As a weaker form of fuzzy soft $ r $-minimal continuity by Taha (2021), the notions of fuzzy soft almost (respectively (resp. for short) weakly) $ r $-minimal continuous mappings are introduced, and some properties are given. Also, we show that every fuzzy soft $ r $-minimal continuity is fuzzy soft almost (resp. weakly) $ r $-minimal continuity, but the converse need not be true. After that, we introduce a concept of continuity in a very general setting called fuzzy soft $ r $-minimal $ (\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}) $-continuous mappings and investigate some properties of these mappings.
Citation: I. M. Taha. Some new results on fuzzy soft $ r $-minimal spaces[J]. AIMS Mathematics, 2022, 7(7): 12458-12470. doi: 10.3934/math.2022691
As a weaker form of fuzzy soft $ r $-minimal continuity by Taha (2021), the notions of fuzzy soft almost (respectively (resp. for short) weakly) $ r $-minimal continuous mappings are introduced, and some properties are given. Also, we show that every fuzzy soft $ r $-minimal continuity is fuzzy soft almost (resp. weakly) $ r $-minimal continuity, but the converse need not be true. After that, we introduce a concept of continuity in a very general setting called fuzzy soft $ r $-minimal $ (\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}) $-continuous mappings and investigate some properties of these mappings.
[1] | B. Ahmad, A. Kharal, On fuzzy soft sets, Adv. Fuzzy Syst., 2009 (2009), 1–6. https://doi.org/10.1155/2009/586507 |
[2] | H. Aktaş, N. Çağman, Soft sets and soft groups, Inform. Sci., 177 (2007), 2726–2735. https://doi.org/10.1016/j.ins.2006.12.008 |
[3] | J. C. R. Alcantud, T. M. Al-shami, A. A. Azzam, Caliber and chain conditions in soft topologies, Mathematics, 9 (2021), 1–15. https://doi.org/10.3390/math9192349 doi: 10.3390/math9192349 |
[4] | T. M. Al-shami, Soft somewhere dense sets on soft topological spaces, Commun. Korean Math. Soc., 33 (2018), 1341–1356. https://doi.org/10.4134/CKMS.c170378 doi: 10.4134/CKMS.c170378 |
[5] | T. M. Al-shami, New soft structure: Infra soft topological spaces, Math. Probl. Eng., 2021 (2021), 1–12. https://doi.org/10.1155/2021/3361604 doi: 10.1155/2021/3361604 |
[6] | T. M. Al-shami, I. Alshammari, B. A. Asaad, Soft maps via soft somewhere dense sets, Filomat, 34 (2020), 3429–3440. https://doi.org/10.2298/FIL2010429A doi: 10.2298/FIL2010429A |
[7] | Z. A. Ameen, T. M. Al-shami, A. A. Azzam, A. Mhemdi, A novel fuzzy structure: Infra-fuzzy topological spaces, J. Funct. Space., 2022 (2022), 1–11. https://doi.org/10.1155/2022/9778069 doi: 10.1155/2022/9778069 |
[8] | A. Aygünoğlu, V. Çetkin, H. Aygün, An introduction to fuzzy soft topological spaces, Hacet. J. Math. Stat., 43 (2014), 193–208. |
[9] | N. Çağman, S. Enginoğlu, F. Çitak, Fuzzy soft set theory and its applications, Iran. J. Fuzzy Syst., 8 (2011), 137–147. https://doi.org/10.22111/ijfs.2011.292 doi: 10.22111/ijfs.2011.292 |
[10] | V. Çetkin, H. Aygün, Fuzzy soft semiregularization spaces, Ann. Fuzzy Math. Inform., 7 (2014), 687–697. |
[11] | D. N. Georgiou, A. C. Megaritis, V. I. Petropoulos, On soft topological spaces, Appl. Math. Inform. Sci., 7 (2013), 1889–1901. https://doi.org/10.12785/amis/070527 |
