Research article

Some new results on fuzzy soft $ r $-minimal spaces

  • Received: 06 January 2022 Revised: 12 March 2022 Accepted: 21 March 2022 Published: 26 April 2022
  • MSC : 06D72, 54A40, 54C05, 54D30

  • As a weaker form of fuzzy soft $ r $-minimal continuity by Taha (2021), the notions of fuzzy soft almost (respectively (resp. for short) weakly) $ r $-minimal continuous mappings are introduced, and some properties are given. Also, we show that every fuzzy soft $ r $-minimal continuity is fuzzy soft almost (resp. weakly) $ r $-minimal continuity, but the converse need not be true. After that, we introduce a concept of continuity in a very general setting called fuzzy soft $ r $-minimal $ (\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}) $-continuous mappings and investigate some properties of these mappings.

    Citation: I. M. Taha. Some new results on fuzzy soft $ r $-minimal spaces[J]. AIMS Mathematics, 2022, 7(7): 12458-12470. doi: 10.3934/math.2022691

    Related Papers:

  • As a weaker form of fuzzy soft $ r $-minimal continuity by Taha (2021), the notions of fuzzy soft almost (respectively (resp. for short) weakly) $ r $-minimal continuous mappings are introduced, and some properties are given. Also, we show that every fuzzy soft $ r $-minimal continuity is fuzzy soft almost (resp. weakly) $ r $-minimal continuity, but the converse need not be true. After that, we introduce a concept of continuity in a very general setting called fuzzy soft $ r $-minimal $ (\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}) $-continuous mappings and investigate some properties of these mappings.



