In this paper, we investigated several new fixed points theorems for multivalued mappings in the framework $ b $-metric spaces. We first generalized $ S $-iterative schemes for multivalued mappings to above spaces by means of a convex structure and then we developed the existence of fixed points and approximate endpoints of the multivalued contraction mappings using iteration techniques. Furthermore, we introduced the modified $ S $-iteration process for approximating a common endpoint of a multivalued $ \alpha_{s} $-nonexpansive mapping and a multivalued mapping satisfying conditon $ (E^{'}) $. We also showed that this new iteration process converges faster than the $ S $-iteration process in the sense of Berinde. Some convergence results for this iterative procedure to a common endpoint under some certain additional hypotheses were proved. As an application, we applied the $ S $-iteration process in finding the solution to a class of nonlinear quadratic integral equations.
Citation: Dong Ji, Yao Yu, Chaobo Li. Fixed point and endpoint theorems of multivalued mappings in convex $ b $-metric spaces with an application[J]. AIMS Mathematics, 2024, 9(3): 7589-7609. doi: 10.3934/math.2024368
In this paper, we investigated several new fixed points theorems for multivalued mappings in the framework $ b $-metric spaces. We first generalized $ S $-iterative schemes for multivalued mappings to above spaces by means of a convex structure and then we developed the existence of fixed points and approximate endpoints of the multivalued contraction mappings using iteration techniques. Furthermore, we introduced the modified $ S $-iteration process for approximating a common endpoint of a multivalued $ \alpha_{s} $-nonexpansive mapping and a multivalued mapping satisfying conditon $ (E^{'}) $. We also showed that this new iteration process converges faster than the $ S $-iteration process in the sense of Berinde. Some convergence results for this iterative procedure to a common endpoint under some certain additional hypotheses were proved. As an application, we applied the $ S $-iteration process in finding the solution to a class of nonlinear quadratic integral equations.
[1] | I. A. Bakhtin, The contraction principle in quasi metric spaces, Funct. Anal., 30 (1989), 26–37. |
[2] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11. |
[3] | M. Gromov, Metric structure for riemannian and non-riemannian spaces, In: Progr. Math., Birkhauser, Boston, 152 (1984). |
[4] | J. Markin, A fixed point theorem for set valued mappings, Bull. Amer. Math. Soc., 74 (1968), 639–640. https://doi.org/10.1090/S0002-9904-1968-11971-8 doi: 10.1090/S0002-9904-1968-11971-8 |
[5] | S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475–488. https://doi.org/10.2140/pjm.1969.30.475 doi: 10.2140/pjm.1969.30.475 |
[6] | H. Aydi, M. F. Bota, E. Karapınar, S. Mitrović, A fixed point theorem for set-valued quasi-contractions in $b$-metric spaces, Fixed Point Theory A., 30 (2012). |
[7] | M. Boriceanu, M. Bota, A. Petruşel, Multi-valued fractals in $b$-metric spaces, Cent. Eur. J. Math., 8 (2010), 367–377. https://doi.org/10.1186/1687-1812-2012-88 doi: 10.1186/1687-1812-2012-88 |
[8] | L. L. Chen, L. Gao, D. Chen, Fixed point theorems of mean nonexpansive set-valued mappings in Banach spaces, J. Fixed Point Theory A., 19 (2017), 2129–2143. https://doi.org/10.1007/s11784-017-0401-9 doi: 10.1007/s11784-017-0401-9 |
[9] | L. L. Chen, N. Yang, Y. F. Zhao, Z. H. Ma, Fixed point theorems for set-valued $G$-contractions in a graphical convex metric space with applications, J. Fixed Point Theory A., 22 (2020), 1–23. https://doi.org/10.1007/s11784-020-00828-y doi: 10.1007/s11784-020-00828-y |
[10] | L. L. Chen, J. Zou, Y. F. Zhao, M. G. Zhang, Iterative approximation of common attractive points of $(\alpha, \beta)$-generalized hybrid set-valued mappings, J. Fixed Point Theory A., 21 (2019), 1–17. https://doi.org/10.1007/s11784-019-0692-0 doi: 10.1007/s11784-019-0692-0 |
[11] | N. Hussain, P. Salimi, A. Latif, Fixed point results for single and set-valued $\alpha$-$\eta$-$\psi$-contractive mappings, Fixed Point Theory A., 2013 (2013), 1–23. https://doi.org/10.1186/1687-1812-2013-212 doi: 10.1186/1687-1812-2013-212 |
[12] | F. Khojasteh, V. Rakočević, Some new common fixed point results for generalized contractive multi-valued nonself-mappings, Appl. Math. Lett., 25 (2012), 287–293. https://doi.org/10.1016/j.aml.2011.07.021 doi: 10.1016/j.aml.2011.07.021 |
[13] | N. Shahzad, H. Zegeye, On Mann and Ishikawa iteration schemes for multi-valued maps in Banach spaces, Nonlinear Anal.-Theor., 71 (2009), 838–844. https://doi.org/10.1016/j.na.2008.10.112 doi: 10.1016/j.na.2008.10.112 |
