Research article Special Issues

Approximating the solution of a nonlinear delay integral equation by an efficient iterative algorithm in hyperbolic spaces

  • Received: 10 December 2022 Revised: 28 March 2023 Accepted: 29 March 2023 Published: 21 April 2023
  • MSC : 26A33, 34B10, 34B15

  • In this article, we propose the modified AH iteration process in Hyperbolic spaces to approximate the fixed points of mappings enriched with condition $ (E) $. The data dependence result of the proposed iteration process is studied for almost contraction mappings. Further, we obtain several new strong and $ \vartriangle $-convergence results of the proposed iteration algorithm for the class of mappings enriched with the condition $ (E) $. Also, we illustrate the efficiency of our results over existing results in literature with the aid of some numerical examples. Finally, we use our main results to find the solution of nonlinear integral equation with two delays.

    Citation: Austine Efut Ofem, Hüseyin Işik, Godwin Chidi Ugwunnadi, Reny George, Ojen Kumar Narain. Approximating the solution of a nonlinear delay integral equation by an efficient iterative algorithm in hyperbolic spaces[J]. AIMS Mathematics, 2023, 8(7): 14919-14950. doi: 10.3934/math.2023762

    Related Papers:

  • In this article, we propose the modified AH iteration process in Hyperbolic spaces to approximate the fixed points of mappings enriched with condition $ (E) $. The data dependence result of the proposed iteration process is studied for almost contraction mappings. Further, we obtain several new strong and $ \vartriangle $-convergence results of the proposed iteration algorithm for the class of mappings enriched with the condition $ (E) $. Also, we illustrate the efficiency of our results over existing results in literature with the aid of some numerical examples. Finally, we use our main results to find the solution of nonlinear integral equation with two delays.



