We study the existence and approximation of fixed points for the recently introduced class of mappings called enriched Suzuki nonexpansive mappings in the setting of Banach spaces. We use the modified $ K $-iteration process to establish the main results of the paper. The class of enriched Suzuki nonexpansive operators is an important class of nonlinear operators that includes properly the class of Suzuki nonexpansive operators as well as enriched nonexpansive operators. Various assumptions are imposed on the domain or on the operator to establish the main convergence theorems. Eventually, a numerical example of enriched Suzuki nonexpansive operators is used to show the effectiveness of the studied iteration scheme. The main outcome of the paper is new and essentially suggests a new direction for researchers who are working on fixed point problems in a Banach space setting. Our results improve and extend some main results due to Hussain et al. (J. Nonlinear Convex Anal. 2018, 19, 1383–1393.), Ullah et al. (Axioms 2022, 1.) and others.
Citation: Thabet Abdeljawad, Kifayat Ullah, Junaid Ahmad, Muhammad Arshad, Zhenhua Ma. On the convergence of an iterative process for enriched Suzuki nonexpansive mappings in Banach spaces[J]. AIMS Mathematics, 2022, 7(11): 20247-20258. doi: 10.3934/math.20221108
We study the existence and approximation of fixed points for the recently introduced class of mappings called enriched Suzuki nonexpansive mappings in the setting of Banach spaces. We use the modified $ K $-iteration process to establish the main results of the paper. The class of enriched Suzuki nonexpansive operators is an important class of nonlinear operators that includes properly the class of Suzuki nonexpansive operators as well as enriched nonexpansive operators. Various assumptions are imposed on the domain or on the operator to establish the main convergence theorems. Eventually, a numerical example of enriched Suzuki nonexpansive operators is used to show the effectiveness of the studied iteration scheme. The main outcome of the paper is new and essentially suggests a new direction for researchers who are working on fixed point problems in a Banach space setting. Our results improve and extend some main results due to Hussain et al. (J. Nonlinear Convex Anal. 2018, 19, 1383–1393.), Ullah et al. (Axioms 2022, 1.) and others.
[1] | T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340 (2008), 1088–1095. https://doi.org/10.1016/j.jmaa.2007.09.023 doi: 10.1016/j.jmaa.2007.09.023 |
[2] | F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci. USA, 54 (1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041 doi: 10.1073/pnas.54.4.1041 |
[3] | D. Göhde, Zum prinzip der kontraktiven abbildung, Math. Nachr., 30 (1965), 251–258. https://doi.org/10.1002/mana.19650300312 doi: 10.1002/mana.19650300312 |
[4] | J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396–414. https://doi.org/10.1090/S0002-9947-1936-1501880-4 |
[5] | K. Goebel, W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35 (1972), 171–174. https://doi.org/10.1090/S0002-9939-1972-0298500-3 doi: 10.1090/S0002-9939-1972-0298500-3 |
[6] | K. Aoyama, F. Kohsaka, Fixed point theorem for $\alpha$-nonexpansive mappings in Banach spaces, Nonlinear Anal., 74 (2011), 4387–4391. https://doi.org/10.1016/j.na.2011.03.057 doi: 10.1016/j.na.2011.03.057 |
[7] | J. S. Bae, Fixed point theorems of generalized nonexpansive mappings, J. Korean Math. Soc., 21 (1984), 233–248. |
[8] | J. Bogin, A generalization of a fixed point theorem of Goebel, Kirk and Shimi, Can. Math. Bull., 19 (1976), 7–12. https://doi.org/10.4153/CMB-1976-002-7 doi: 10.4153/CMB-1976-002-7 |
[9] | K. Goebel, W. A. Kirk, T. N. Shimi, A fixed point theorem in uniformly convex spaces, Boll. Unione Mat. Ital., 7 (1973), 67–75. |