[14] | J. H. Aubin, J. Siegel, Fixed points and stationary points of dissipative multivalued maps, P. Am. Math. Soc., 78 (1980), 391–398. https://doi.org/10.1016/j.na.2008.10.112 doi: 10.1016/j.na.2008.10.112 |
[15] | A. Amini-Harandi, Endpoints of set-valued contractions in metric spaces, Nonlinear Anal., 72 (2010), 132–134. https://doi.org/10.1016/j.na.2009.06.074 doi: 10.1016/j.na.2009.06.074 |
[16] | B. Panyanak, Approximating endpoints of multi-valued nonexpansive mappings in Banach spaces, J. Fixed Point Theory A., 20 (2018), 1–8. https://doi.org/10.1007/s11784-018-0564-z doi: 10.1007/s11784-018-0564-z |
[17] | S. Reich, Fixed points of contractive functions, Boll. Unione Mat. Ital., 5 (1972), 26–42. |
[18] | S. Saejung, Remarks on endpoints of multivalued mappings on geodesic spaces, Fixed Point Theory A., 52 (2016), 1–12. https://doi.org/10.1186/s13663-016-0541-4 doi: 10.1186/s13663-016-0541-4 |
[19] | V. Berinde, Iterative approximation of fixed points, Efemeride, Baia Mare, 2002. |
[20] | V. Berinde, M. Păcurar, The fastest Krasnoselskij iteration for approximating fixed points of strictly pseudo-contractive mappings, Carpathian J. Math., 21 (2005), 13–20. https://doi.org/10.15672/HJMS.2015449658 doi: 10.15672/HJMS.2015449658 |
[21] | W. R. Mann, Mean value methods in iteration, P. Am. Math. Soc., 4 (1953), 506–510. https://doi.org/10.1090/S0002-9939-1953-0054846-3 doi: 10.1090/S0002-9939-1953-0054846-3 |
[22] | S. Ishikawa, Fixed points by a new iteration method, P. Am. Math. Soc., 44 (1974), 147–150. https://doi.org/10.1090/S0002-9939-1974-0336469-5 doi: 10.1090/S0002-9939-1974-0336469-5 |
[23] | M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042 doi: 10.1006/jmaa.2000.7042 |
[24] | R. P. Agarwal, D. ÓRegan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex A., 8 (2007), 61–79. |
[25] | W. Takahashi, A convexity in metric space and nonexpansive mappings, I. Kodai Math. J., 22 (1970), 142–149. |
[26] | V. Rakočević, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J., 28 (1986), 193–198. |
[27] | H. Fukhar-Ud-Din, A. R. Khan, Z. Akhtar, Fixed point results for a generalized nonexpansive map in uniformly convex metric spaces, Nonlinear Anal.-Theor., 75 (2012), 4747–4760. https://doi.org/10.1016/j.na.2012.03.025 doi: 10.1016/j.na.2012.03.025 |
[28] | D. Ji, C. B. Li, Y. A. Cui, Fixed point theorems for Mann's iteration scheme in convex Gb-metric spaces with an application, Axioms, 12 (2023), 108. https://doi.org/10.3390/axioms12020108 doi: 10.3390/axioms12020108 |
[29] | V. Berinde, M. Păcurar, Fixed point theorems for enriched ćirić-Reich-Rus contractions in Banach spaces and convex metric spaces, Carpathian J. Math., 37 (2021), 173–184. https://doi.org/10.37193/CJM.2021.02.03 doi: 10.37193/CJM.2021.02.03 |
[30] | A. Razani, M. Bagherboum, Convergence and stability of Jungck-type iterative procedures in convex $b$-metric spaces, Fixed Point Theory A., 2013 (2017), 1–17. https://doi.org/10.1186/1687-1812-2013-331 doi: 10.1186/1687-1812-2013-331 |
[31] | C. B. Li, Y. A. Cui, L. L. Chen, Fixed point results on closed ball in convex rectangular metric spaces and applications, J. Funct. Space., 2022 (2022), 8840964. https://doi.org/10.1186/1687-1812-2013-331 doi: 10.1186/1687-1812-2013-331 |
[32] | K. Aoyama, F. Kohsaka, Fixed point theorem for $\alpha$-nonexpansive mappings in Banach spaces, Nonlinear Anal., 74 (2011), 4387–4391. https://doi.org/10.1016/j.na.2011.03.057 doi: 10.1016/j.na.2011.03.057 |
[33] | E. Llorens-Fuster, E. Moreno-Galvez, The fixed point theory for some generalized nonexpansive mappings, Abstr. Appl. Anal., 15 (2011), 435686. https://doi.org/10.1155/2011/435686 doi: 10.1155/2011/435686 |
[34] | D. M. Oyetunbi, A. R. Khan, Approximating common endpoints of multivalued generalized nonexpansive mappings in hyperbolic spaces, Appl. Math. Comput., 392 (2021), 125699. https://doi.org/10.1016/j.amc.2020.125699 doi: 10.1016/j.amc.2020.125699 |
[35] | L. L. Chen, C. B. Li, R. Kaczmarek, Y. F. Zhao, Several fixed point theorems in convex $b$-metric spaces and applications, Mathematics, 8 (2020), 242. https://doi.org/10.3390/math8020242 doi: 10.3390/math8020242 |
[36] | S. Czerwik, Nonlinear set-valued contraction mappings in $b$-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 263–276. |
[37] | S. Czerwik, K. Dlutek, S. L. Singh, Round-off stability of iteration procedures for operators in $b$-metric spaces, J. Nature Phys. Sci., 11 (1997), 87–94. |
[38] | T. Laokul, B. Anyanak, N. Phudolsitthiphat, N. S. Suantai, Common endpoints of generalized Suzuki-Kannan-Ćirić type mappings in hyperbolic spaces, Carpathian J. Math., 8 (2022), 445–457. |
[39] | H. Fukhar-Ud-Din, One step iterative scheme for a pair of nonexpansive mappings in a convex metric space, Hacet. J. Math. Stat., 44 (2015), 1023–1031. https://doi.org/10.2996/kmj/1138846111 doi: 10.2996/kmj/1138846111 |