A concept of fuzzy projection operator is introduced and use to investigate the non-emptiness of the fuzzy proximal pairs. We then consider the classes of noncyclic contractions and noncyclic relatively nonexpansive mappings and survey the existence of best proximity pairs for such mappings. In the case that the considered mapping is noncyclic relatively nonexpansive, we need a geometric notion of fuzzy proximal normal structure defined on a nonempty and convex pair in a convex fuzzy metric space. We also prove that every nonempty, compact and convex pair of subsets of a strictly convex fuzzy metric space has the fuzzy proximal normal structure.
Citation: Moosa Gabeleh, Elif Uyanık Ekici, Manuel De La Sen. Noncyclic contractions and relatively nonexpansive mappings in strictly convex fuzzy metric spaces[J]. AIMS Mathematics, 2022, 7(11): 20230-20246. doi: 10.3934/math.20221107
A concept of fuzzy projection operator is introduced and use to investigate the non-emptiness of the fuzzy proximal pairs. We then consider the classes of noncyclic contractions and noncyclic relatively nonexpansive mappings and survey the existence of best proximity pairs for such mappings. In the case that the considered mapping is noncyclic relatively nonexpansive, we need a geometric notion of fuzzy proximal normal structure defined on a nonempty and convex pair in a convex fuzzy metric space. We also prove that every nonempty, compact and convex pair of subsets of a strictly convex fuzzy metric space has the fuzzy proximal normal structure.
[1] | M. S. Brodskii, D. P. Milman, On the center of a convex set, Dokl. Akad. Nauk., 59 (1948), 837–840. |
[2] | W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72 (1965), 1004–1006. https://doi.org/10.2307/2313345 doi: 10.2307/2313345 |
[3] | S. N. Ješić, Convex structure, normal structure and a fixed point theorem in intuitionistic fuzzy metric spaces, Chaos Solitons Fract., 41 (2009), 292–301. https://doi.org/10.1016/j.chaos.2007.12.002 doi: 10.1016/j.chaos.2007.12.002 |
[4] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X |
[5] | I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975), 336–344. |
[6] | A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7 |
[7] | R. Saadati, S. Sedghi, N. Shobe, Modified intuitionistic fuzzy metric spaces and some fixed point theorems, Chaos Solitons Fract., 38 (2008), 36–47. https://doi.org/10.1016/j.chaos.2006.11.008 doi: 10.1016/j.chaos.2006.11.008 |
[8] | M. Altanji, A. Santhi, V. Govindan, S. S. Santra, S. Noeiaghdam, Fixed-point results related to b-intuitionistic fuzzy metric space, J. Funct. Spaces, 2022 (2022), 9561906. https://doi.org/10.1155/2022/9561906 doi: 10.1155/2022/9561906 |
[9] | B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 314–334. https://doi.org/10.2140/pjm.1960.10.313 |
[10] | G. Mariusz, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst., 27 (1988), 385–389. https://doi.org/10.1016/0165-0114(88)90064-4 doi: 10.1016/0165-0114(88)90064-4 |
[11] | S. N. Ješić, N. A. Babaćev, Common fixed point theorems in intuitionistic fuzzy metric spaces and $\mathscr{L}$-fuzzy metric spaces with nonlinear contractive condition, Chaos Solitons Fract., 37 (2008), 675–687. https://doi.org/10.1016/j.chaos.2006.09.048 doi: 10.1016/j.chaos.2006.09.048 |
[12] | J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fract., 22 (2004), 1039–1046. https://doi.org/10.1016/j.chaos.2004.02.051 doi: 10.1016/j.chaos.2004.02.051 |
[13] | W. Takahashi, A convexity in metric space and nonexpansive mappings, Kodai Math. Semin. Rep., 22 (1970), 142–149. https://doi.org/10.2996/kmj/1138846111 doi: 10.2996/kmj/1138846111 |
[14] | A. A. Eldred, W. A. Kirk, P. Veeramani, Proximal normal structure and relatively nonexpansive mappings, Studia Math., 171 (2005), 283–293. https://doi.org/10.4064/sm171-3-5 doi: 10.4064/sm171-3-5 |
[15] | R. Espínola, M. Gabeleh, On the structure of minimal sets of relatively nonexpan- sive mappings, Numer. Funct. Anal. Optim., 34 (2013), 845–860. https://doi.org/10.1080/01630563.2013.763824 doi: 10.1080/01630563.2013.763824 |
[16] | M. Gabeleh, Minimal sets of noncyclic relatively nonexpansive mappings in convex metric spaces, Fixed Point Theory, 16 (2015), 313–322. |
[17] | M. Gabeleh, Proximal quasi-normal structure in convex metric spaces, An. Stiint. Univ. "Ovidius" Constanta, 22 (2014), 45–58. https://doi.org/10.2478/auom-2014-0049 doi: 10.2478/auom-2014-0049 |
[18] | M. Gabeleh, A characterization of proximal normal structure via proximal diametral sequences, J. Fixed Point Theory Appl., 19 (2017), 2909–2925. https://doi.org/10.1007/s11784-017-0460-y doi: 10.1007/s11784-017-0460-y |
[19] | M. Gabeleh, H. P. A. Kunzi, Min-max property in metric spaces with convex structure, Acta Math. Hungar., 157 (2019), 1730–190. https://doi.org/10.1007/s10474-018-0857-0 doi: 10.1007/s10474-018-0857-0 |
[20] | M. Gabeleh, O. O. Otafudu, Markov-Kakutani's theorem for best proximity pairs in Hadamard spaces, Indagat. Math., 28 (2017), 680–693. https://doi.org/10.1016/j.indag.2017.02.004 doi: 10.1016/j.indag.2017.02.004 |
[21] | U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Trans. Amer. Math. Soc., 357 (2005), 89–128. https://doi.org/10.1090/S0002-9947-04-03515-9 doi: 10.1090/S0002-9947-04-03515-9 |