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Abstract: Understanding natural processes often involves intricate nonlinear dynamics. Nonlinear
evolution equations are crucial for examining the behavior and possible solutions of specific nonlinear
systems. The Vakhnenko equation is a typical example, considering that this equation demonstrates
kink and lump soliton solutions. These solitons are possible waves with several intriguing features and
have been characterized in other naturalistic nonlinear systems. The solution of nonlinear equations
demands advanced analytical techniques. This work ultimately sought to find and study the kink
and lump soliton solutions using the Riccati–Bernoulli sub-ode method for the Vakhnenko equation
(VE). The results obtained in this work are lump and kink soliton solutions presented in hyperbolic
trigonometric and rational functions. This work reveals the effectiveness and future of our method for
solving complex solitary wave problems.
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1. Introduction

Scientific innovations have enlightened the globe on different aspects of life, primarily on
differential equations. Nonlinear partial differential equations, in particular have become handy across
despaired dimensions. The nonlinear models have been used in plasma physics, engineering, fluid
mechanics, nonlinear optics, biology, economics, chemistry, and many more fields. The necessity
of understanding and using nonlinear evolution equations comes from their ability to model complex
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real-world phenomena. They attract physicists as much as they do mathematicians. Analyzing the
exact solitary wave solutions for nonlinear evolution equations is an essential topic in the biographies
of mathematical physics. Currently, many physical issues have been solved more confidently with
the help of computer algebra. In recent years, creative methodologies have been developed to
find multiple exact solutions to nonlinear differential equations. Among others, the homogeneous
balance method [1, 2], the tanh function method [3–5], the extended tanh function method [6], the
hyperbolic function method [7, 8], the rational expansion method [9], the sine-cosine method [10],
the Jacobi elliptic function method [11–13], the exponential function method [14, 15], the inverse
scattering method [16], the Fan sub-equation technique [17–19], the F-expansion method [20, 21],
and the auxiliary equation method [22–25] provide additional power for the scientific arsenal. These
methodologies are so effective and versatile that they can solve a wide range of nonlinear issues with
great accuracy [26–28].

Localized transient waves that are non-dispersive and nonsingular, namely solitary waves (solitons),
are solutions to nonlinear field theories [29–31]. Their importance is crucial throughout a broad
spectrum of physics and technology, which is being noticed by many authors of the scientific literature
[32–34]. According to a relativistic thermodynamic approach, exotic models offering more generality
are being proposed instead of the traditional equilibrium models [35–37]. One analysis [38] presents
an arbitrary N-fold Darboux transformation for the (HBK) equation obtaining the explicit (2N-1)-
solitons solution using Vandermonde-like determinant. Another investigation the dynamics of waves
for the generalized Gerdjikov-Ivanov equation, build some phase solutions and the graphic pattern of
waves in terms of Whitham modulation theory and finite-gap integration [39]. The wave phenomenon
propagation concepts used in the model’s description through media with complex inner kinetics are
based on the relaxational nature of the occurrence. Disturbances undermining thermodynamic balance
maintain slow and fast mechanical waves and the processes striving to restore equilibrium. It means
that the Vakhnenko equation [40, 41] becomes the known nonlinear equation encompassing soliton
solutions, describing the evolution of high-frequency waves in a relaxing medium; this specific form is
rather typical of this equation.

∂

∂x

(
∂

∂t
+ f

∂

∂x

)
f + f = 0. (1.1)

This equation, having ( f ) as a dimensionless pressure, (x) as a space variable, and (t) as a temporal
one, represents a very complex system of dynamics that may turn into solitary behavior. Nevertheless,
dealing with the Vakhnenko equation, a new dimension, is very tough because of its one-way nature.
The study has been extended widely to unravel the mysteries behind it. For instance, it has been
reported that various soliton solutions underlie wave propagations of varying features in the framework.
An example is the demonstration of soliton solutions in the Vakhnenko equation, and their coverage
in [42]. Additionally, further studies have revealed many more than just the solitons that resemble
loops and humps, but some of them have turned out to be cusp-like structures [43]. Moreover, the
research has shown the existence of N-soliton solutions that are applied to Eq (1.1), which increases
the knowledge about the dynamics that the framework already has [44]. Furthermore, the latest work
has gone into solitary wave solutions, which are diverse, and solitary wave solutions in the environs of
the Vakhnenko equation [45, 46], which can help unveil more about the nonlinear effects encapsulated
by this equation. In trying to comprehend and utilize these solutions, we use a method belonging to the
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Riccati-Bernoulli sub-ode together with Bäcklund transformation. Such a hybrid approach opens a new
channel for investigating the enigmatic driving forces behind symbols in the Vakhnenko equation, a
gateway to nonlinear dynamics study and other fields. Following [42], we introduced new independent
variables (X) and (T ) that we have in the study. This method introduced the promise of new insights
into the system dynamics code

x = T + F (X,T ) + xo, t = X.