[12] | S. Hussain, B. Ahmad, Soft separation axioms in soft topological spaces, Hacet. J. Math. Stat., 44 (2015), 559–568. https://doi.org/10.15672/HJMS.2015449426 doi: 10.15672/HJMS.2015449426 |
[13] | Y. B. Jun, Soft BCK/BCI algebras, Comput. Math. Appl., 56 (2008), 1408–1413. https://doi.org/10.1016/j.camwa.2008.02.035 |
[14] | A. Kharal, B. Ahmad, Mappings on fuzzy soft classes, Adv. Fuzzy Syst., 2009 (2009), 1–6. https://doi.org/10.1155/2009/407890 doi: 10.1155/2009/407890 |
[15] | J. I. Kim, W. K. Min, Y. H. Yoo, Fuzzy $r$-compactness on fuzzy $r$-minimal spaces, Int. J. Fuzzy Logic Intell. Syst., 9 (2009), 281–284. https://doi.org/10.5391/IJFIS.2009.9.4.281 doi: 10.5391/IJFIS.2009.9.4.281 |
[16] | G. J. Klir, B. Yuan, Fuzzy sets and fuzzy logic: Theory and applications, New Jersey: Prentice-Hall, 1995. |
[17] | P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, J. Fuzzy Math., 9 (2001), 589–602. |
[18] | S. Mishar, R. Srivastava, Hausdorff fuzzy soft topological spaces, Ann. Fuzzy Math. Inform., 9 (2015), 247–260. |
[19] | D. Molodtsov, Soft set theory-First results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5 |
[20] | T. Rasham, M. S. Shabbir, P. Agarwal, S. Momani, On a pair of fuzzy dominated mappings on closed ball in the multiplicative metric space with applications, Fuzzy Sets Syst., 2021, 1–16. https://doi.org/10.1016/j.fss.2021.09.002 |
[21] | A. P. Šostak, On a fuzzy topological structure, In: Proceedings of the 13th winter school on abstract analysis, Section of topology, Palermo: Circolo Matematico di Palermo, 1985, 89–103. |
[22] | I. M. Taha, On fuzzy upper and lower $\alpha$-$\ell$-continuity and their decomposition, J. Math. Comput. Sci., 11 (2021), 427–441. https://doi.org/10.28919/jmcs/5107 doi: 10.28919/jmcs/5107 |
[23] | I. M. Taha, Compactness on fuzzy soft $r$-minimal spaces, Int. J. Fuzzy Logic Intell. Syst., 21 (2021), 251–258. https://doi.org/10.5391/ijfis.2021.21.3.251 doi: 10.5391/ijfis.2021.21.3.251 |
[24] | I. M. Taha, On $r$-generalized fuzzy $\ell$-closed sets: Properties and applications, J. Math., 2021 (2021), 1–8. https://doi.org/10.1155/2021/4483481 doi: 10.1155/2021/4483481 |
[25] | I. M. Taha, $r$-fuzzy $\delta$-$\ell$-open sets and fuzzy upper (lower) $\delta$-$\ell$-continuity via fuzzy idealization, J. Math. Comput. Sci., 25 (2022), 1–9. https://doi.org/10.22436/jmcs.025.01.01 doi: 10.22436/jmcs.025.01.01 |
[26] | I. M. Taha, On upper and lower generalized semi-continuous fuzzy multifunctions, J. Math. Comput. Sci., 25 (2022), 251–258. https://doi.org/10.22436/jmcs.025.03.04 doi: 10.22436/jmcs.025.03.04 |
[27] | B. P. Varol, H. Aygün, Fuzzy soft topology, Hacet. J. Math. Stat., 41 (2012), 407–419. |
[28] | B. P. Varol, A. Aygünoğlu, H. Aygün, Neighborhood structures of fuzzy soft topological spaces, J. Int. Fuzzy Syst., 27 (2014), 2127–2135. https://doi.org/10.3233/IFS-141177 doi: 10.3233/IFS-141177 |
[29] | Y. H. Yoo, W. K. Min, J. I. L. Kim, Fuzzy $r$-minimal structures and fuzzy $r$-Minimal spaces, Far East J. Math. Sci., 33 (2009), 193–205. |
[30] | L. A. Zadeh, Fuzzy Sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X |