    加载中


    [1] M. Abbas, T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Math. Vesnik, 66 (2014), 223–234.
    [2] T. A. Adeyemi, F. Akutsah, A. A. Mebawondu, M. O. Adewole, O. K. Narain, The existence of a solution of the nonlinear integral equation via the fixed point approach, Adv. Math. Sci. J., 10 (2021), 2977–2998. https://doi.org/10.37418/amsj.10.7.5 doi: 10.37418/amsj.10.7.5
    [3] R. P. Agarwal, D. O. Regan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8 (2007), 61–79.
    [4] J. Ahmad, K. Ullah, M. Arshad, Z. Ma, A new iterative method for Suzuki mappings in Banach spaces, J. Math., 2021 (2021), 6622931. https://doi.org/10.1155/2021/6622931 doi: 10.1155/2021/6622931
    [5] J. Ahmad, H. Işik, F. Ali, K. Ullah, E. Ameer, M. Arshad, On the JK iterative process in Banach spaces, J. Funct. Spaces, 2021 (2021), 2500421. https://doi.org/10.1155/2021/2500421 doi: 10.1155/2021/2500421
    [6] K. Al-Khaled, Numerical approximations for population growth models, Appl. Math. Comput., 160 (2005), 865–873. https://doi.org/10.1016/j.amc.2003.12.005 doi: 10.1016/j.amc.2003.12.005
    [7] K. Aoyama, F. Kohsaka, Fixed point theorem for $\alpha$-nonexpansive mappings in Banach spaces, Nonlinear Anal., 74 (2011), 4387–4391. https://doi.org/10.1016/j.na.2011.03.057 doi: 10.1016/j.na.2011.03.057
    [8] I. Aziz, R. Amin, Numerical solution of a class of delay differential and delay partial differential equations via Haar wavelet, Appl. Math. Modell., 40 (2016), 10286–10299. https://doi.org/10.1016/j.apm.2016.07.018 doi: 10.1016/j.apm.2016.07.018
    [9] A. Bellour, M. Bousselsal, A Taylor collocation method for solving delay integral equations, Numer. Algorithm, 65 (2014), 843–857. https://doi.org/10.1007/s11075-013-9717-8 doi: 10.1007/s11075-013-9717-8
    [10] V. Berinde, On the approximation of fixed points of weak contractive mapping, Carpathian J. Math., 19 (2003), 7–22.
    [11] S. K. Chatterjea, Fixed point theorems, C. R. Acad., Bulgare Sci., 25 (1972), 727–730.
    [12] P. Chuadchawnay, A. Farajzadehz, A. Kaewcharoeny, On Convergence Theorems for Two Generalized Nonexpansive Multivalued Mappings in Hyperbolic Spaces, Thai J. Math., 17 (2019), 445–461.
    [13] R. Chugh, V. Kumar, S. Kumar, Strong convergence of a new three step iterative scheme in Banach spaces, Am. J. Comput., Math., 2 (2012), 345–357. https://doi.org/10.4236/ajcm.2012.24048 doi: 10.4236/ajcm.2012.24048
    [14] R. Chugh, P. Malik, V. Kumar, On analytical and numerical study of implicit fixed point iterations, Cogent Math., 2 (2015) 1021623. https://doi.org/10.1080/23311835.2015.1021623 doi: 10.1080/23311835.2015.1021623
    [15] A. Bielecki, Une remarque sur la methode de Banach-Cacciopoli-Tikhonov dans la theorie des equations di erentielles ordinaires, Bull. Acad. Polon. Sci., 4 (1956), 261–264.
    [16] L. P. Castro, A. M. Simões, Hyers‐Ulam‐Rassias stability of nonlinear integral equations through the Bielecki metric, Math. Methods Appl. Sci., 41 (2018), 7367–7383. https://doi.org/10.1002/mma.4857 doi: 10.1002/mma.4857
    [17] S. Dhompongsa, B. Panyanak, On $\triangle$-convergence theorem in CAT(0) spaces, Comput. Math. Appl., 56 (2008), 2572–2579. https://doi.org/10.1016/j.camwa.2008.05.036 doi: 10.1016/j.camwa.2008.05.036
    [18] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fundam. Math., 3 (1922): 133–181.
    [19] M. Basarir, A. Sahin, Some results of the new iterative scheme in Hyperbolic space, Commun. Korean Math. Soc., 32 (2017), 1009–1024. https://doi.org/10.4134/CKMS.c170031 doi: 10.4134/CKMS.c170031
    [20] J. García-Falset, E. Llorens-Fuster, T. Suzuki, Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Anal. Appl., 375 (2011), 185–195. https://doi.org/10.1016/j.jmaa.2010.08.069 doi: 10.1016/j.jmaa.2010.08.069
    [21] C. Garodia, I. Uddin, On Approximating Fixed Point in CAT(0) Spaces, Sahand Commun. Math. Anal., 18 (2021), 113–130. https://doi.org/10.22130/scma.2021.141881.880 doi: 10.22130/scma.2021.141881.880
    [22] F. Güsoy, A Picard-S iterative Scheme for Approximating Fixed Point of Weak-Contraction Mappings. https://doi.org/10.48550/arXiv.1404.0241
    [23] R. Kannan, Some results on fixed point, Bull. Calcutta Math. Soc., 10 (1968), 71–76.
    [24] W. A. Kirk, B. Panyanak, A concept in geodesic spaces, Nonlinear Anal., 68 (2008), 3689–3696. https://doi.org/10.1016/j.na.2007.04.011 doi: 10.1016/j.na.2007.04.011
    [25] U. Kohlenbach, Some logical metatherems with applications in functional analysis, Trans. Am. Math. Soc., 357 (2004), 89–128.
    [26] S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Am. Math. Soc., 59 (1976), 65–71.
    [27] J. K. Kim, R. P. Pathak, S. Dashputre, S. D. Diwan, R. Gupta, Convergence theorems for generalized nonexpansive multivalued mappings in hyperbolic spaces, SpringerPlus, 5 (2016), 912. https://doi.org/10.1186/s40064-016-2557-y doi: 10.1186/s40064-016-2557-y
    [28] L. Leustean, A quadratic rate of asymptotic regularity for CAT(0) spaces, J. Math. Anal. Appl., 235 (2007), 386–399. https://doi.org/10.1016/j.jmaa.2006.01.081 doi: 10.1016/j.jmaa.2006.01.081
    [29] A. R. Khan, H. Fukhar-ud-din, M. A. Kuan, An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces, Fixed Point Theory Appl., 2012 (2012), 54. doi.org/10.1186/1687-1812-2012-54 doi: 10.1186/1687-1812-2012-54
    [30] T. C. Lim, Remarks on some fixed point theorems, Proc. Am. Math. Soc., 60 (1976), 179–182.
    [31] W. R. Mann, Mean value methods in iteration, Proc. Am. Math. Soc., 4 (1953), 506–510.
    [32] M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042 doi: 10.1006/jmaa.2000.7042