[10] | E. Llorens Fuster, E. Moreno Gálvez, The fixed point theory for some generalized nonexpansive mappings, Abstr. Appl. Anal., 2011 (2011), 435686. https://doi.org/10.1155/2011/435686 doi: 10.1155/2011/435686 |
[11] | S. Reich, The fixed point theory for some generalized nonexpansive mappings, Amer. Math. Monthly, 83 (1976), 266–268. |
[12] | S. Reich, The fixed point theory for some generalized nonexpansive mappings II, Amer. Math. Monthly, 87 (1980), 292–294. |
[13] | R. Pant, R. Shukla, Approximating fixed points of generalized $\alpha$-nonexpansive mappings in Banach spaces, Numer. Func. Anal. Opt., 38 (2017), 248–266. https://doi.org/10.1080/01630563.2016.1276075 doi: 10.1080/01630563.2016.1276075 |
[14] | J. García-Falset, E. Llorens-Fuster, T. Suzuki, Fixed point theory for a class of generalized nonexpasive mappings, J. Math. Anal. Appl., 375 (2011), 185–195. https://doi.org/10.1016/j.jmaa.2010.08.069 doi: 10.1016/j.jmaa.2010.08.069 |
[15] | B. Patir, N. Goswami, V. N. Mishra, Some results on fixed point theory for a class of generalized nonexpansive mappings, Fixed Point Theory Appl., 2018 (2018), 19. https://doi.org/10.1186/s13663-018-0644-1 doi: 10.1186/s13663-018-0644-1 |
[16] | V. Berinde, Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces, Carpathian J. Math., 35 (2019), 293–304. https://doi.org/10.37193/CJM.2019.03.04 doi: 10.37193/CJM.2019.03.04 |
[17] | K. Ullah, J. Ahmad, Z. Ma, Approximation of fixed points for enriched Suzuki nonexpansive mappings with an application in Hilbert spaces, Axioms, 11 (2022), 14. https://doi.org/10.3390/axioms11010014 doi: 10.3390/axioms11010014 |
[18] | C. Chidume, Geometric properties of Banach spaces and nonlinear iterations, Vol. 1965, Lecture Notes in Mathematics, Springer, 2009. |
[19] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181 |
[20] | E. Picard, Mémorie sur la théorie des équations aux dérivées partielles et la méthode des approximation ssuccessives, J. Math. Pure Appl., 6 (1890), 145–210. |
[21] | W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. https://doi.org/10.1090/S0002-9939-1953-0054846-3 doi: 10.1090/S0002-9939-1953-0054846-3 |
[22] | S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150. https://doi.org/10.1090/S0002-9939-1974-0336469-5 doi: 10.1090/S0002-9939-1974-0336469-5 |
[23] | M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042 doi: 10.1006/jmaa.2000.7042 |
[24] | R. P. Agarwal, D. O'Regon, D. R. Sahu, Iterative construction of fixed points of nearly asymtotically non-expansive mappings, J. Nonlinear Convex Anal., 8 (2007), 61–79. |
[25] | M. Abbas, T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Math. Vesnik, 66 (2014), 223–234. |
[26] | N. Hussain, K. Ullah, M. Arshad, Fixed point approximation of Suzuki generalized nonexpansive mappings via new faster iteration process, J. Nonlinear Convex Anal., 19 (2018), 1383–1393. |
[27] | B. S. Thakur, D. Thakur, M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized nonexpansive mappings, Appl. Math. Comput., 275 (2016), 147–155. https://doi.org/10.1016/j.amc.2015.11.065 doi: 10.1016/j.amc.2015.11.065 |
[28] | W. Takahashi, Nonlinear functional analysis, Yokohoma: Yokohoma Publishers, 2000. |
[29] | R. P. Agarwal, D. O'Regan, D. R. Sahu, Fixed point theory for Lipschitzian-type mappings with applications, Vol. 6, Topological Fixed Point Theory and Its Applications, New York: Springer, 2009. |
[30] | Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591–597. |
[31] | J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Aust. Math. Soc., 43 (1991), 153–159. https://doi.org/10.1017/S0004972700028884 doi: 10.1017/S0004972700028884 |
[32] | H. F. Senter, W. G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc., 44 (1974), 375–380. https://doi.org/10.1090/S0002-9939-1974-0346608-8 doi: 10.1090/S0002-9939-1974-0346608-8 |