f (x, t) =
∂F
∂X

(X,T ) .
(1.2)

Drawing upon the foundational equation (1.2), we have

∂

∂X
=
∂

∂t
+ f

∂

∂x
,

∂

∂T
=

(
1 +

∂F
∂T

)
∂

∂x
. (1.3)

Hence, Eq (1.1) can be reformulated as:

∂

∂T

(
∂2F
∂X2

)
+

(
∂F
∂X

) (
∂F
∂T

)
+

(
∂F
∂X

)
= 0. (1.4)

The proposed methodology [47–49] stands out for its superiority in solving uniquely complex
algebraic problems, and its versatility spans the expanses of different scientific fields like physics, fluid
dynamics, biology, chemistry, and optical fiber communications. Implementing the Riccati–Bernoulli
sub-ode technique and the Bäcklund transformation method facilitates converting partial differential
equations into coupled systems of algebraic types. This change gives researchers a chance to discover
the exact things related to the involved dynamical system and helps them improve their comprehension
of these processes [50–52]. This strategy is crucial for settling the finite number of numerical solutions,
rendering all the solutions tolerated for the considered equations valid. Another added advantage of
this technique is its built-in resilience in transcending the waves of single-wave solutions, making it
one of the most influential and anticipatory techniques compared to the existing methods [53–55].

2. Algorithm

Suppose we have a non-linear partial differential equation in two independent variable (x) and (t),
given by

G1 (g, gx, gt, gxx, gtt, gxt, . . .) = 0, (2.1)

where g = g(x, t) is an unknown function and (G1) is a polynomial in g = g(x, t) and its various
partial derivatives and nonlinear terms involved. Here is the scientific method outline for solving such
equations.

Let us denote the independent variables (x) and (t) as a single variable (Θ) by defining,

G(x, t) = g(Θ), Θ = k1x1 + k2x2 + k3t . . . + Θo, (2.2)

where k1, k2, k3, . . .Θo are constants.
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This transformation allows us to convert the given equation (2.1) into an ordinary differential
equation represented as:

G2
(
g, g′(Θ), g′′(Θ), gg′(Θ), . . .

)
= 0. (2.3)

Assume that Eq (2.3) has a solution in the form of a finite series:

g(Θ) =

m∑
i=−m

ciφ(Θ)i. (2.4)

Under the constraints where, cm , 0 and c−m , 0 simultaneously, we consider the presumptive
solution for g(Θ). Additionally, we apply the Bäcklund transformation method to obtain the solution
for φ(Θ).

φ(Θ) =
−µb + aϕ(Θ)

a + bϕ(Θ)
. (2.5)

With the constants (µ) , (a) , and (b) , assuming that b , 0, and introducing the function ϕ(Θ),
defined as:

dϕ
dΘ

= µ + ϕ(Θ)2. (2.6)

Reference [56] presents the post-solution analysis of Eq (2.6), detailing the conditions that led to
various observed scenarios. The parameter (µ) is subsequently leveraged to derive further analysis and
ascertain the solution ϕ(Θ).

(i) If µ < 0, then ϕ(Θ) = −
√
−µ tanh(

√
−µΘ), or ϕ(Θ) = −

√
−µ coth(

√
−µΘ). (2.7)

(ii) If µ > 0, then ϕ(Θ) =
√
µ tan(

√
µΘ), or ϕ(Θ) = −

√
µ cot(

√
µΘ). (2.8)

(iii) If µ = 0, then ϕ(Θ) =
−1
Θ
. (2.9)

Nonlinear and highest-order derivative components are added in order to achieve a more accurate
and finer equilibrium state, which is derived from a homogeneous balance and linear perturbation
analysis. The following formula gives us a relationship between the degree of the nonlinear term
and the highest-order derivative to determine the integer (m) [57]. This integer (m) is instrumental in
determining the assumed series solution for the series solution assumed in Eq (2.4).

D
[

dzg
dΘz

]
= m + z, D

[
g j dzg

dΘz

]u

= m j + u(z + m). (2.10)

The series solution from (2.5) is substituted and solved computational tools. Finally, the coefficients
obtained are substituted back in to Eq (2.4) to determine g(Θ).

3. Execution of the problem

We are going to make use of the described procedure to get the solitary wave precisely F (X,T )
here in this section. This breakthrough was actually made based on a highly sophisticated wave
transformation process.

F(X,T ) = f (ψ), where ψ = kX − ωT, (3.1)
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where (k) and (ω) are constants. By employing the aforementioned complex wave transformation,
Eq (1.4) undergoes a transformation, resulting in the following nonlinear ordinary differential equation
(ODE):

− (ωk) F′′′ − ω
(
F′

)2
+ F′ = 0. (3.2)

Using Eq (2.4), this involves adding up the following expressions: Eqs (2.4) and (2.5). Perform the
substitution into Eq (3.2), and after that, you obtain a system of algebraic equations that contain the
coefficients of φi(ψ), and their value must equal zero. By solving this system of algebraic equations
using Maple, the following results are obtained:

Case:1

c0 = c0, c1 = −
c−1

µ
, c−1 = c−1, ω = −3/8 c−1

−1, k = 1/6
c−1

µ
, µ = µ, a = a, b = b. (3.3)

Case:2

c0 = c0, c1 = c1, c−1 = 0, ω = ω, k = −1/6 c1, µ = 3/2
1
ω c1

, a = a, b = b. (3.4)

Solution Set. 1: The case 1 based on Eq (1.4) is therefore explained. Consequently, solitary wave
solutions can be obtained with the given condition µ < 0.

F1(x, t) = c−1

(
a − b

√
−µ tanh

(
√
−µ

(
1/6

c−1X
µ

+ 3/8
T

c−1

))) (
−µ b − a

√
−µ tanh

(
√
−µ

(
1/6

c−1X
µ

+ 3/8
T

c−1

)))−1

+

c0 − c−1

(
−µ b − a

√
−µ tanh

(
√
−µ

(
1/6

c−1X
µ

+ 3/8
T

c−1

)))
µ−1

(
a − b

√
−µ tanh

(
√
−µ

(
1/6

c−1X
µ

+ 3/8
T

c−1

)))−1

.

(3.5)

or

F2(x, t) = c−1

(
a − b

√
−µ coth

(
√
−µ

(
1/6

c−1X
µ

+ 3/8
T

c−1

))) (
−µ b − a

√
−µ coth

(
√
−µ

(
1/6

c−1X
µ

+ 3/8
T

c−1

)))−1

+

c0 − c−1

(
−µ b − a

√
−µ coth

(
√
−µ

(
1/6

c−1X
µ

+ 3/8
T

c−1

)))
µ−1

(
a − b

√
−µ coth

(
√
−µ

(
1/6

c−1X
µ

+ 3/8
T

c−1

)))−1

.

(3.6)

Solution Set. 2: The case 1 based on Eq (1.4) is therefore explained. Consequently, solitary wave
solutions can be obtained with the given condition µ > 0.

F3(x, t) = c−1

(
a + b

√
µ tan

(
√
µ

(
1/6

c−1X
µ

+ 3/8
T

c−1

))) (
−µ b + a

√
µ tan

(
√
µ

(
1/6

c−1X
µ

+ 3/8
T

c−1

)))−1

+

c0 − c−1

(
−µ b + a

√
µ tan

(
√
µ

(
1/6

c−1X
µ

+ 3/8
T

c−1

)))
µ−1

(
a + b

√
µ tan

(
√
µ

(
1/6

c−1X
µ

+ 3/8
T

c−1

)))−1

.

(3.7)

or

F4(x, t) = c−1

(
a − b

√
µ cot

(
√
µ

(
1/6

c−1X
µ

+ 3/8
T

c−1

))) (
−µ b − a

√
µ cot

(
√
µ

(
1/6

c−1X
µ

+ 3/8
T

c−1

)))−1

+

c0 − c−1

(
−µ b − a

√
µ cot

(
√
µ

(
1/6

c−1X
µ

+ 3/8
T

c−1

)))
µ−1

(
a − b

√
µ cot

(
√
µ

(
1/6

c−1X
µ

+ 3/8
T

c−1

)))−1

.

(3.8)
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Solution Set. 3: The case 2 based on Eq (1.4) is therefore explained. Consequently, solitary wave
solutions can be obtained with the given condition µ < 0.

F5(x, t) =c0 + c1

−3/2
b
ω c1

− 1/2 a

√
−6

1
ω c1

tanh
1/2 √

−6
1
ω c1

(−1/6 c1X − ωT )
a − 1/2 b

√
−6

1
ω c1

tanh
1/2 √

−6
1
ω c1

(−1/6 c1X − ωT )
−1

.

(3.9)

or

F6(x, t) =c0 + c1

−3/2
b
ω c1

− 1/2 a

√
−6

1
ω c1

coth
1/2 √

−6
1
ω c1

(−1/6 c1X − ωT )
a − 1/2 b

√
−6

1
ω c1

coth
1/2 √

−6
1
ω c1

(−1/6 c1X − ωT )
−1

.

(3.10)

Solution Set. 4: The case 2 based on Eq (1.4) is therefore explained. Consequently, solitary wave
solutions can be obtained with the given condition µ > 0.

F7(x, t) =c0 + c1

−3/2
b
ω c1

+ 1/2 a
√

6

√
1
ω c1

tan
1/2 √6

√
1
ω c1

(−1/6 c1X − ωT )
a + 1/2 b

√
6

√
1
ω c1

tan
1/2 √6

√
1
ω c1

(−1/6 c1X − ωT )
−1

.

(3.11)

or

F8(x, t) =c0 + c1

−3/2
b
ω c1

− 1/2 a
√

6

√
1
ω c1

cot
1/2 √6

√
1
ω c1

(−1/6 c1X − ωT )
a − 1/2 b

√
6

√
1
ω c1

cot
1/2 √6

√
1
ω c1

(−1/6 c1X − ωT )
−1

.

(3.12)

Solution Set. 5: The case 2 based on Eq (1.4) is therefore explained. Consequently, solitary wave
solutions can be obtained with the given condition µ = 0.

F9(x, t) = c0 + c1

(
−3/2

b
ω c1

−
a

−1/6 c1X − ωT

) (
a −

b
−1/6 c1X − ωT

)−1

. (3.13)

4. Results and discussion

Through this exploration, a sequence of events is summarized into an outline for dissecting the
theory of how waves propagate in mediums with intricate internal dynamics, which are inspired
by the relaxation character driven by the phenomenon. The Bäcklund transformation utilizes the
differential equation to remodel these systems into ordinary differential equations that can be handled
by transformation friendly techniques. This enables the discovery of the solutions to equations. Our
unique contribution is the Riccati–Bernoulli sub-ode method, allows us to determine the remaining
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coefficients of the series solution and thus get a clearer image of the underpinning dynamics. Moreover,
the solving of the equation system and its series solution is detailed with both solutions split into
Riccati–Bernoulli sub-ode algorithm. This rigorous analysis yields three distinct families of solutions:
hyperbolic, rational, and trigonometric. Moreover, as is the case with different analytical solutions,
each solution is individual, despite the governing mathematical structures being different owing to the
variational equations.

The particular framework is adaptive to such patterns as kink and lump (which tend to be a
proper basis for adaptations at different physical levels). Kink solitons act as a key, which helps
in the theoretical realization of topological line solitons and dislocations in particle physics and
solids, respectively. Furthermore, lump solitons become important in nonlinear optics as well as
oceanography, where they bring about the creation of rogue waves and short pulses of light upon
interaction with an optical beam. MATLAB gave us the perfect settings, and we adjusted specific
parameters to perfectly match the analytical solutions with the detailing of each individual solution as
a result. As a result of this, the graphs serve not only as the means to the liquid but also facilitate deeper
comprehension of the properties that could be used to calculate the dynamics of the liquids precisely.

Figure 1: To start out with, the spatial domain’s nature stands out as that of a localized perturbation,
with its distinct shape and amplitude. As it propagates along the medium, the profile of its spatial form
stays undistorted, which proves its resistance to breaking and shaping powers. But even further, the
soliton finds the medium that slowly, calmingly, brings everything in to order. This can be demonstrated
by observing the long-term degradation of the soliton amplitude. The medium undergoes the relaxation
stage when its amplitude is absorbing the energy from the soliton, it diminishes over the length.

Figure 1. Evolution of the soliton solution of function F1, showcasing its dynamic behavior
over time.

Figure 2: Illustrates the periodic lump solutions, i.e., one specificity of the wave soliton structures
that has periodic behavior. It leads to solutions that appear in the form of amplitude and shape periodic
variations of the wave packet and that, because of their periodicity, are quite well reflected in the form
of a repetition of humps or peaks in the picture of waves. Lump solutions of a periodic nature arise
naturally from the interaction of nonlinear structure, modulation effects, dispersion, and other spectral
factors inherent to wave dynamics. Distinct from conventional linear waves that travel uniformly, the
periodicity of these lump solutions is now intrinsically entailed within their behavior, reflecting the
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periodicity in the physics that creates them. Also, as we move to greater time intervals, the wave
amplitude increases, showing that these are solutions that are dispersive in nature and that they evolve
dynamically over time.

Figure 2. Evolution of the solution of function F2, showcasing its dynamic behavior over
time.

Figure 3: This plot shows the way the periodic hyperbolic soliton solution is spatially and
temporally propagating in the medium, that is, the vertical motion of an image with a certain amplitude
having an oscillating behavior in space. Nonetheless, the original form of the periodic hyperbolic
soliton actually manifests as a standing wave with a uniform amplitude; this should be viewed as a
stable, non-uniform wave motion, so that the periodic wave packet oscillates as a soliton. While the
soliton advances to the right in the spatial dimension, the bottoms of the light suction trough grow
higher and higher, as the solid tells us that the intensity of the wave grows stronger as you go down in
the wave.

Figure 3. Evolution of the solution of function F3, showcasing its dynamic behavior over
time.

Figure 4: In this depiction, the plot represents the spacial progress of the bright soliton solution.
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This solution characterizes its amplitude as a constant feature that is never changed. Lack of movable
amplitude for up-bright solitons is an inherent property that expresses their stability against dissipative
effects. Even when the process of relaxation appears in the medium, the original wavefront kink is kept
the same in the amplitude along its path.

Figure 4. Evolution of the soliton solution of function F6, showcasing its dynamic behavior
over time.

Figure 5: In this representation, the plot is to solely portray the characteristic of a dark soliton
solution flow within the medium through its unique amplitude, which continues to be unchanged
throughout the evolution of the solution. First, the dark kink arises in the amplitude profile as a local
counterpart to the wave trough, which is an illustration of the violent disturbance within the medium.
The amplitude of the kink is astonishingly stable as it spreads in space independent of the amount of
time since the space–time terms do not interfere with the propagation of the kink.

Figure 5. Evolution of the dark soliton solution of function F7, showcasing its dynamic
behavior over time.

As the time parameter increases, the amplitude of the wave packet also increases in a periodic lump
plot depicted in Figure 6. This is attributed to wave dispersion, where different frequencies move
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at different velocities, thereby causing the wave to spread out and the energy to concentrate more in
some areas, leading to higher peaks. However, the lump solution remains stable but dynamic, showing
that there is consistency in the nature of waves despite them being dynamic too. Understanding such
phenomena is important mostly in fields like optics and acoustics, which deal with significant issues
of wave propagation as well as dispersion. This graphic representation offers important information
about the intricate processes involved in development over a period for waves.

Figure 6. Evolution of the periodic lump solution of function F8, showcasing its dynamic
behavior over time.

5. Conclusions

The Ricatti–Bernoulli sub-ode method has been successfully implemented to develop a wide range
of solitary wave solutions of the Vakhnenko system, an essential nonlinear description for the dynamics
of high-frequency waves in relaxation media. They have two different components, the lump and
the kink, which show the location of wave movement and wave propagation within the fluid. The
implemented tools are suitable in most cases for bringing to the fore the different physical properties
of waves dispersed in various wave systems. The presented method is reliable and easy to use for
gaining a diversity of options for problem solving and therefore adds to the arsenal of current analytical
techniques in nonlinear waves. On the other hand, it is able to extend beyond the Vakhnenko equation
to embrace a wider variety of nonlinear evolution equations, like the ones belonging to this class. By
generating solitary wave solutions, the work not only adds to the theoretical knowledge about wave
propagation in non-dispersive mediums but also empowers the experiments and interpretations of the
waves and the modeling of complex wave phenomena. Through this process, different types of waves
expose the hidden mechanisms that govern the waves’ propagation processes, thus providing a deep
understanding of the underlying physical aspects.
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