    [33] A. E. Ofem, H. Işik, F. Ali, J. Ahmad, A new iterative approximation scheme for Reich–Suzuki type nonexpansive operators with an application, J. Inequal. Appl., 2022 (2022), 28. https://doi.org/10.1186/s13660-022-02762-8 doi: 10.1186/s13660-022-02762-8
    [34] A. E. Ofem, J. A. Abuchu, R. George, G. C. Ugwunnadi, O. K. Narain, Some new results on convergence, weak $w^2$–stability and data dependence of two multivalued almost contractive mappings in hyperbolic spaces, Mathematics, 10 (2022), 3720. https://doi.org/10.3390/math10203720 doi: 10.3390/math10203720
    [35] A. E. Ofem, D. I. Igbokwe, An efficient iterative method and its applications to a nonlinear integral equation and a delay differential equation in Banach spaces, Turkish J. Ineq., 4 (2020), 79–107.
    [36] A. E. Ofem, D. I. Igbokwe, A new faster four step iterative algorithm for Suzuki generalized nonexpansive mappings with an application, Adv. Theory Nonlinear Anal. Appl., 5 (2021), 482–506. https://doi.org/10.31197/atnaa.869046.a doi: 10.31197/atnaa.869046.a
    [37] A. E. Ofem, U. E. Udofia, D. I. Igbokwe, A robust iterative approach for solving nonlinear Volterra Delay integro-differential equations, Ural Math. J., 7 (2021), 59–85. http://doi.org/10.15826/umj.2021.2.005 doi: 10.15826/umj.2021.2.005
    [38] A. E. Ofem, M. O. Udo, O. Joseph, R. George, C. F. Chikwe, Convergence Analysis of a New Implicit Iterative Scheme and Its Application to Delay Caputo Fractional Differential Equations, Fractal Fract., 7 (2023), 212. https://doi.org/10.3390/fractalfract7030212 doi: 10.3390/fractalfract7030212
    [39] G. A. Okeke, A. E. Ofem, T. Abdeljawad, M. A Alqudah, A. Khan, A solution of a nonlinear Volterra integral equation with delay via a faster iteration method, AIMS Mathematics, 8 (2023), 102–124. https://doi.org/10.3934/math.2023005 doi: 10.3934/math.2023005
    [40] R. Pandey, R. Pant, V. Rakocevic, R. Shukla, Approximating fixed points of a general class of nonexpansive mappings in Banach spaces with applications, Results Math., 74 (2019), 7. https://doi.org/10.1007/s00025-018-0930-6 doi: 10.1007/s00025-018-0930-6
    [41] R. Pant, R. Pandey, Existence and convergence results for a class of non-expansive type mappings in hyperbolic spaces, Appl. Gen. Topol., 20 (2019), 281–295. https://doi.org/10.4995/agt.2019.11057 doi: 10.4995/agt.2019.11057
    [42] D. Pant, R. Shukla, Approximating fixed points of generalized $\alpha$-nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optim., 38 (2017), 248–266. https://doi.org/10.1080/01630563.2016.1276075 doi: 10.1080/01630563.2016.1276075
    [43] H. F. Senter, W. G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Am. Math. Soc., 44 (1974), 375–380.
    [44] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340 (2008), 1088–1095. https://doi.org/10.1016/j.jmaa.2007.09.023 doi: 10.1016/j.jmaa.2007.09.023
    [45] W. Takahashi, A convexity in metric space and nonexpansive mappings, Kodai Math. Semin. Rep., 22 (1970), 142–149.
    [46] B. S. Thakurr, D. Thakur, M. Postolache, A new iterative scheme for numerical reckoning of fixed points of Suzuki's generalized nonexpansive mappings, Appl. Math. Comput., 275 (2016), 147–155. https://doi.org/10.1016/j.amc.2015.11.065 doi: 10.1016/j.amc.2015.11.065
    [47] S. M. Soltuz, T. Grosan, Data dependence for Ishikawa iteration when dealing with contractive like operators, Fixed Point Theory Appl., 2008 (2008), 242916. https://doi.org/10.1155/2008/242916 doi: 10.1155/2008/242916
    [48] K. Ullah, M. Arshad, Numerical Reckoning Fixed Points for Suzuki's Generalized Nonexpansive Mappings via New Iteration Process, Filomat, 32 (2018), 187–196. https://doi.org/10.2298/FIL1801187U doi: 10.2298/FIL1801187U
    [49] A. M. Wazwaz, A First Course in Integral Equations, London: World Scientific, 2015.
    [50] H. Wu, R. Amin, A. Khan, S. Nazir, S. Ahmad, Solution of the systems of delay Integral equations in heterogeneous data communication through Haar wavelet collocation approach, Complexity, 2021 (2021), 5805433. https://doi.org/10.1155/2021/5805433 doi: 10.1155/2021/5805433
    [51] Z. Yang, H. Brunner, Blow-up behavior of Hammerstein-type delay Volterra integral equations, Front. Math. China, 8 (2013), 261–280. https://doi.org/10.1007/s11464-013-0293-y doi: 10.1007/s11464-013-0293-y
    [52] I. Yildirim, M. Abbas, Convergence Rate of Implicit Iteration Process and a Data Dependence Result, Eur. J. Pure Appl. Math., 11 (2018), 189–201. https://doi.org/10.29020/nybg.ejpam.v11i1.2911 doi: 10.29020/nybg.ejpam.v11i1.2911
    [53] T. Zamfirescu, Fixed point theorems in metric spaces, Arch. Math., 23 (1972), 292–298.
    [54] F. Zare, M. Heydari, G. B. Loghmani, Quasilinearization-based Legendre collocation method for solving a class of functional Volterra integral equations, Asian-Eur. J. Math., 16 (2023), 2350078. https://doi.org/10.1142/S179355712350078X doi: 10.1142/S179355712350078X
    [55] F. Zare, M. Heydari, G. B. Loghmani, Spectral quasilinearization method for the numerical solution of the non-standard volterra integral Equations, Iran J. Sci., 47 (2023), 229–247. https://doi.org/10.1007/s40995-022-01408-0 doi: 10.1007/s40995-022-01408-0
    [56] L. Zhao, S. Chang, X. R. Wang, Convergence theorems for total asymptotically nonexpansive mappings in hyperbolic spaces, J. Appl. Math., 2013 (2013), 689765. http://doi.org/10.1155/2013/689765 doi: 10.1155/2013/689765
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1414) PDF downloads(90) Cited by(6)

Article outline

Figures and Tables

Figures(4)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog