In fuzzy mapping theories, we examine fuzzy closedness and fuzzy continuity of a mapping $ \phi $, characterized respectively by $ \overline{\phi(M)} \subseteq \phi(\overline{M}) $ and $ \phi(\overline{M}) \subseteq \overline{\phi(M)} $, for every fuzzy set $ M $ in $ V $. Here, $ (V, \tau) $ represents a fuzzy topological space (FTs), where $ V = \{v\} $ denotes a set of points. This reveals a fundamental symmetry between the two mappings in connection with the closure operator. On the other hand, the fuzzy openness of a mapping $ \phi $ is characterized by $ \phi(M^\circ) < (\phi(M))^\circ $ for every fuzzy set $ M $ in $ V $. Considering the above statements, it is logical to explore how fuzzy continuity relates to the interior operator. Building on this, we introduce the notion of the invertedly fuzzy open mapping, defined as $ (\phi(M))^\circ < \phi(M^\circ) $ for any fuzzy set $ M $ in $ V $, and discuss its relationship with fuzzy continuity. In our study, we define and analyze invertedly fuzzy open and invertedly fuzzy closed mappings, along with their respective properties. We also delve into how these mappings connect with fuzzy continuous mappings. Furthermore, we examine a characterization of fuzzy homeomorphism for bijective mappings concerning the interior operator.
Citation: Sandeep Kaur, Alkan Özkan, Faizah D. Alanazi. A new perspective on fuzzy mapping theory with invertedly open and closed mappings[J]. AIMS Mathematics, 2025, 10(1): 921-931. doi: 10.3934/math.2025043
In fuzzy mapping theories, we examine fuzzy closedness and fuzzy continuity of a mapping $ \phi $, characterized respectively by $ \overline{\phi(M)} \subseteq \phi(\overline{M}) $ and $ \phi(\overline{M}) \subseteq \overline{\phi(M)} $, for every fuzzy set $ M $ in $ V $. Here, $ (V, \tau) $ represents a fuzzy topological space (FTs), where $ V = \{v\} $ denotes a set of points. This reveals a fundamental symmetry between the two mappings in connection with the closure operator. On the other hand, the fuzzy openness of a mapping $ \phi $ is characterized by $ \phi(M^\circ) < (\phi(M))^\circ $ for every fuzzy set $ M $ in $ V $. Considering the above statements, it is logical to explore how fuzzy continuity relates to the interior operator. Building on this, we introduce the notion of the invertedly fuzzy open mapping, defined as $ (\phi(M))^\circ < \phi(M^\circ) $ for any fuzzy set $ M $ in $ V $, and discuss its relationship with fuzzy continuity. In our study, we define and analyze invertedly fuzzy open and invertedly fuzzy closed mappings, along with their respective properties. We also delve into how these mappings connect with fuzzy continuous mappings. Furthermore, we examine a characterization of fuzzy homeomorphism for bijective mappings concerning the interior operator.
[1] | A. V. Arkhangel'skii, V. I. Ponomarev, Fundamentals of general topology, problems and exercises, mathematics and its applications, Hindustan Publishing Corporation, New Delhi, India, 1984. |
[2] | Z. A. Ameen, R. A. Mohammed, T. M. Al-shami, B. A. Asaad, Novel fuzzy topologies formed by fuzzy primal frameworks, J. Intell. Fuzzy Syst., 2024, in press. http://dx.doi.org/10.3233/JIFS-238408 |
[3] | C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182–189. https://doi.org/10.1016/0022-247X(68)90057-7 |
[4] | D. N. Georgiou, A. C. Megaritis, V. I. Petropoulos, On soft topological spaces, Appl. Math. Inf. Sci., 7 (2013), 1889–1901. http://dx.doi.org/10.12785/amis/070527 |
[5] | P. Gupta, Application of fuzzy logic in daily life, Int. J. Adv. Res. Comput. Sci., 8 (2017), 1795–1800. |
[6] | G. Hayward, V. Davidson, Fuzzy logic application, Analyst, 128 (2003), 1304–1306. https://doi.org/10.1039/B312701J |
[7] | S. Heilpern, Fuzzy mappings and fixed point theorem, J. Math. Anal. Appl., 83 (1981), 566–569. https://doi.org/10.1016/0022-247X(81)90141-4 doi: 10.1016/0022-247X(81)90141-4 |
[8] | G. Higuera, A. Illanes, Induced mappings on symmetric products, Topol. Proc., 37 (2011), 367–401. https://doi.org/10.1016/j.topol.2018.04.018 doi: 10.1016/j.topol.2018.04.018 |
[9] | S. Kaur, N. Goyal, On induced map $\phi^{\#}$ in fuzzy set theory and its applications, Advances in Algebra Analysis and Topology, New York: Taylor & Francis, 2024. https://doi.org/10.1201/9781032634142 |
[10] | S. W. Liu, G. D. Zhang, Maps preserving rank 1 matrices over fields, J. Nat. Sci. Heilong Jiang Univ., 23 (2006), 138–140. |
[11] | S. R. Malghan, S. S. Benchalli, On fuzzy topological spaces, Glasnik Matematički, 16 (1981), 313–325. |
[12] | S. R. Malghan, S. S. Benchalli, Open maps, closed maps and local compactness in fuzzy topological spaces, J. Math. Anal. Appl., 99 (1984), 338–349. https://doi.org/10.1016/0022-247X(84)90222-1 doi: 10.1016/0022-247X(84)90222-1 |
[13] | N. S. Noorie, R. Bala, Some characterizations of open, closed, and continuous mappings, Int. J. Math. Math. Sci., 2008 (2008), 1–5. http://dx.doi.org/10.1155/2008/527106 doi: 10.1155/2008/527106 |
[14] | S. Saleh, R. Abu-Gdairi, T. M. Al-shami, M. S. Abdo, On categorical property of fuzzy soft topological spaces, Appl. Math. Inform. Sci., 16 (2022), 635–641. http://dx.doi.org/10.18576/amis/160417 doi: 10.18576/amis/160417 |
[15] | S. Saleh, T. M. Al-shami, A. Mhemdi, On some new types of fuzzy soft compact spaces, J. Math., 2023, 1–8. https://doi.org/10.1155/2023/5065592 |
[16] | T. M. Al-shami, S. Saleh, A. M. A. El-latif, A. Mhemdi, Novel categories of spaces in the frame of fuzzy soft topologies, AIMS Math., 9 (2024), 6305–6320. https://doi.org/10.1155/2023/5065592 doi: 10.1155/2023/5065592 |
[17] | P. M. Pao-Ming, Y. M. Liu, Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl., 76 (1980), 571–599. https://doi.org/10.1016/0022-247X(80)90048-7 doi: 10.1016/0022-247X(80)90048-7 |
[18] | P. M. Pao-Ming, Y. M. Liu, Fuzzy topology. II. Product and quotient spaces, J. Math. Anal. Appl., 77 (1980), 20–37. https://doi.org/10.1016/0022-247x(80)90258-9 doi: 10.1016/0022-247x(80)90258-9 |
[19] | C. K. Wong, Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl., 45 (1975), 316–328. https://doi.org/10.1016/0165-0114(81)90017-8 doi: 10.1016/0165-0114(81)90017-8 |
[20] | [10.1155/2014/596756] L. Yang, X. Bai, B. M. Zhang, C. Cao, Induced maps on matrices over fields, Abstr. Appl. Anal., 2014 (2014), 596756. http://dx.doi.org/10.1155/2014/596756 doi: 10.1155/2014/596756 |
[21] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X |
[22] | I. Zorlutuna, H. Çakir, On continuity of soft mappings, Appl. Math. Inf. Sci., 9 (2015), 403–409. http://dx.doi.org/10.12785/amis/090147 doi: 10.12785/amis/090147 |