A concept of fuzzy projection operator is introduced and use to investigate the non-emptiness of the fuzzy proximal pairs. We then consider the classes of noncyclic contractions and noncyclic relatively nonexpansive mappings and survey the existence of best proximity pairs for such mappings. In the case that the considered mapping is noncyclic relatively nonexpansive, we need a geometric notion of fuzzy proximal normal structure defined on a nonempty and convex pair in a convex fuzzy metric space. We also prove that every nonempty, compact and convex pair of subsets of a strictly convex fuzzy metric space has the fuzzy proximal normal structure.
Citation: Moosa Gabeleh, Elif Uyanık Ekici, Manuel De La Sen. Noncyclic contractions and relatively nonexpansive mappings in strictly convex fuzzy metric spaces[J]. AIMS Mathematics, 2022, 7(11): 20230-20246. doi: 10.3934/math.20221107
[1] | Ziying Qi, Lianzhong Li . Lie symmetry analysis, conservation laws and diverse solutions of a new extended (2+1)-dimensional Ito equation. AIMS Mathematics, 2023, 8(12): 29797-29816. doi: 10.3934/math.20231524 |
[2] | Yuqiang Feng, Jicheng Yu . Lie symmetry analysis of fractional ordinary differential equation with neutral delay. AIMS Mathematics, 2021, 6(4): 3592-3605. doi: 10.3934/math.2021214 |
[3] | Amjad Hussain, Muhammad Khubaib Zia, Kottakkaran Sooppy Nisar, Velusamy Vijayakumar, Ilyas Khan . Lie analysis, conserved vectors, nonlinear self-adjoint classification and exact solutions of generalized (N+1)-dimensional nonlinear Boussinesq equation. AIMS Mathematics, 2022, 7(7): 13139-13168. doi: 10.3934/math.2022725 |
[4] | Alessandra Jannelli, Maria Paola Speciale . On the numerical solutions of coupled nonlinear time-fractional reaction-diffusion equations. AIMS Mathematics, 2021, 6(8): 9109-9125. doi: 10.3934/math.2021529 |
[5] | Miguel Vivas-Cortez, Yasir Masood, Absar Ul Haq, Imran Abbas Baloch, Abdul Hamid Kara, F. D. Zaman . Symmetry analysis and conservation laws of time fractional Airy type and other KdV type equations. AIMS Mathematics, 2023, 8(12): 29569-29576. doi: 10.3934/math.20231514 |
[6] | A. Tomar, H. Kumar, M. Ali, H. Gandhi, D. Singh, G. Pathak . Application of symmetry analysis and conservation laws to a fractional-order nonlinear conduction-diffusion model. AIMS Mathematics, 2024, 9(7): 17154-17170. doi: 10.3934/math.2024833 |
[7] | Tamara M. Garrido, Rafael de la Rosa, Elena Recio, Almudena P. Márquez . Conservation laws and symmetry analysis of a generalized Drinfeld-Sokolov system. AIMS Mathematics, 2023, 8(12): 28628-28645. doi: 10.3934/math.20231465 |
[8] | Huizhang Yang, Wei Liu, Yunmei Zhao . Lie symmetry reductions and exact solutions to a generalized two-component Hunter-Saxton system. AIMS Mathematics, 2021, 6(2): 1087-1100. doi: 10.3934/math.2021065 |
[9] | Youness Chatibi, El Hassan El Kinani, Abdelaziz Ouhadan . Lie symmetry analysis of conformable differential equations. AIMS Mathematics, 2019, 4(4): 1133-1144. doi: 10.3934/math.2019.4.1133 |
[10] | Mingliang Zheng . Study on the symmetries and conserved quantities of flexible mechanical multibody dynamics. AIMS Mathematics, 2023, 8(11): 27969-27982. doi: 10.3934/math.20231430 |
A concept of fuzzy projection operator is introduced and use to investigate the non-emptiness of the fuzzy proximal pairs. We then consider the classes of noncyclic contractions and noncyclic relatively nonexpansive mappings and survey the existence of best proximity pairs for such mappings. In the case that the considered mapping is noncyclic relatively nonexpansive, we need a geometric notion of fuzzy proximal normal structure defined on a nonempty and convex pair in a convex fuzzy metric space. We also prove that every nonempty, compact and convex pair of subsets of a strictly convex fuzzy metric space has the fuzzy proximal normal structure.
Fractional differential equation theory comes with fractional calculus and is an abstract form of many engineering and physical problems. It has been widely used in system control, system identification, grey system theory, fractal and porous media dispersion, electrolytic chemistry, semiconductor physics, condensed matter physics, viscoelastic systems, biological mathematics, statistics, diffusion and transport theory, chaos and turbulence and non-newtonian fluid mechanics. Fractional differential equation theory has attracted the attention of the mathematics and natural science circles at home and abroad, and has made a series of research results. It has become one of the international hot research directions and has very important theoretical significance and application value.
As an important research area of fractional differential equation, boundary value problems have attracted a great deal of attention in the last ten years, especially in terms of the existence of positive solutions, and have achieved a lot of results (see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]). When the nonlinear term changes sign, the research on the existence of positive solutions progresses slowly, and relevant research results are not many (see [21,22,23,24,25,26,27,28,29,30,31,32,33]).
In [21], using a fixed point theorem in a cone, Agarwal et al. obtained the existence of positive solutions for the Sturm-Liouville boundary value problem
{(p(t)u′(t))′+λf(t,u(t))=0,t∈(0,1),α1u(0)−β1p(0)u′(0)=0,α2u(1)+β2p(0)u′(1)=0, |
where λ>0 is a parameter, p(t)∈C((0,1),[0,∞)), αi,βi≥0 for i=1,2 and α1α2+α1β2+α2β1>0; f∈C((0,1)×[0,∞),R) and f≥−M, for M>0,∀t∈[0,1],u≥0 (M is a constant).
In [22], Weigao Ge and Jingli Ren studied the Sturm-Liouville boundary value problem
{(p(t)u′(t))′+λa(t)f(t,u(t))=0,t∈(0,1),α1u(0)−β1p(0)u′(0)=0,α2u(1)+β2p(0)u′(1)=0, |
where a(t)≥0 and λ>0 is a parameter. They removed the restriction f≥−M, using Krasnosel'skii theorem, obtained some new existence theorems for the Sturm-Liouville boundary value problem.
In [23], Weigao Ge and Chunyan Xue studied the same Sturm-Liouville boundary value problem again. Without the restriction that f is bounded below, by the excision principle and area addition principle of degree, they obtained three theorems and extended the Krasnosel'skii's compression-expansion theorem in cones.
In [25], Yongqing Wang et al. considered the nonlinear fractional differential equation boundary value problem with changing sign nonlinearity
{Dα0+u(t)+λf(t,u(t))=0,t∈(0,1),u(0)=u′(0)=u(1)=0, |
where 2<α≤3, λ>0 is a parameter, Dα0+ is the standard Riemann-Liouville fractional derivative. f is allowed to change sign and may be singular at t=0,1 and −r(t)≤f≤z(t)g(x) for some given nonnegative functions r,z,g. By using Guo-Krasnosel'skii fixed point theorem, the authors obtained the existence of positive solutions.
In [28], J. Henderson and R. Luca studied the existence of positive solutions for a nonlinear Riemann-Liouville fractional differential equation with a sign-changing nonlinearity
{Dα0+u(t)+λf(t,u(t))=0,t∈(0,1),u(0)=u′(0)⋯=u(n−2)(0)=0,Dp0+u(t)|t=1=m∑i=1aiDq0+u(t)|t=ξi, |
where λ is a positive parameter, α∈(n−1,n],n∈N,n≥3,ξi∈R for all i=1,...m,(m∈N),0<ξ1<ξ2<⋯<ξm<1,p,q∈R,p∈[1,n−2],q∈[0,p], Dα0+ is the standard Riemann-Liouville fractional derivative. With the restriction that f may be singular at t=0,1 and −r(t)≤f≤z(t)g(t,x) for some given nonnegative functions r,z,g, applying Guo-Krasnosel'skii fixed point theorem, the existences of positive solutions are obtained.
In [31], Liu and Zhang studied the existence of positive solutions to the boundary value problem for a high order fractional differential equation with delay and singularities including changing sign nonlinearity
{Dα0+x(t)+f(t,x(t−τ))=0, t∈(0,1)∖{τ},x(t)=η(t), t∈[−τ,0],x′(0)=x′′(0)=⋯=x(n−2)(0)=0, n≥3,x(n−2)(1)=0, |
where n−1<α≤n,n=[α]+1,Dα0+ is the standard Riemann-Liouville fractional derivative. The restriction on the nonlinearity f is as follows: there exists a nonnegative function ρ∈C(0,1)∩L(0,1), ρ(t)≢0, such that f(t,x)≥−ρ(t) and φ2(t)h2(x)≤f(t,v(t)x)+ρ(t)≤φ1(t)(g(x)+h1(x)), for ∀ (t,x)∈(0,1)×R+, where φ1, φ2∈L(0,1) are positive, h1, h2∈C(R+0,R+) are nondecreasing, g∈C(R+0,R+) is nonincreasing, R+0=[0,+∞), and
v(t)={1, t∈(0,τ],(t−τ)α−2n+1,t∈(τ,1). |
By Guo-krasnosel'skii fixed point theorem and Leray-Schauder's nonlinear alternative theorem, some existence results of positive solutions are obtained, respectively.
In [33], Tudorache and Luca considered the nonlinear ordinary fractional differential equation with sequential derivatives
{Dβ0+(q(t)Dγ0+u(t))=λf(t,u(t)),t∈(0,1),u(j)(0)=0,j=0,1⋯,n−2,Dγ0+u(0)=0,q(1)Dγ0+u(1)=∫10q(t)Dγ0+u(t)dη0(t),Dα00+u(1)=p∑i=1∫10Dαi0+u(t)dηi(t), |
where β∈(1,2],γ∈(n−1,n],n∈N,n≥3,p∈N,αi∈R,i=0,1⋯p,0≤α1<α2<⋯<αp≤α0<γ−1,α0≥1,λ>0,q:[0,1]→(0,∞) is a continuous function, f∈C((0,1)×[0,∞),R) may be singular at t=0 and/or t=1, and there exist the functions ξ,ϕ∈C((0,1),[0,∞)), φ∈C((0,1)×[0,∞),[0,∞)) such that −ξ(t)≤f(t,x)≤ϕ(t)φ(t,x),∀t∈(0,1),x∈(0,∞) with 0<∫10ξ(s)ds<∞,0<∫10ϕ(s)ds<∞. By the Guo-Krasnosel'skii fixed point theorem, the existence of positive solutions are obtained.
As can be seen from the above research results, fixed point theorems are still common tools to solve the existence of positive solutions to boundary value problems with sign changing nonlinearity, especially the Guo-Krasnosel'skii fixed point theorem. In addition, for boundary value problems of ordinary differential equations, Weigao Ge et al. removed the restriction that the nonlinear item bounded below. However, for fractional boundary value problems, from the existing literature, there are still many restrictions on nonlinear terms.
Our purpose of this paper is to establish the existence of positive solutions of boundary value problems (BVPs for short) of the nonlinear fractional differential equation as follows
{Dα0+u(t)+λf(t,u(t))=0,t∈(0,1),u(0)=u′(0)⋯=u(n−2)(0)=u(n−2)(1)=0,n≥3, | (1.1) |
where n−1<α<n, λ>0, f:[0,1]×[0,+∞)→R is a known continuous nonlinear function and allowed to change sign, and Dα0+ is the standard Riemann-Liouville fractional derivative.
In this paper, by the Guo-Krasnosel'skii fixed point theorem, the sufficient conditions for the existence of positive solutions for BVPs (1.1) are obtained under a more relaxed condition compared with the existing literature, as follows. Throughout this paper, we suppose that the following conditions are satisfied.
H0: There exists a known function ω∈C(0,1)∩L(0,1) with ω(t)>0, t∈(0,1) and ∫10(1−s)α−2ω(s)ds<+∞, such that f(t,u)>−ω(t), for t∈(0,1), u∈R.
This paper is organized as follows. In Section 2, we introduce some definitions and lemmas to prove our major results. In Section 3, some sufficient conditions for the existence of at least one and two positive solutions for BVPs (1.1) are investigated. As applications, some examples are presented to illustrate our major results in Section 4.
In this section, we give out some important definitions, basic lemmas and the fixed point theorem that will be used to prove the major results.
Definition 2.1. (see[1]) Let φ(x)∈L1(a,b). The integrals
(Iαa+φ)(x)def=1Γ(α)∫xa(x−t)α−1φ(t)dt,x>a, |
(Iαb−φ)(x)def=1Γ(α)∫bx(t−x)α−1φ(t)dt,x<a, |
where α>0, are called the Riemann-Liouville fractional integrals of the order α. They are sometimes called left-sided and right-sided fractional integrals respectively.
Definition 2.2. (see[1]) For functions f(x) given in the interval [a,b], each of the expressions
(Dαa+f)(x)=1Γ(n−α)(ddx)n∫xa(x−t)n−α−1f(t)dt,n=[α]+1, |
(Dαb−f)(x)=(−1)nΓ(n−α)(ddx)n∫bx(t−x)n−α−1f(t)dt,n=[α]+1 |
is called Riemann-Liouville derivative of order α, α>0, left-handed and right-handed respectively.
Definition 2.3. (see [2]) Let E be a real Banach space. A nonempty, closed, and convex set P⊂E is called a cone if the following two conditions are satisfied:
(1) if x∈P and μ≥0, then μx∈P;
(2) if x∈P and −x∈P, then x=0.
Every cone P⊂E induces the ordering in E given by x1≤x2 if and only if x2−x1∈P.
Lemma 2.1. (see [3]) Let α>0, assume that u,Dα0+u∈C(0,1)∩L1(0,1), then,
Iα0+Dα0+u(t)=u(t)+C1tα−1+C2tα−2+⋯+Cntα−n |
holds for some Ci∈R,i=1,2,…,n, where n=[α]+1.
Lemma 2.2. Let y∈C[0,1] and n−1<α<n. Then, the following BVPs
{Dα0+u(t)+y(t)=0,0<t<1,u(0)=u′(0)⋯=u(n−2)(0)=u(n−2)(1)=0,n≥3 | (2.1) |
has a unique solution
u(t)=∫10G(t,s)y(s)ds, |
where
G(t,s)=1Γ(α){tα−1(1−s)α−n+1−(t−s)α−1,0≤s≤t≤1,tα−1(1−s)α−n+1,0≤t≤s≤1. | (2.2) |
Proof. From Definitions 2.1 and 2.2, Lemma 2.1, we know
u(t)=−Iα0+y(t)+C1tα−1+C2tα−2+⋯+Cntα−n=−1Γ(α)∫t0(t−s)α−1y(s)ds+C1tα−1+C2tα−2+⋯+Cntα−n, |
where Ci∈R,i=1,2⋯n.
From u(0)=u′(0)⋯=u(n−2)(0)=0, we get Ci=0,i=2,3⋯n, such that
u(n−2)(t)=−1Γ(α−n+2)∫t0(t−s)α−n+1y(s)ds+C1Γ(α)Γ(α−n+2)tα−n+2,u(n−2)(1)=−1Γ(α−n+2)∫10(1−s)α−n+1y(s)ds+C1Γ(α)Γ(α−n+2). |
From u(n−2)(1)=0, we get C1=1Γ(α)∫10(1−s)α−n+1y(s)ds, so that
u(t)=−1Γ(α)∫t0(t−s)α−1y(s)ds+tα−1Γ(α)∫10(1−s)α−n+1y(s)ds=1Γ(α)∫t0[tα−1(1−s)α−n+1−(t−s)α−1]y(s)ds+1Γ(α)∫1ttα−1(1−s)α−n+1y(s)ds=∫10G(t,s)y(s)ds. |
The proof is completed.
Lemma 2.3. Let n−1<α<n. The function G(t,s) defined by (2.2) is continuous on [0,1]×[0,1] and satisfies 0≤G(t,s)≤G(1,s) and G(t,s)≥tα−1G(1,s) for t,s∈[0,1].
Proof. From the definition (2.2), it's easy to know G(t,s) is continuous on [0,1]×[0,1]. Next, we prove that G(t,s) satisfies 0≤G(t,s)≤G(1,s).
For 0≤s≤t≤1,
∂G(t,s)∂t=1Γ(α)(α−1)(t−s)α−2[tα−2(1−s)α−n+1tα−2(1−st)α−2−1]≥1Γ(α)(α−1)(t−s)α−2[(1−s)3−n−1]≥0(n≥3). |
For 0≤t≤s≤1, obviously, ∂G(t,s)∂t≥0. Such that, G(t,s) is an increasing function of t and satisfies 0≤G(t,s)≤G(1,s).
At last, we prove that G(t,s) satisfies G(t,s)≥tα−1G(1,s).
For 0≤s≤t≤1,
G(t,s)−tα−1G(1,s)=1Γ(α)[tα−1(1−s)α−n+1−(t−s)α−1]−tα−1Γ(α)[(1−s)α−n+1−(1−s)α−1]=1Γ(α)[(t−ts)α−1−(t−s)α−1]≥0. |
For 0≤t≤s≤1,
G(t,s)G(1,s)=tα−1(1−s)α−n+1(1−s)α−n+1−(1−s)α−1≥tα−1(1−s)α−n+1(1−s)α−n+1=tα−1. |
The proof is completed.
At the end of this section, we present the Guo-Krasnosel'skii fixed point theorem that will be used in the proof of our main results.
Lemma 2.4. (see [34]) Let X be a Banach space, and let P⊂X be a cone in X. Assume Ω1,Ω2 are open subsets of X with 0∈Ω1⊂¯Ω1⊂Ω2. Let F:P→P be a comletely continuous operator such that either
1) ‖Fx‖≤‖x‖,x∈P∩∂Ω1,‖Fx‖≥‖x‖,x∈P∩∂Ω2; or
2) ‖Fx‖≥‖x‖,x∈P∩∂Ω1,‖Fx‖≤‖x‖,x∈P∩∂Ω2;
holds. Then, F has a fixed point in P∩(¯Ω2∖Ω1).
By a positive solution of BVPs (1.1), we mean a function u:[0,1]→[0,+∞) such that u(t) satisfies (1.1) and u(t)>0 for t∈(0,1).
Let Banach space E=C[0,1] be endowed with ‖x‖=maxt∈[0,1]|x(t)|. Let I=[0,1], define the cone P⊂E by
P={x∈E:x(t)≥tα−1‖x‖,t∈I}. |
Lemma 3.1. Let λ>0, ω∈C(0,1)∩L(0,1) with ω(t)>0 on (0,1), and n−1<α<n. Then, the following boundary value problem of fractional differential equation
{Dα0+v(t)+λω(t)=0,0<t<1,v(0)=v′(0)⋯=v(n−2)(0)=v(n−2)(1)=0,n≥3 | (3.1) |
has a unique solution
v(t)=λ∫10G(t,s)ω(s)ds | (3.2) |
and
0≤v(t)≤λtα−1M, | (3.3) |
where
M=1Γ(α)∫10(1−s)α−n+1ω(s)ds. |
Proof. From Lemma 2.2, let y(t)=λω(t), we have (3.2) immediately. In view of Lemma 2.3, we obtain
0≤v(t)=λ∫10G(t,s)ω(s)ds=λtα−1Γ(α)∫10(1−s)α−n+1ω(s)ds−λ1Γ(α)∫t0(t−s)α−1ω(s)ds≤λtα−1Γ(α)∫10(1−s)α−n+1ω(s)ds=λtα−1M. | (3.4) |
From (3.4), (3.3) holds.
The proof is completed.
Lemma 3.2. Suppose that v=v(t) is the solution of BVPs (3.1) and define the function g(t,u(t)) by
g(t,u(t))=f(t,u(t))+ω(t). | (3.5) |
Then, u(t) is the solution of BVPs (1.1), if and only if x(t)=u(t)+v(t) is the solution of the following BVPs
{Dα0+x(t)+λg(t,x(t)−v(t))=0x(0)=x′(0)⋯=x(n−2)(0)=x(n−2)(1)=0,n≥3. | (3.6) |
And when x(t)>v(t), u(t) is a positive solution of BVPs(1.1).
Proof. In view of Lemma 2.2, if u(t) and v(t) are the solutions of BVPs (1.1) and BVPs (3.1), respectively, we have
Dα0+(u(t)+v(t))=Dα0+u(t)+Dα0+v(t)=−λf(t,u(t))−λω(t)=−λ[f(t,u(t))+ω(t)]=−λg(t,u(t)), |
such that
Dα0+(u(t)+v(t))+λg(t,u(t))=0. |
Let x(t)=u(t)+v(t), we have u(t)=x(t)−v(t) and
Dα0+x(t)+λg(t,x(t)−v(t))=0. |
It is easily to obtain x(0)=x′(0)=x′(1)=0 from the boundary conditions of BVPs (1.1) and BVPs (3.1).
Hence, x(t) is the solution of BVPs (3.6).
On the other hand, if v(t) and x(t) are the solution of BVPs (3.1) and BVPs (3.6), respectively. Similarly, u(t)=x(t)−v(t) is the solution of BVPs (1.1). Obviously, when x(t)>v(t), u(t)>0 is a positive solution of BVPs (1.1).
The proof is completed.
Lemma 3.3. Let T:P→E be the operator defined by
Tx(t):=λ∫10G(t,s)g(s,x(s)−v(s))ds. | (3.7) |
Then, T:P→P is comletely continuous.
Proof. In view of the definition of the function g(t,u(t)), we know that g(t,x(t)−v(t))>0 is continuous from the continuity of x(t) and v(t).
By Lemma 2.3, we obtain
‖Tx‖=maxt∈[0,1]|λ∫10G(t,s)g(s,x(s)−v(s))ds|=λ∫10G(1,s)g(s,x(s)−v(s))ds. |
So that, for t∈[0,1],
Tx(t)=λ∫10G(t,s)g(s,x(s)−v(s))ds≥tα−1λ∫10G(1,s)g(s,x(s)−v(s))ds=tα−1‖Tx‖. |
Thus, T(P)⊂P.
As the continuity and nonnegativeness of G(t,s) and H0 implies T is a continuous operator.
Let Ω⊂P be bounded, there exists a positive constant r>0, such that |x|≤r, for all x∈Ω. Set M0=max0≤x≤r,t∈I∣f(t,x(t)−v(t))∣, then,
|g(t,x(t)−v(t))|≤|f(t,x(t)−v(t))|+|ω(t)|≤M0+ω(t). |
So, for x∈Ω and t∈[0,1], we have
|Tx(t)|=|λ∫10G(t,s)g(s,x(s)−v(s))ds|≤λ(M0∫10G(1,s)ds+∫10G(1,s)ω(s)ds)≤λ(M0∫10G(1,s)ds+1Γ(α)∫10ω(s)ds). |
Hence, T is uniformly bounded.
On the other hand, since G(t,s)∈C([0,1]×[0,1]), for ε>0, exists δ>0, for t1,t2∈[0,1] with ∣t1−t2∣≤δ, implies |G(t1,s)−G(t2,s)|<ελ(M0+∫10ω(s)ds), for s∈[0,1].
Then, for all x∈Ω:
|Tx(t1)−Tx(t2)|=|λ∫10G(t1,s)g(s,x(s)−v(s))ds−λ∫10G(t2,s)g(s,x(s)−v(s))ds|=|λ∫10(G(t1,s)−G(t2,s))g(s,x(s)−v(s))ds|≤λ∫10|G(t1,s)−G(t2,s)||g(s,x(s)−v(s))|ds≤λ∫10|G(t1,s)−G(t2,s)|(M0+ω(s))ds<λ∫10ελ(M0+∫10ω(s)ds)(M0+ω(s))ds≤λελ(M0+∫10ω(s)ds)∫10(M0+ω(s))ds=ε. |
Hence, T(Ω) is equicontinuous. By Arzelà-Ascoli theorem, we have T:P→P is completely continuous.
The proof is completed.
A function x(t) is said to be a solution of BVPs (3.6) if x(t) satisfies BVPs (3.6). In addition, if x(t)>0, for t∈(0,1), x(t) is said to be a positive solution of BVPs (3.6). Obviously, if x(t)∈P, and x(t)≠0 is a solution of BVPs (3.6), by x(t)≥tα−1|x|, then x(t) is a positive solution of BVPs (3.6). By Lemma 3.2, if x(t)>v(t), u(t)=x(t)−v(t) is a positive solution of BVPs (1.1).
Next, we give some sufficient conditions for the existence of positive solutions.
Theorem 3.1. For a given 0<η<1, let Iη=[η,1]. If
H1: limx→+∞inft∈Iηf(t,x)x=+∞
holds, there exists λ∗>0, for any 0<λ<λ∗, the BVPs (1.1) has at least one positive solution.
Proof. By Lemma 3.2, if BVPs (3.6) has a positive solution x(t) and x(t)>v(t), BVPs (1.1) has a positive solution u(t)=x(t)−v(t). We will apply Lemma 2.4 to prove the theorem.
In view of the definition of g(t,u(t)), we have g(t,u(t))≥0, so that BVPs (3.6) has a positive solution, if and only if the operator T has a fixed point in P.
Define
g1(r1)=supt∈I,0≤x≤r1g(t,x), |
where r1>0.
By the definition of g1(r1) and H1, we have
limr1→+∞r1g1(r1)=0. |
Then, there exists R1>0, such that
R1g1(R1)=maxr1>0r1g1(r1). |
Let L=g1(R1), λ∗=min{R1M,(α−1)Γ(α+1)R1L}, where ∫10G(1,s)ds=1(α−1)Γ(α+1).
In order to apply Lemma 2.4, we separate the proof into the following two steps.
Step 1:
For every 0<λ<λ∗, t∈I let Ω1={x∈E:‖x‖<R1}. Suppose x∈P∩∂Ω1, we obtain
R1≥x(t)−v(t)≥tα−1‖x‖−λtα−1M>tα−1R1−R1Mtα−1M>0. |
So that
g(t,x(t)−v(t))≤g1(R1)=L |
and
Tx(t)=λ∫10G(t,s)g(s,x(x)−v(s))ds≤λ∫10G(1,s)g(s,x(s)−v(s))ds≤λ∗∫10G(1,s)g1(R1)ds=λ∗L∫10G(1,s)ds<(α−1)Γ(α+1)R1LL(α−1)Γ(α+1)=R1. |
Therefore,
‖Tx‖<‖x‖, x∈P∩∂Ω1. |
Step 2:
From H1, we know that
limx→+∞inft∈Iηg(t,x)x=limx→+∞inft∈Iηf(t,x)+ω(t)x=+∞. |
Then, there exists R2>(1+η1−α)R1>R1, such that for all t∈Iη, when x>R21+η1−α,
g(t,x)>δx, |
where δ>1+η1−αλN>0, N=∫1ηG(1,s)ds.
Let Ω2={x∈E:‖x‖<R2}, for all x∈P∩∂Ω2, t∈Iη we have
x(t)−v(t)≥tα−1R2−λtα−1M>tα−1R2−λ∗tα−1M≥tα−1R2−tα−1R1≥ηα−1(R2−R1)=R21+η1−α>0. |
So that
g(t,x(t)−v(t))>δ(x(t)−v(t))>δR21+η1−α |
and
‖Tx‖=maxt∈Iλ∫10G(t,s)g(s,x(s)−v(s))ds=λ∫10G(1,s)g(s,x(s)−v(s))ds>λ∫1ηG(1,s)g(s,x(s)−v(s))ds>λδR21+η1−α∫1ηG(1,s)ds=λδR21+η1−αN>λ1+η1−αλNR21+η1−αN=R2. |
Thus, ‖Tx‖>‖x‖, for x∈P∩∂Ω2.
Therefore, by the Lemma 2.4, the BVPs (3.6) has at least one positive solution x∈P∩(¯Ω2∖Ω1), and R1≤‖x‖≤R2. From x(t)−v(t)>0, we know that BVPs (1.1) has at least one positive solution u(t)=x(t)−v(t).
The proof is completed.
Theorem 3.2. Suppose
H2:limx→+∞inft∈Iηf(t,x)=+∞;
H3:limx→+∞supt∈If(t,x)x=0;
hold, there exists λ∗>0, for all λ>λ∗, the BVPs (1.1) has at least one positive solution.
Proof. Let σ=2MN. From H2, we have
limx→+∞inft∈Iηg(t,x)=limx→+∞inft∈Iη(f(t,x)+ω(t))=+∞, |
such that for the above σ, there exists X>0, when x>X, for all t∈Iη, we obtain
g(t,x)>σ. |
Let λ∗=max{Nηα−1M,XM}, R1=2λMη1−α, where λ>λ∗. Let Ω1={x∈E:‖x‖<R1}, if x∈P∩∂Ω1, t∈Iη, we have
x(t)−v(t)≥tα−1R1−λtα−1M=ηα−1R1−λM=ηα−1⋅2λMη1−α−λM=λM>λ∗M≥X, |
such that
g(t,x(t)−v(t))>σ |
and
‖Tx‖=maxt∈Iλ∫10G(t,s)g(s,x(s)−v(s))ds=λ∫10G(1,s)g(s,x(s)−v(s))ds>λ∫1ηG(1,s)g(s,x(s)−v(s))ds=λNσ=2λMNN=2λM>R1=‖x‖. |
Hence, ‖Tx‖>‖x‖, x∈P∩∂Ω1.
On the other hand, from H3, we know that there exists ε0=(α−1)Γ(α+1)2λ>0, R0>R1, for t∈[0,1], x>R0, f(t,x)<ε0x holds.
Because of f∈C([0,1]×[0,+∞),R), let ¯M=max(t,x)∈I×[0,R0]{f(t,x)}, then, for t∈[0,1], x∈[0,+∞), f(t,x)≤¯M+ε0x holds.
Let R2>max{R0,λM,2λ(¯M+∫10ω(s)ds)Γ(α)}, Ω2={x∈E:‖x‖<R2}, for x∈P∩∂Ω2 and t∈[0,1], we have
x(t)−v(t)≥tα−1R2−λtα−1M=tα−1(R2−λM)≥0. |
So that,
g(t,x(t)−v(t))=f(t,x(t)−v(t))+ω(t)≤¯M+ε0(x(t)−v(t))+ω(t)≤¯M+ε0x(t)+ω(t). |
Therefore,
‖Tx‖=maxt∈Iλ∫10G(t,s)g(s,x(s)−v(s))ds=λ∫10G(1,s)g(s,x(s)−v(s))ds≤λ∫10G(1,s)(¯M+ε0x(s)+ω(s))ds≤λε0R2∫10G(1,s)ds+λ∫10G(1,s)(¯M+ω(s))ds≤λε0R21(α−1)Γ(α+1)+λΓ(α)(¯M+∫10ω(s)ds)<λR2(α−1)Γ(α+1)(α−1)Γ(α+1)2λ+R22=R2=‖x‖. |
So, we get
‖Tx‖<‖x‖, x∈P∩∂Ω2. |
Hence, from Lemma 2.4, we know that the operator T has at least one fixed point x, which satisfies x∈P∩(¯Ω2∖Ω1) and R1≤‖x‖≤R2. From x(t)−v(t)>0, we know that BVPs (1.1) has at least one positive solution u(t)=x(t)−v(t).
The proof is completed.
In this section, we provide two examples to demonstrate the applications of the theoretical results in the previous sections.
Example 4.1. Consider the following BVPs
{D520+u+λ(u2−esint−3t−2e)=0,u(0)=u′(0)=u′(1)=0. | (4.1) |
where α=52, f(t,u)=u2−esint−2e, ω(t)=esin10−1√10t−12+12e.
Let η=10−1, then,
g(t,u)=u2−esint+esin10−1√10t−12+10e, |
g1(r)=supt∈Iη,0≤u≤rg(t,u)=r2+10e, |
and
limr→+∞rg1(r)=limr→+∞rr2+10e=0, |
R1=√10e, L=g1(R1)=20e, M=16.7716, N=0.26667, R1M=0.310866, (α−1)Γ(α+1)R1L=0.478069, λ∗=0.310866, R2=170.086, N=0.196967.
We can check that the condition of Theorem 3.1 is satisfied. Therefore, there exists at least one positive solution.
Example 4.2. Consider the following BVPs
{D730+u+λ(e−tu23−t−10)=0,u(0)=u′(0)=u′(1)=0. | (4.2) |
where α=73, f(t,u)=e−tu23−t−10, ω(t)=t−23+10.
Let η=0.3, such that
g(t,u)=e−tu23+t−23−t, |
and M=8.52480, N=0.219913, σ=2MN=77.5290, Nηα−1M=0.128451, R1=2λMη−43=84.8957λ>10.9049.
We can check that the conditions of Theorem 3.2 are satisfied. Therefore, there exists at least one positive solution.
In this paper, the constraint on the nonlinear term is weakened to f(t,u)>−ω(t)(where ω(t)>0). Under similar conditions, by constructing an auxiliary boundary value problem and using the principle of linear superposition, the difficulty caused by sign-change of nonlinear terms is overcome. Under the condition of singularity of nonlinear terms, the existence conclusions of positive solutions are obtained based on the Guo-Krasnosel'skii fixed point theorem.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This research was supported by National Natural Science Foundation of China (Grant No. 12371308). The authors would like to thank the anonymous reviewers and the editor for their constructive suggestions on improving the presentation of the paper.
The authors declares that they have no competing interest.
[1] | M. S. Brodskii, D. P. Milman, On the center of a convex set, Dokl. Akad. Nauk., 59 (1948), 837–840. |
[2] |
W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72 (1965), 1004–1006. https://doi.org/10.2307/2313345 doi: 10.2307/2313345
![]() |
[3] |
S. N. Ješić, Convex structure, normal structure and a fixed point theorem in intuitionistic fuzzy metric spaces, Chaos Solitons Fract., 41 (2009), 292–301. https://doi.org/10.1016/j.chaos.2007.12.002 doi: 10.1016/j.chaos.2007.12.002
![]() |
[4] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X |
[5] | I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975), 336–344. |
[6] |
A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7
![]() |
[7] |
R. Saadati, S. Sedghi, N. Shobe, Modified intuitionistic fuzzy metric spaces and some fixed point theorems, Chaos Solitons Fract., 38 (2008), 36–47. https://doi.org/10.1016/j.chaos.2006.11.008 doi: 10.1016/j.chaos.2006.11.008
![]() |
[8] |
M. Altanji, A. Santhi, V. Govindan, S. S. Santra, S. Noeiaghdam, Fixed-point results related to b-intuitionistic fuzzy metric space, J. Funct. Spaces, 2022 (2022), 9561906. https://doi.org/10.1155/2022/9561906 doi: 10.1155/2022/9561906
![]() |
[9] | B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 314–334. https://doi.org/10.2140/pjm.1960.10.313 |
[10] |
G. Mariusz, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst., 27 (1988), 385–389. https://doi.org/10.1016/0165-0114(88)90064-4 doi: 10.1016/0165-0114(88)90064-4
![]() |
[11] |
S. N. Ješić, N. A. Babaćev, Common fixed point theorems in intuitionistic fuzzy metric spaces and L-fuzzy metric spaces with nonlinear contractive condition, Chaos Solitons Fract., 37 (2008), 675–687. https://doi.org/10.1016/j.chaos.2006.09.048 doi: 10.1016/j.chaos.2006.09.048
![]() |
[12] |
J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fract., 22 (2004), 1039–1046. https://doi.org/10.1016/j.chaos.2004.02.051 doi: 10.1016/j.chaos.2004.02.051
![]() |
[13] |
W. Takahashi, A convexity in metric space and nonexpansive mappings, Kodai Math. Semin. Rep., 22 (1970), 142–149. https://doi.org/10.2996/kmj/1138846111 doi: 10.2996/kmj/1138846111
![]() |
[14] |
A. A. Eldred, W. A. Kirk, P. Veeramani, Proximal normal structure and relatively nonexpansive mappings, Studia Math., 171 (2005), 283–293. https://doi.org/10.4064/sm171-3-5 doi: 10.4064/sm171-3-5
![]() |
[15] |
R. Espínola, M. Gabeleh, On the structure of minimal sets of relatively nonexpan- sive mappings, Numer. Funct. Anal. Optim., 34 (2013), 845–860. https://doi.org/10.1080/01630563.2013.763824 doi: 10.1080/01630563.2013.763824
![]() |
[16] | M. Gabeleh, Minimal sets of noncyclic relatively nonexpansive mappings in convex metric spaces, Fixed Point Theory, 16 (2015), 313–322. |
[17] |
M. Gabeleh, Proximal quasi-normal structure in convex metric spaces, An. Stiint. Univ. "Ovidius" Constanta, 22 (2014), 45–58. https://doi.org/10.2478/auom-2014-0049 doi: 10.2478/auom-2014-0049
![]() |
[18] |
M. Gabeleh, A characterization of proximal normal structure via proximal diametral sequences, J. Fixed Point Theory Appl., 19 (2017), 2909–2925. https://doi.org/10.1007/s11784-017-0460-y doi: 10.1007/s11784-017-0460-y
![]() |
[19] |
M. Gabeleh, H. P. A. Kunzi, Min-max property in metric spaces with convex structure, Acta Math. Hungar., 157 (2019), 1730–190. https://doi.org/10.1007/s10474-018-0857-0 doi: 10.1007/s10474-018-0857-0
![]() |
[20] |
M. Gabeleh, O. O. Otafudu, Markov-Kakutani's theorem for best proximity pairs in Hadamard spaces, Indagat. Math., 28 (2017), 680–693. https://doi.org/10.1016/j.indag.2017.02.004 doi: 10.1016/j.indag.2017.02.004
![]() |
[21] |
U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Trans. Amer. Math. Soc., 357 (2005), 89–128. https://doi.org/10.1090/S0002-9947-04-03515-9 doi: 10.1090/S0002-9947-04-03515-9
![]() |
1. | Farzaneh Alizadeh, Kamyar Hosseini, Sekson Sirisubtawee, Evren Hincal, Classical and nonclassical Lie symmetries, bifurcation analysis, and Jacobi elliptic function solutions to a 3D-modified nonlinear wave equation in liquid involving gas bubbles, 2024, 2024, 1687-2770, 10.1186/s13661-024-01921-8 | |
2. | Qiongya Gu, Lizhen Wang, Invariant analysis, invariant subspace method and conservation laws of the (2+1)-dimensional mixed fractional Broer–Kaup–Kupershmidt system, 2024, 91, 05779073, 895, 10.1016/j.cjph.2024.08.001 |