding of market behaviors, similar to their impacts on biological systems. In financial markets, accurately estimating asset volatility—whether historical or implied—is vital for investors.
We introduce a novel methodology to estimate the volatility of stocks and similar assets, combining anomalous diffusion principles with machine learning. Our architecture combines convolutional and recurrent neural networks (bidirectional long short-term memory units). Our model computes the diffusion exponent of a financial time series to measure its volatility and it categorizes market movements into five diffusion models: annealed transit time motion (ATTM), continuous time random walk (CTRW), fractional Brownian motion (FBM), Lévy walk (LW), and scaled Brownian motion (SBM).
Our findings suggest that the diffusion exponent derived from anomalous diffusion processes provides insightful and novel perspectives on stock market volatility. By differentiating between subdiffusion, superdiffusion, and normal diffusion, our methodology offers a more nuanced understanding of market dynamics than traditional volatility metrics.
Citation: Rubén V. Arévalo, J. Alberto Conejero, Òscar Garibo-i-Orts, Alfred Peris. Stock volatility as an anomalous diffusion process[J]. AIMS Mathematics, 2024, 9(12): 34947-34965. doi: 10.3934/math.20241663
Anomalous diffusion (AD) describes transport phenomena where the mean-square displacement (MSD) of a particle does not scale linearly with time, deviating from classical diffusion. This behavior, often linked to non-equilibrium phenomena, sheds light on the underlying mechanisms in various systems, including biological and financial domains.
Integrating insights from anomalous diffusion into financial analysis could significantly improve our understanding of market behaviors, similar to their impacts on biological systems. In financial markets, accurately estimating asset volatility—whether historical or implied—is vital for investors.
We introduce a novel methodology to estimate the volatility of stocks and similar assets, combining anomalous diffusion principles with machine learning. Our architecture combines convolutional and recurrent neural networks (bidirectional long short-term memory units). Our model computes the diffusion exponent of a financial time series to measure its volatility and it categorizes market movements into five diffusion models: annealed transit time motion (ATTM), continuous time random walk (CTRW), fractional Brownian motion (FBM), Lévy walk (LW), and scaled Brownian motion (SBM).
Our findings suggest that the diffusion exponent derived from anomalous diffusion processes provides insightful and novel perspectives on stock market volatility. By differentiating between subdiffusion, superdiffusion, and normal diffusion, our methodology offers a more nuanced understanding of market dynamics than traditional volatility metrics.
[1] | S. J. Brown, W. N. Goetzmann, A. Kumar, The Dow Theory: William Peter Hamilton's track record reconsidered, J. Financ., 53 (1998), 1311–133. https://doi.org/10.1111/0022-1082.00054 doi: 10.1111/0022-1082.00054 |
[2] | O. B. Sezer, M. U. Gudelek, A. M. Ozbayoglu, Financial time series forecasting with deep learning: A systematic literature review: 2005–2019, Appl. Soft Comput., 90 (2020), 106181. https://doi.org/10.1016/j.asoc.2020.106181 doi: 10.1016/j.asoc.2020.106181 |
[3] | B. M. Henrique, V. A. Sobreiro, H. Kimura, Literature review: Machine learning techniques applied to financial market prediction, Expert Sys. Appl., 124 (2019), 226–251. https://doi.org/10.1016/j.eswa.2019.01.012 doi: 10.1016/j.eswa.2019.01.012 |
[4] | G. Marti, F. Nielsen, M. Bińkowski, P. Donnat, A review of two decades of correlations, hierarchies, networks and clustering in financial markets, Progress in information geometry: Theory and applications, (2021), 245–274. https://doi.org/10.1007/978-3-030-65459-7_10 |
[5] | H. N. Bhandari, B. Rimal, N. R. Pokhrel, R. Rimal, K. R. Dahal, R. K. Khatri, Predicting stock market index using LSTM, Machine Learn. Appl., 9 (2022), 100320. https://doi.org/10.1016/j.mlwa.2022.100320 doi: 10.1016/j.mlwa.2022.100320 |
[6] | E. F. Fama, Efficient capital markets: A review of theory and empirical work, J. Financ., 25 (1970), 383–417. https://doi.org/10.2307/2325486 doi: 10.2307/2325486 |
[7] | C. Meier, Adaptive Market Efficiency: Review of Recent Empirical Evidence on the Persistence of Stock Market Anomalies, Rev. Integr. Bus. Econ. Res., 3 (2014), 268–280. |
[8] | C. Chiarella, X.-Z. He, C. S. Nikitopoulos, Stochastic Processes for Asset Price Modelling, Derivative Security Pricing: Techniques, Methods and Applications, (2015), 7–36. https://doi.org/10.1007/978-3-662-45906-5_2 |
[9] | R. Brown, On the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies, Edinburgh New Philos. J., 5 (1828), 358–371. https://doi.org/10.1080/14786442808674769 doi: 10.1080/14786442808674769 |
[10] | A. Einstein, On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat, Ann. Phys., 17 (1905), 208. |
[11] | J. Perrin, Mouvement brownien et réalité moléculaire, Ann. Chim. Phys., 18 (1909), 1–114. |
[12] | R. C. Merton, Theory of rational option pricing, Bell J. Econ. Manage. Sci., 4 (1973), 141–183. https://doi.org/10.2307/3003143 doi: 10.2307/3003143 |
[13] | J. C. Hull, Options, futures, and other derivatives, Pearson Education, 2023. |
[14] | Z.-C. Deng, J.-N. Yu, L. Yang, An inverse problem of determining the implied volatility in option pricing, J. Math. Anal. Appl., 340 (2008), 16–31. https://doi.org/10.1016/j.jmaa.2007.07.075 doi: 10.1016/j.jmaa.2007.07.075 |
[15] | B. Nabubie, S. Wang, Numerical techniques for determining implied volatility in option pricing, J. Comp. Appl. Math., 422 (2023), 114913. https://doi.org/10.1016/j.cam.2022.114913 doi: 10.1016/j.cam.2022.114913 |
[16] | S. Li, A new formula for computing implied volatility, Appl. Math. Comp., 170 (2005), 611–625. https://doi.org/10.1016/j.amc.2004.12.034 doi: 10.1016/j.amc.2004.12.034 |
[17] | W. G. Hallerbach, An improved estimator for Black-Scholes-Merton implied volatility, ERIM Report Series, 54 (2004), 17. https://doi.org/10.2139/ssrn.567721 doi: 10.2139/ssrn.567721 |
[18] | D. Stefanica, R. Radoicic, An explicit implied volatility formula, Int. J. Theor. Appl. Finance, 20 (2017), 1750048. https://doi.org/10.2139/ssrn.2908494 doi: 10.2139/ssrn.2908494 |
[19] | R. Yang, S. Du, J. Huang, Y. Zhang, A stock volatility prediction using hybrid machine learning models, International Conference on Cyber Security, Artificial Intelligence, and Digital Economy (CSAIDE 2022), 12330 (2022), 449–454. https://doi.org/10.1117/12.2647212 doi: 10.1117/12.2647212 |
[20] | P. Sadorsky, Machine learning methods for volatility forecasting in financial markets, J. Risk Financial Manag., 15 (2022), 1–18. |
[21] | K. S. Moon, H. Kim, Performance of deep learning in prediction of stock market volatility, Econ. Comput. Econ. Cybern. Stud. Res., 53 (2019), 77–92. https://doi.org/10.24818/18423264/53.2.19.05 doi: 10.24818/18423264/53.2.19.05 |
[22] | G. Di-Giorgi, R. Salas, R. Avaria, C. Ubal, H. Rosas, R. Torres, Volatility forecasting using deep recurrent neural networks as GARCH models, Computational Statistics, (2023), 1–27. https://doi.org/10.1007/s00180-023-01349-1 |
[23] | L. Alfonso, R. Mansilla, C. Terrero-Escalante, On the scaling of the distribution of daily price fluctuations in Mexican financial market index, Phys. A, 391 (2011), 2990–2996. https://doi.org/10.1016/j.physa.2012.01.023 doi: 10.1016/j.physa.2012.01.023 |
[24] | F. De Domenico, G. Livan, G. Montagna, O. Nicrosini, Modeling and simulation of financial returns under non-Gaussian distributions, Phys. A, 622 (2023), 128886. https://doi.org/10.1016/j.physa.2023.128886 doi: 10.1016/j.physa.2023.128886 |
[25] | B. B. Mandelbrot, The variation of certain speculative prices, Springer New York, 1997. https://doi.org/10.1007/978-1-4757-2763-0_14 |
[26] | T. A. Waigh, N. Korabel, Heterogeneous anomalous transport in cellular and molecular biology, Rep. Prog. Phys., 86 (2023), 126601. https://doi.org/10.1088/1361-6633/ad058f doi: 10.1088/1361-6633/ad058f |
[27] | L. Goiriz, R. Ruiz, Ò. Garibo-i-Orts, J. A. Conejero, G. Rodrigo, A variant-dependent molecular clock with anomalous diffusion models SARSCoV- 2 evolution in humans, Proc. Natl. Acad. Sci. U.S.A., 120 (2023), e2303578120. https://doi.org/10.1073/pnas.2303578120 doi: 10.1073/pnas.2303578120 |
[28] | S. Manrubia, J. A. Cuesta, Physics of diffusion in viral genome evolution, Proc. Natl. Acad. Sci. U.S.A., 120 (2023), e2310999120. https://doi.org/10.1073/pnas.2310999120 doi: 10.1073/pnas.2310999120 |
[29] | K. M. Graczyk, D. Strzelczyk, M. Matyka, Deep learning for diffusion in porous media, Sci. Rep., 13 (2023), 9769. https://doi.org/10.1038/s41598-023-36466-w doi: 10.1038/s41598-023-36466-w |
[30] | G. Muñoz-Gil, G. Volpe, M. A. Garcia-March, E. Aghion, A. Argun, C. B. Hong, et al., Objective comparison of methods to decode anomalous diffusion, Nat. Commun., 12 (2021), 6253. https://doi.org/10.1038/s41467-021-26320-w doi: 10.1038/s41467-021-26320-w |
[31] | G. Muñoz-Gil, H. Bachimanchi, J. Pineda, B. Midtvedt, M. Lewenstein, R. Metzler, et al., Quantitative evaluation of methods to analyze motion changes in single-particle experiments, arXiv preprint arXiv: 2311.18100, (2023). |
[32] | K. Ushida, A. Masuda, Chapter 11. General importance of anomalous diffusion in biological inhomogeneous systems, Handai Nanophotonics, 3 (2007), 175–188. https://doi.org/10.1016/S1574-0641(07)80016-7 doi: 10.1016/S1574-0641(07)80016-7 |
[33] | J. Klafter, I. M. Sokolov, First Steps in Random Walks: From Tools to Applications, Oxford University Press, 2011. https://doi.org/10.1093/acprof: oso/9780199234868.001.0001 |
[34] | Y. Luo, C. Zeng, Negative friction and mobilities induced by friction fluctuation, Chaos: An Interdisciplinary Journal of Nonlinear Science, 30 (2020). https://doi.org/10.1063/1.5144556 |
[35] | T. Huang, Y. Luo, C. Zeng, B.-Q. Ai, Anomalous transport tuned through stochastic resetting in the rugged energy landscape of a chaotic system with roughness, Phys. Rev. E, 106 (2022), 034208. https://doi.org/10.1103/PhysRevE.106.034208 doi: 10.1103/PhysRevE.106.034208 |
[36] | Z. Ma, C. Zeng, W.-M. Liu, Relaxation time as early warning signal of avalanches in selforganizing systems, Phys. Rev. Res., 6 (2024), 013013. https://doi.org/10.1103/PhysRevResearch.6.013013 doi: 10.1103/PhysRevResearch.6.013013 |
[37] | A. Argun, A. Callegari, G. Volpe, Simulation of Complex Systems, 2021. https://doi.org/10.1088/978-0-7503-3843-1 |
[38] | J. E. Trinidad-Segovia, M. A. Sánchez-Granero, J. García-Pérez, Some comments on Hurst exponent and the long memory processes on capital markets, Physica A, 387 (2008), 5543–5551. https://doi.org/10.1016/j.physa.2008.05.053 doi: 10.1016/j.physa.2008.05.053 |
[39] | M. Vogl, Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality, and financial crises predictability by application of a nonlinear dynamics analysis framework, Chaos, Solitons & Fractals, 166 (2023), 112884. https://doi.org/10.1016/j.chaos.2022.112884 doi: 10.1016/j.chaos.2022.112884 |
[40] | R. Asif, M. Frömmel, Testing Long memory in exchange rates and its implications for the adaptive market hypothesis, Physica A, 593 (2022), 126871. https://doi.org/10.1016/j.physa.2022.126871 doi: 10.1016/j.physa.2022.126871 |
[41] | A. F. Perold, The capital asset pricing model, J. Econ. Persp., 18 (2004), 3–24. https://doi.org/10.1257/0895330042162340 doi: 10.1257/0895330042162340 |
[42] | I. M. Sokolov, J. Klafter, A. Blumen, Fractional kinetics, Phys. Today, 55 (2002), 48–54. https://doi.org/10.1063/1.1535007 |
[43] | B. B. Mandelbrot, J. W. Van Ness, Fractional brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422–437. https://doi.org/10.1137/1010093 doi: 10.1137/1010093 |
[44] | A. Argun, G. Volpe, S. Bo, Classification, inference and segmentation of anomalous diffusion with recurrent neural networks, J. Phys. A, 54 (2021), 294003. https://doi.org/10.1088/1751-8121/ac070a doi: 10.1088/1751-8121/ac070a |
[45] | Ò. Garibo-i-Orts, A. Baeza-Bosca, M. A. Garcia-March, J. A. Conejero, Efficient recurrent neural network methods for anomalously diffusing single particle short and noisy trajectories, J. Phys. A, 54 (2021), 504002. https://doi.org/10.1088/1751-8121/ac3707 doi: 10.1088/1751-8121/ac3707 |
[46] | D. Li, Q. Yao, Z. Huang, WaveNet-based deep neural networks for the characterization of anomalous diffusion (WADNet), J. Phys. A, 54 (2021), 404003. https://doi.org/10.1088/1751-8121/ac219c doi: 10.1088/1751-8121/ac219c |
[47] | C. Manzo, Extreme learning machine for the characterization of anomalous diffusion from single trajectories (AnDi-ELM), J. Phys. A, 54 (2021), 334002. https://doi.org/10.1088/1751-8121/ac13dd doi: 10.1088/1751-8121/ac13dd |
[48] | E. A. Al-hada, X. Tang, W. Deng, Classification of stochastic processes by convolutional neural networks, J. Phys. A, 55 (2022), 274006. https://doi.org/10.1088/1751-8121/ac73c5 doi: 10.1088/1751-8121/ac73c5 |
[49] | N. Firbas, Ò. Garibo-i-Orts, M. Á. Garcia-March, J. A. Conejero, Characterization of anomalous diffusion through convolutional transformers, J. Phys. A, 56 (2023), 014001. https://doi.org/10.1088/1751-8121/acafb3 doi: 10.1088/1751-8121/acafb3 |
[50] | Ò. Garibo-i-Orts, N. Firbas, L. Sebastiá, J. A. Conejero, Gramian angular fields for leveraging pretrained computer vision models with anomalous diffusion trajectories, Phys. Rev. E, 107 (2023), 034138. https://doi.org/10.1103/PhysRevE.107.034138 doi: 10.1103/PhysRevE.107.034138 |
[51] | H. Verdier, M. Duval, F. Laurent, A. Cassé, C. L. Vestergaard, J. B. Masson, Learning physical properties of anomalous random walks using graph neural networks, J. Phys. A, 54 (2021), 234001. https://doi.org/10.1088/1751-8121/abfa45 doi: 10.1088/1751-8121/abfa45 |
[52] | M. A. Lozano, Ò. G. I. Orts, E. Piñol, M. Rebollo, K. Polotskaya, M. A. Garcia-March, et al., Open data science to fight COVID-19: winning the 500k XPRIZE Pandemic Response Challenge, Joint European Conference on Machine Learning and Knowledge Discovery in Databases, (2021), 384–399. https://doi.org/10.1007/978-3-030-86514-6_24 |
[53] | AnDiChallenge/ANDI datasets: Challenge 2020 release, 2021. https://doi.org/10.5281/zenodo.4775311 |
[54] | B. Y. Chang, P. Christoffersen, K. Jacobs, Market Skewness Risk and the Cross-Section of Stock Returns, J. Financ. Econ., 107 (2009), 46–68. https://doi.org/10.2139/ssrn.1480332 doi: 10.2139/ssrn.1480332 |
[55] | P. Massignan, C. Manzo, J. A. Torreno-Pina, M. F. García-Parajo, M. Lewenstein, G. J. Lapeyre Jr, Nonergodic subdiffusion from Brownian motion in an inhomogeneous medium, Phy. Rev. Lett., 112 (2014), 150603. https://doi.org/10.1103/PhysRevLett.112.150603 doi: 10.1103/PhysRevLett.112.150603 |
[56] | H. Scher, E. W. Montroll, Anomalous transit-time dispersion in amorphous solids, Phys. Rev. B, 12 (1975), 2455. https://doi.org/10.1103/PhysRevB.12.2455 doi: 10.1103/PhysRevB.12.2455 |
[57] | J. Klafter, G. Zumofen, Lévy statistics in a Hamiltonian system, Phys. Rev. E, 49 (1994), 4873. https://doi.org/10.1103/PhysRevE.49.4873 doi: 10.1103/PhysRevE.49.4873 |
[58] | Anomalous diffusion stocks article: release article, 2024. https://doi.org/10.5281/zenodo.14208749 |