    加载中


    [1] B. Ahmad, A. Kharal, On fuzzy soft sets, Adv. Fuzzy Syst., 2009 (2009), 1–6. https://doi.org/10.1155/2009/586507
    [2] H. Aktaş, N. Çağman, Soft sets and soft groups, Inform. Sci., 177 (2007), 2726–2735. https://doi.org/10.1016/j.ins.2006.12.008
    [3] J. C. R. Alcantud, T. M. Al-shami, A. A. Azzam, Caliber and chain conditions in soft topologies, Mathematics, 9 (2021), 1–15. https://doi.org/10.3390/math9192349 doi: 10.3390/math9192349
    [4] T. M. Al-shami, Soft somewhere dense sets on soft topological spaces, Commun. Korean Math. Soc., 33 (2018), 1341–1356. https://doi.org/10.4134/CKMS.c170378 doi: 10.4134/CKMS.c170378
    [5] T. M. Al-shami, New soft structure: Infra soft topological spaces, Math. Probl. Eng., 2021 (2021), 1–12. https://doi.org/10.1155/2021/3361604 doi: 10.1155/2021/3361604
    [6] T. M. Al-shami, I. Alshammari, B. A. Asaad, Soft maps via soft somewhere dense sets, Filomat, 34 (2020), 3429–3440. https://doi.org/10.2298/FIL2010429A doi: 10.2298/FIL2010429A
    [7] Z. A. Ameen, T. M. Al-shami, A. A. Azzam, A. Mhemdi, A novel fuzzy structure: Infra-fuzzy topological spaces, J. Funct. Space., 2022 (2022), 1–11. https://doi.org/10.1155/2022/9778069 doi: 10.1155/2022/9778069
    [8] A. Aygünoğlu, V. Çetkin, H. Aygün, An introduction to fuzzy soft topological spaces, Hacet. J. Math. Stat., 43 (2014), 193–208.
    [9] N. Çağman, S. Enginoğlu, F. Çitak, Fuzzy soft set theory and its applications, Iran. J. Fuzzy Syst., 8 (2011), 137–147. https://doi.org/10.22111/ijfs.2011.292 doi: 10.22111/ijfs.2011.292
    [10] V. Çetkin, H. Aygün, Fuzzy soft semiregularization spaces, Ann. Fuzzy Math. Inform., 7 (2014), 687–697.
    [11] D. N. Georgiou, A. C. Megaritis, V. I. Petropoulos, On soft topological spaces, Appl. Math. Inform. Sci., 7 (2013), 1889–1901. https://doi.org/10.12785/amis/070527
    [12] S. Hussain, B. Ahmad, Soft separation axioms in soft topological spaces, Hacet. J. Math. Stat., 44 (2015), 559–568. https://doi.org/10.15672/HJMS.2015449426 doi: 10.15672/HJMS.2015449426
    [13] Y. B. Jun, Soft BCK/BCI algebras, Comput. Math. Appl., 56 (2008), 1408–1413. https://doi.org/10.1016/j.camwa.2008.02.035
    [14] A. Kharal, B. Ahmad, Mappings on fuzzy soft classes, Adv. Fuzzy Syst., 2009 (2009), 1–6. https://doi.org/10.1155/2009/407890 doi: 10.1155/2009/407890
    [15] J. I. Kim, W. K. Min, Y. H. Yoo, Fuzzy $r$-compactness on fuzzy $r$-minimal spaces, Int. J. Fuzzy Logic Intell. Syst., 9 (2009), 281–284. https://doi.org/10.5391/IJFIS.2009.9.4.281 doi: 10.5391/IJFIS.2009.9.4.281
    [16] G. J. Klir, B. Yuan, Fuzzy sets and fuzzy logic: Theory and applications, New Jersey: Prentice-Hall, 1995.
    [17] P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, J. Fuzzy Math., 9 (2001), 589–602.
    [18] S. Mishar, R. Srivastava, Hausdorff fuzzy soft topological spaces, Ann. Fuzzy Math. Inform., 9 (2015), 247–260.
    [19] D. Molodtsov, Soft set theory-First results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [20] T. Rasham, M. S. Shabbir, P. Agarwal, S. Momani, On a pair of fuzzy dominated mappings on closed ball in the multiplicative metric space with applications, Fuzzy Sets Syst., 2021, 1–16. https://doi.org/10.1016/j.fss.2021.09.002
    [21] A. P. Šostak, On a fuzzy topological structure, In: Proceedings of the 13th winter school on abstract analysis, Section of topology, Palermo: Circolo Matematico di Palermo, 1985, 89–103.
    [22] I. M. Taha, On fuzzy upper and lower $\alpha$-$\ell$-continuity and their decomposition, J. Math. Comput. Sci., 11 (2021), 427–441. https://doi.org/10.28919/jmcs/5107 doi: 10.28919/jmcs/5107
    [23] I. M. Taha, Compactness on fuzzy soft $r$-minimal spaces, Int. J. Fuzzy Logic Intell. Syst., 21 (2021), 251–258. https://doi.org/10.5391/ijfis.2021.21.3.251 doi: 10.5391/ijfis.2021.21.3.251
    [24] I. M. Taha, On $r$-generalized fuzzy $\ell$-closed sets: Properties and applications, J. Math., 2021 (2021), 1–8. https://doi.org/10.1155/2021/4483481 doi: 10.1155/2021/4483481
    [25] I. M. Taha, $r$-fuzzy $\delta$-$\ell$-open sets and fuzzy upper (lower) $\delta$-$\ell$-continuity via fuzzy idealization, J. Math. Comput. Sci., 25 (2022), 1–9. https://doi.org/10.22436/jmcs.025.01.01 doi: 10.22436/jmcs.025.01.01
    [26] I. M. Taha, On upper and lower generalized semi-continuous fuzzy multifunctions, J. Math. Comput. Sci., 25 (2022), 251–258. https://doi.org/10.22436/jmcs.025.03.04 doi: 10.22436/jmcs.025.03.04
    [27] B. P. Varol, H. Aygün, Fuzzy soft topology, Hacet. J. Math. Stat., 41 (2012), 407–419.
    [28] B. P. Varol, A. Aygünoğlu, H. Aygün, Neighborhood structures of fuzzy soft topological spaces, J. Int. Fuzzy Syst., 27 (2014), 2127–2135. https://doi.org/10.3233/IFS-141177 doi: 10.3233/IFS-141177
    [29] Y. H. Yoo, W. K. Min, J. I. L. Kim, Fuzzy $r$-minimal structures and fuzzy $r$-Minimal spaces, Far East J. Math. Sci., 33 (2009), 193–205.
    [30] L. A. Zadeh, Fuzzy Sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1618) PDF downloads(89) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog