This work is concentrated on the study of a system of mixed generalized Cayley variational inclusions. Parallel Mann iteration process is defined in order to achieve the solution. We define an altering point problem which is equivalent to our system and then we construct general parallel S-iteration process. Finally, we discuss convergence criteria and provide an example.
Citation: Iqbal Ahmad, Faizan Ahmad Khan, Arvind Kumar Rajpoot, Mohammed Ahmed Osman Tom, Rais Ahmad. Convergence analysis of general parallel S-iteration process for system of mixed generalized Cayley variational inclusions[J]. AIMS Mathematics, 2022, 7(11): 20259-20274. doi: 10.3934/math.20221109
[1] | Xiaomei Zhang, Xiang Chen . Uniqueness of difference polynomials. AIMS Mathematics, 2021, 6(10): 10485-10494. doi: 10.3934/math.2021608 |
[2] | Hicham Saber, Zahid Raza, Abdulaziz M. Alanazi, Adel A. Attiya, Akbar Ali . On trees with a given number of segments and their maximum general Z-type index. AIMS Mathematics, 2025, 10(1): 195-207. doi: 10.3934/math.2025010 |
[3] | Rabha W. Ibrahim, Dumitru Baleanu . Geometric behavior of a class of algebraic differential equations in a complex domain using a majorization concept. AIMS Mathematics, 2021, 6(1): 806-820. doi: 10.3934/math.2021049 |
[4] | Ran Ran Zhang, Chuang Xin Chen, Zhi Bo Huang . Uniqueness on linear difference polynomials of meromorphic functions. AIMS Mathematics, 2021, 6(4): 3874-3888. doi: 10.3934/math.2021230 |
[5] | Chunlian Liu . Non-resonance with one-sided superlinear growth for indefinite planar systems via rotation numbers. AIMS Mathematics, 2022, 7(8): 14163-14186. doi: 10.3934/math.2022781 |
[6] | Rashid Farooq, Laiba Mudusar . Non-self-centrality number of some molecular graphs. AIMS Mathematics, 2021, 6(8): 8342-8351. doi: 10.3934/math.2021483 |
[7] | Shunqi Ma . On the distribution of k-full lattice points in Z2. AIMS Mathematics, 2022, 7(6): 10596-10608. doi: 10.3934/math.2022591 |
[8] | Fugang Chao, Donghan Zhang . Neighbor sum distinguishing total choice number of IC-planar graphs with restrictive conditions. AIMS Mathematics, 2023, 8(6): 13637-13646. doi: 10.3934/math.2023692 |
[9] | Fareeha Jamal, Muhammad Imran . Distance spectrum of some zero divisor graphs. AIMS Mathematics, 2024, 9(9): 23979-23996. doi: 10.3934/math.20241166 |
[10] | Tae Hun Kim, Ha Nuel Ju, Hong Nyeong Kim, Seong Yoon Jo, Choonkil Park . Bihomomorphisms and biderivations in Lie Banach algebras. AIMS Mathematics, 2020, 5(3): 2196-2210. doi: 10.3934/math.2020145 |
This work is concentrated on the study of a system of mixed generalized Cayley variational inclusions. Parallel Mann iteration process is defined in order to achieve the solution. We define an altering point problem which is equivalent to our system and then we construct general parallel S-iteration process. Finally, we discuss convergence criteria and provide an example.
Special functions are important in the study of real analysis, geometry, functional analysis, physics and differential equations. The Mittag-Leffler function is one of them and plays a vital role in the study of fractional analysis. It is actually a generalization of the exponential function with the help of the gamma function. The role of this function in fractional differential equations is equally as important as the role of the exponential function in the study of differential equations. The Mittag-Leffler function is also used to define fractional integral operators of different types, which are further utilized in solving problems in diverse fields of science and engineering. In this paper, we are interested in producing fractional integral inequalities for fractional integrals containing a generalized extended Mittag-Leffler function.
Fractional integrals (FIs) are very useful in the advancement of fractional inequalities. A large number of classical inequalities (such as Hadamard [1], Chebyshev [2], Grüss [3], Ostrowski [4] and Pólya-Szegö [5] inequalities etc.) exist in literature for several kinds of FIs. For example, Sarikaya and Yildirim [6] derived Hadamard type inequalities for Riemann-Liouville FIs. Almutairi and Kılıçman [7] gave the Hadamard inequality and related integral inequalities for Katugampola type FIs. Adil et al. [8] established Hadamard type inequalities for conformable FIs. Belarbi and Dahmani [9] proved the Chebyshev type inequalities for Riemann-Liouville integrals. Habib et al. [10] established Chebyshev type integral inequalities for generalized k-fractional conformable integrals. Set et al. [11] gave Chebyshev type inequalities for generalized FIs involving a Mittag-Leffler function. Tariboon et al. [12] derived Grüss type integral inequalities for Riemann-Liouville integrals. Mubeen and Iqbal [13] established Grüss type integral inequalities for generalized Riemann-Liouville (k,r)-integrals. Habib et al. [14] gave Grüss type integral inequalities for generalized (k,s)-conformable integrals. Basci and Baleanu [15] derived Ostrowski type inequalities for ψ-Hilfer FIs. Gürbüz et al. [16] gave Ostrowski type inequalities for Katugampola FIs. Kwun et al. [17] established Ostrowski type inequalities for generalized Riemann-Liouville k-FIs. They also gave the error bounds of the Hadamard inequality. Ntouyas et al. [18] derived Pólya-Szegö and Chebyshev type inequalities for Riemann-Liouville FIs. Rashid et al. [19] proved Pólya-Szegö and Chebyshev type inequalities via generalized k-FIs. Du et al. [20] derived Bullen-type inequalities via generalized fractional integrals.
With motivation from the above articles, we intend to produce integral inequalities by applying a generalized convexity given in Definition 2.2 and utilizing fractional integrals given in Eqs (2.1) and (2.2). In the next section, preliminary definitions are given which will contribute in establishing the results of this paper.
Recently, Zhang et al. [21] established Pólya-Szegö and Chebyshev type inequalities via generalized k-FIs involving an extended Mittag-Leffler function. In the following we give the definition of generalized k-FIs directly linked with definitions of many well-known FIs.
Definition 2.1. Generalized k-FIs: [21] Let U be a positive and integrable function and V be a differentiable and strictly increasing function such that U,V:[η,ζ]→R with 0<η<ζ. Also let φ,ρ,ϑ,r,Ψ∈C,ς,ϵ,Υ≥0 with k>0 and 0<μ≤ϵ+ς. Then for σ∈[η,ζ],
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+U)(λ;Υ)=∫λη(V(λ)−V(σ))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(σ))ςk;Υ)U(σ)d(V(σ)), | (2.1) |
and
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,ζ−U)(λ;Υ)=∫ζλ(V(σ)−V(λ))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(σ)−V(λ))ςk;Υ)U(σ)d(V(σ)), | (2.2) |
are called generalized k-FIs involving the following Mittag-Leffler function:
Eρ,ϵ,μ,rς,Ψ,φ,k(σ;Υ)=∞∑n=0βp(ρ+nμ,r−ρ)β(ρ,r−ρ)(r)nμkΓk(ςn+Ψ)σn(φ)nϵ. | (2.3) |
Remark 2.1. The FIs given in Eqs (2.1) and (2.2) represent several well-known FIs which already exist in the literature. For example, for k=1, the FIs defined in [22] are achieved. For k=1 and V(λ)=λ, the FIs defined in [23] are achieved. For k=1, V(λ)=λ and Υ=0, the FIs defined in [24] are achieved. For k=1, V(λ)=λ and ϵ=ϑ=1, the FIs defined in [25] are achieved. For k=1, V(λ)=λ, Υ=0 and ϵ=ϑ=1, the FIs defined in [26] are achieved. For k=1, V(λ)=λ, Υ=0 and μ=ϵ=ϑ=1, the FIs defined in [27] are achieved. For k=1, V(λ)=λΨΨ, Ψ>0 and ϑ=Υ=0, the FIs defined in [28] are achieved. For k=1, V(λ)=lnλ and ϑ=Υ=0, the FIs defined in [29] are achieved. For V(λ)=λΨ+1Ψ+1 and ϑ=Υ=0, the FIs defined in [30] are achieved. For k=1, V(λ)=λΨ+ΦΨ+Φ and ϑ=Υ=0, the FIs defined in [31] are achieved. For V(λ)=(λ−η)ΨΨ, Ψ>0 in Eq (2.1) and V(λ)=−(ζ−λ)ΨΨ, Ψ>0 in Eq (2.2) with ϑ=Υ=0, the FIs defined in [10] are achieved. For V(λ)=(λ−η)ΨΨ, Ψ>0 in Eq (2.1) and V(λ)=−(ζ−λ)ΨΨ, Ψ>0 in Eq (2.2) with k=1 and ϑ=Υ=0, the FIs defined in [32] are achieved. For ϑ=Υ=0, the FIs defined in [17] are achieved. For ϑ=Υ=0 and k=1, the FIs defined in [29] are achieved. For ϑ=Υ=0 and V(λ)=λ, the FIs defined in [33] are achieved. For ϑ=Υ=0, V(λ)=λ and k=1, the classical Riemann-Liouville FIs are achieved.
For a detailed study on different kinds of fractional integrals and their applications, refer to [29,34,35,36,37].
From the k-FIs defined in Eqs (2.1) and (2.2), one can have
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+1)(λ;Υ)=k(V(λ)−V(η))ΨkEρ,ϵ,μ,rς,Ψ+k,φ,k(ϑ(V(λ)−V(η))ςk;Υ):=JΨk,η+(λ;Υ), | (2.4) |
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,ζ−1)(λ;Υ)=k(V(ζ)−V(λ))ΨkEρ,ϵ,μ,rς,Ψ+k,φ,k(ϑ(V(ζ)−V(λ))ςk;Υ):=JΨk,ζ−(λ;Υ). | (2.5) |
Convexity also plays an important role in the advancement of fractional inequalities. Its generalizations and extensions have been defined in various ways. In literature, a large number of classical fractional inequalities exist for various kinds of convexities. For example, Liu [38] proved the Ostrowski type inequalities for Riemann-Liouville FIs via h-convex functions. Chen [39] derived Hadamard type inequalities for Riemann-Liouville FIs via two kinds of convexities. Kang et al. [40] gave Hadamard and Fejér-Hadamard type inequalities for generalized FIs involving a Mittag-Leffler function via (h−m)-convex functions. For further details related to the classical fractional inequalities, we refer the readers to [41].
Next, we give the definition of strongly exponentially (α,h−m)−p-convex functions.
Definition 2.2. Strongly Exponentially (α,h−m)−p-convexity: [42] A function U:(0,ζ]→R is said to be a strongly exponentially (α,h−m)−p-convex function with modulus ϖ≥0, if U is positive and
U((σηp+(1−σ)ζp)1p)≤h(σα)U(η)eΩη+mh(1−σα)U(ζ)eΩζ−ϖmh(σα)h(1−σα)|ζp−ηp|2eΩ(ηp+ζp), | (2.6) |
holds, while J⊆R is an interval containing (0,1) and h:J→R be a positive function with (σηp+(1−σ)ζp)1p∈(0,ζ], (α,m)∈[0,1]2, 0<σ<1 and Ω∈R.
Remark 2.2. A function satisfying Eq (2.6) can produces various kinds of convex functions as follows:
(1) For p=1, a strongly exponentially (α,h−m)-convex function is achieved.
(2) For h(σ)=σ, a strongly exponentially (α,m)−p-convex function is achieved.
(3) For m=1, a strongly exponentially (α,h)−p-convex function is achieved.
(4) For α=1, a strongly exponentially (h−m)−p-convex function is achieved.
(5) For p=m=1, a strongly exponentially (α,h)-convex function is achieved.
(6) For α=m=1, a strongly exponentially (h,p)-convex function is achieved.
(7) For p=α=m=1, a strongly exponentially h-convex function is achieved.
(8) For h(σ)=σ, and p=1, a strongly exponentially (α,m)-convex function is achieved.
(9) For h(σ)=σ, and m=1, a strongly exponentially (α,p)-convex function is achieved.
(10) For h(σ)=σ, and α=1, a strongly exponentially (m,p)-convex function is achieved.
(11) For h(σ)=σ, and p=m=1, a strongly exponentially α-convex function is achieved.
(12) For h(σ)=σ, and p=α=1, a strongly exponentially m-convex function is achieved.
(13) For h(σ)=σ, and α=m=1, a strongly exponentially p-convex function is achieved.
(14) For h(σ)=σ, and p=α=m=1, a strongly exponentially convex function is achieved.
In recent years, authors have derived the bounds of several FIs for different kinds of convex functions. For example, Farid [43] established the bounds of Riemann-Liouville FIs for convex functions. Mehmood and Farid [44] gave the bounds of generalized Riemann-Liouville k-FIs for m-convex functions. Yu et al. [45] proved the bounds of generalized FIs involving the Mittag-Leffler function for strongly exponentially (α,h−m)-convex functions.
This paper aims to derive the bounds of generalized k-FIs for strongly exponentially (α,h−m)−p-convex functions. In the upcoming section, first we derive the bounds of k-FIs presented in Eqs (2.1) and (2.2) for strongly exponentially (α,h−m)−p-convex functions satisfying the Eq (2.6). Then an identity is proved to derive the Hadamard type inequality for k-FIs via strongly exponentially (α,h−m)−p-convex functions. The presented results provide several bounds of various FIs and convex functions by using convenient substitutions.
In this section, we first state and prove the following theorem which provides upper bounds of generalized fractional integrals. After that, a modulus inequality is proved in Theorem 3.2. A Hadamard type inequality is proved in Theorem 3.3 by first applying a symmetry like condition stated in Lemma 3.1.
Theorem 3.1. Let U,V:[η,ζ]⟶R,η<ζ, such that U be positive, integrable and strongly exponentially (α,h−m)−p-convex, m∈(0,1], and V be differentiable and strictly increasing with V′∈L1[η,ζ]. Then, for h(η)h(ζ)≤h(η+ζ), Ψ,Φ≥k and Ω∈R, we have:
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+U∘G)(λ;Υ)+(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−U∘G)(λ;Υ)≤(λ−η)(V(λ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)[U((η)1p)eΩ((η)1p)Xηλ(h,Qα;V′)+mU((λm)1p)eΩ((λm)1p)Xηλ(h,1−Qα;V′)−ϖ(λ−mη)2h(1)(V(λ)−V(η))m(λ−η)eΩ(η+(λ/m))]+(ζ−λ)(V(ζ)−V(λ))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(ζ)−V(λ))ςk;Υ)[U((ζ)1p)eΩ((ζ)1p)Xζλ(h,Qα;V′)+mU((λm)1p)eΩ((λm)1p)Xζλ(h,1−Qα;V′)−ϖ(mζ−λ)2h(1)(V(ζ)−V(λ))m(ζ−λ)eΩ(ζ+(λ/m))], | (3.1) |
where G(σ)=σ1p, Xηλ(h,Qα;V′)=∫10h(Qα)V′(λ−Q(λ−η))dQ, Xηλ(h,1−Qα;V′)=∫10h(1−Qα)V′(λ−Q(λ−η))dQ.
Proof. Under the given assumptions, the following inequalities are valid:
(V(λ)−V(σ))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(σ))ςk;Υ)V′(σ)≤(V(λ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)V′(σ),η<σ<λ, | (3.2) |
(V(σ)−V(λ))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(σ)−V(λ))ςk;Υ)V′(σ)≤(V(ζ)−V(λ))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(ζ)−V(λ))ςk;Υ)V′(σ),λ<σ<ζ. | (3.3) |
By utilizing the strongly exponentially (α,h−m)−p-convexity of U, we obtain:
U((σ)1p)≤h(λ−σλ−η)αU((η)1p)eΩ((η)1p)+mh(1−(λ−σλ−η)α)U((λm)1p)eΩ((λm)1p)−ϖ(λ−mη)2meΩ(η+(λ/m))h(λ−σλ−η)αh(1−(λ−σλ−η)α), | (3.4) |
U((σ)1p)≤h(σ−λζ−λ)αU((ζ)1p)eΩ((ζ)1p)+mh(1−(σ−λζ−λ)α)U((λm)1p)eΩ((λm)1p)−ϖ(mζ−λ)2meΩ(ζ+(λ/m))h(σ−λζ−λ)αh(1−(σ−λζ−λ)α). | (3.5) |
From inequalities (3.2) and (3.4), the following inequality is valid:
∫λη(V(λ)−V(σ))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(σ))ςk;Υ)V′(σ)U((σ)1p)dσ≤(V(λ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)[U((η)1p)eΩ((η)1p)∫ληh(λ−σλ−η)αV′(σ)dσ+mU((λm)1p)eΩ((λm)1p)∫ληh(1−(λ−σλ−η)α)V′(σ)dσ−ϖ(λ−mη)2meΩ(η+(λ/m))∫ληh(λ−σλ−η)αh(1−(λ−σλ−η)α)V′(σ)dσ]. |
By utilizing the left integral operator given in Eq (2.1) on the left-hand side and making substitution Q=(λ−σ)/(λ−η) on the right-hand side, we obtain:
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+U∘G)(λ;Υ)≤(λ−η)(V(λ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)[U((η)1p)eΩ((η)1p)∫10h(Qα)V′(λ−Q(λ−η))dQ+mU((λm)1p)eΩ((λm)1p)∫10h(1−Qα)V′(λ−Q(λ−η))dQ−ϖ(λ−mη)2meΩ(η+(λ/m))∫10h(Qα)h(1−Qα)V′(λ−Q(λ−η))dQ]. |
The above inequality takes the following form:
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+U∘G)(λ;Υ)≤(λ−η)(V(λ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)[U((η)1p)eΩ((η)1p)Xηλ(h,Qα;V′)+mU((λm)1p)eΩ((λm)1p)Xηλ(h,1−Qα;V′)−ϖ(λ−mη)2h(1)(V(λ)−V(η))m(λ−η)eΩ(η+(λ/m))]. | (3.6) |
On the other hand, multiplying (3.3) and (3.5), and following the same way as we did for (3.2) and (3.4), the following inequality is valid:
(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−U∘G)(λ;Υ)≤(ζ−λ)(V(ζ)−V(λ))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(ζ)−V(λ))ςk;Υ)[U((ζ)1p)eΩ((ζ)1p)∫10h(Qα)V′(λ−Q(λ−ζ))dQ+mU((λm)1p)eΩ((λm)1p)∫10h(1−Qα)V′(λ−Q(λ−ζ))dQ−ϖ(mζ−λ)2meΩ(ζ+(λ/m))∫10h(Qα)h(1−Qα)V′(λ−Q(λ−ζ))dQ]. |
The above inequality takes the following form:
(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−U∘G)(λ;Υ)≤(ζ−λ)(V(ζ)−V(λ))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(ζ)−V(λ))ςk;Υ)[U((ζ)1p)eΩ((ζ)1p)Xζλ(h,Qα;V′)+mU((λm)1p)eΩ((λm)1p)Xζλ(h,1−Qα;V′)−ϖ(mζ−λ)2h(1)(V(ζ)−V(λ))m(ζ−λ)eΩ(ζ+(λ/m))]. | (3.7) |
By adding inequalities (3.6) and (3.7), inequality (3.1) is obtained.
Corollary 3.1. For Ψ=Φ in (3.1), the following inequality is valid:
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+U∘G)(λ;Υ)+(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,ζ−U∘G)(λ;Υ)≤(λ−η)(V(λ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)[U((η)1p)eΩ((η)1p)Xηλ(h,Qα;V′)+mU((λm)1p)eΩ((λm)1p)Xηλ(h,1−Qα;V′)−ϖ(λ−mη)2h(1)(V(λ)−V(η))m(λ−η)eΩ(η+(λ/m))]+(ζ−λ)(V(ζ)−V(λ))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(ζ)−V(λ))ςk;Υ)[U((ζ)1p)eΩ((ζ)1p)Xζλ(h,Qα;V′)+mU((λm)1p)eΩ((λm)1p)Xζλ(h,1−Qα;V′)−ϖ(mζ−λ)2h(1)(V(ζ)−V(λ))m(ζ−λ)eΩ(ζ+(λ/m))]. | (3.8) |
In the following, we give the modulus inequality for k-FIs via strongly exponentially (α,h−m)−p-convex functions.
Theorem 3.2. Let U,V:[η,ζ]⟶R, such that U be positive, integrable and |U′| be strongly exponentially (α,h−m)−p-convex, m∈(0,1], and V be differentiable and strictly increasing with V′∈L1[η,ζ]. Then, for h(η)h(ζ)≤h(η+ζ), Ψ,Φ≥k and Ω∈R, we have:
|(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+(V∗U)∘G)(λ,w;Υ)+(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−(V∗U)∘G)(λ,w;Υ)|≤(λ−η)(V(λ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)[|U′((η)1p)|eΩ((η)1p)Xηλ(h,Qα;V′)+m|U′((λm)1p)|eΩ((λm)1p)Xηλ(h,1−Qα;V′)−ϖ(λ−mη)2h(1)(V(λ)−V(η))m(λ−η)eΩ(η+(λ/m))]+(ζ−λ)(V(ζ)−V(λ))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(ζ)−V(λ))ςk;Υ)[|U′((ζ)1p)|eΩ((ζ)1p)Xζλ(h,Qα;V′)+m|U′((λm)1p)|eΩ((λm)1p)Xζλ(h,1−Qα;V′)−ϖ(mζ−λ)2h(1)(V(ζ)−V(λ))m(ζ−λ)eΩ(ζ+(λ/m))], | (3.9) |
where
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+(V∗U)∘G)(λ,w;Υ):=∫λη(V(λ)−V(σ))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(σ))ςk;Υ)V′(σ)U′((σ)1p)dσ |
and
(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−(V∗U)∘G)(λ,w;Υ):=∫ζλ(V(σ)−V(λ))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(σ)−V(λ))ςk;Υ)V′(σ)U′((σ)1p)dσ. |
Proof. By utilizing the strongly exponentially (α,h−m)−p-convexity of |U′|, the following inequality holds:
|U′((σ)1p)|≤h(λ−σλ−η)α|U′((η)1p)|eΩ((η)1p)+mh(1−(λ−σλ−η)α)|U′((λm)1p)|eΩ((λm)1p)−ϖ(λ−mη)2meΩ(η+(λ/m))h(λ−σλ−η)αh(1−(λ−σλ−η)α). | (3.10) |
The above inequality takes the following form:
−(h(λ−σλ−η)α|U′((η)1p)|eΩ((η)1p)+mh(1−(λ−σλ−η)α)|U′((λm)1p)|eΩ((λm)1p)−ϖ(λ−mη)2meΩ(η+(λ/m))h(λ−σλ−η)αh(1−(λ−σλ−η)α))U′((σ)1p)≤(h(λ−σλ−η)α|U′((η)1p)|eΩ((η)1p)+mh(1−(λ−σλ−η)α)|U′((λm)1p)|eΩ((λm)1p)−ϖ(λ−mη)2meΩ(η+(λ/m))h(λ−σλ−η)αh(1−(λ−σλ−η)α)). | (3.11) |
Now, multiplying inequality (3.2) with the right-hand inequality of (3.11) and integrating over [η,λ], we obtain:
∫λη(V(λ)−V(σ))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(σ))ςk;Υ)V′(σ)U′((σ)1p)dσ≤(V(λ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)(|U′((η)1p)|eΩ((η)1p)∫ληh(λ−σλ−η)αV′(σ)dσ+m|U′((λm)1p)|eΩ((λm)1p)∫ληh(1−(λ−σλ−η)α)V′(σ)dσ−ϖ(λ−mη)2meΩ(η+(λ/m))∫ληh(λ−σλ−η)αh(1−(λ−σλ−η)α)V′(σ)dσ). | (3.12) |
After simplifying the inequality (3.12), we get
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+(V∗U)∘G)(λ,w;Υ)≤(λ−η)(V(λ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)[|U′((η)1p)|eΩ((η)1p)Xηλ(h,Qα;V′)+m|U′((λm)1p)|eΩ((λm)1p)Xηλ(h,1−Qα;V′)−ϖ(λ−mη)2h(1)(V(λ)−V(η))m(λ−η)eΩ(η+(λ/m))]. | (3.13) |
By using the left-hand inequality of (3.11) and following in the same way as for the right-hand inequality, we obtain:
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+(V∗U)∘G)(λ,w;Υ)≥−(λ−η)(V(λ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)[|U′((η)1p)|eΩ((η)1p)Xηλ(h,Qα;V′)+m|U′((λm)1p)|eΩ((λm)1p)Xηλ(h,1−Qα;V′)−ϖ(λ−mη)2h(1)(V(λ)−V(η))m(λ−η)eΩ(η+(λ/m))]. | (3.14) |
From inequalities (3.13) and (3.14), we have:
|(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+(V∗U)∘G)(λ,w;Υ)|≤(λ−η)(V(λ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)[|U′((η)1p)|eΩ((η)1p)Xηλ(h,Qα;V′)+m|U′((λm)1p)|eΩ((λm)1p)Xηλ(h,1−Qα;V′)−ϖ(λ−mη)2h(1)(V(λ)−V(η))m(λ−η)eΩ(η+(λ/m))]. | (3.15) |
Again, by utilizing the strongly exponentially (α,h−m)−p-convexity of |U′|, we have
|U′((σ)1p)|≤h(σ−λζ−λ)α|U′((ζ)1p)|eΩ((ζ)1p)+mh(1−(σ−λζ−λ)α)|U′((λm)1p)|eΩ((λm)1p)−ϖ(mζ−λ)2meΩ(ζ+(λ/m))h(σ−λζ−λ)αh(1−(σ−λζ−λ)α). | (3.16) |
Following in the same way as was done for (3.2) and (3.10), from (3.3) and (3.16), we obtain:
|(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−(V∗U)∘G)(λ,w;Υ)|≤(ζ−λ)(V(ζ)−V(λ))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(ζ)−V(λ))ςk;Υ)[|U′((ζ)1p)|eΩ((ζ)1p)Xζλ(h,Qα;V′)+m|U′((λm)1p)|eΩ((λm)1p)Xζλ(h,1−Qα;V′)−ϖ(mζ−λ)2h(1)(V(ζ)−V(λ))m(ζ−λ)eΩ(ζ+(λ/m))]. | (3.17) |
By adding inequalities (3.15) and (3.17), inequality (3.9) is obtained.
Corollary 3.2. For Ψ=Φ in (3.9), the following inequality is valid:
|(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+(V∗U)∘G)(λ,w;Υ)+(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,ζ−(V∗U)∘G)(λ,w;Υ)|≤(λ−η)(V(λ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)[|U′((η)1p)|eΩ((η)1p)Xηλ(h,Qα;V′)+m|U′((λm)1p)|eΩ((λm)1p)Xηλ(h,1−Qα;V′)−ϖ(λ−mη)2h(1)(V(λ)−V(η))m(λ−η)eΩ(η+(λ/m))]+(ζ−λ)(V(ζ)−V(λ))Φk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(ζ)−V(λ))ςk;Υ)[|U′((ζ)1p)|eΩ((ζ)1p)Xζλ(h,Qα;V′)+m|U′((λm)1p)|eΩ((λm)1p)Xζλ(h,1−Qα;V′)−ϖ(mζ−λ)2h(1)(V(ζ)−V(λ))m(ζ−λ)eΩ(ζ+(λ/m))]. | (3.18) |
The following identity is useful to prove the Hadamard type inequality.
Lemma 3.1. Let U:[η,mζ]→R,η<mζ, be a strongly exponentially (α,h−m)−p-convex function. For m∈(0,1], if
U((λ)1p)eΩ((λ)1p)=U((ηp+mζp−λ)1pm)eΩ((ηp+mζp−λ)1pm) | (3.19) |
holds, then we have:
U((ηp+mζp2)1p)≤U((λ)1p)eΩ((λ)1p)(h(12α)+mh(1−12α))−ϖmh(12α)h(1−12α)(ηp+mζp−λ−mλ)2eΩ(ηp+mζp+λ(m+1)m). | (3.20) |
Proof. The following identity is useful:
(ηp+mζp2)1p=[12((λ−ηpmζp−ηpmζp+mζp−λmζp−ηpηp)1p)p+m(1−12)((λ−ηpmζp−ηpηp+mζp−λmζp−ηpmζpm)1p)p]1p. | (3.21) |
By utilizing the strongly exponentially (α,h−m)−p-convexity of U, we obtain:
U((ηp+mζp2)1p)≤h(12α)U((λ−ηpmζp−ηpmζp+mζp−λmζp−ηpηp)1p)eΩ((λ−ηpmζp−ηpmζp+mζp−λmζp−ηpηp)1p)+mh(1−12α), | (3.22) |
U((λ−ηpmζp−ηpηp+mζp−λmζp−ηpmζpm)1p)eΩ((λ−ηpmζp−ηpηp+mζp−λmζp−ηpmζpm)1p)−ϖmh(12α)h(1−12α)(λ−ηpmζp−ηpηp+mζp−λmζp−ηpmζpm−λ−ηpmζp−ηpmζp+mζp−λmζp−ηpηp)2eΩ(λ−ηpmζp−ηpηp+mζp−λmζp−ηpmζpm+λ−ηpmζp−ηpmζp+mζp−λmζp−ηpηp)=h(12α)U((λ)1p)eΩ((λ)1p)+mh(1−12α)U((ηp+mζp−λ)1pm)eΩ((ηp+mζp−λ)1pm)−ϖmh(12α)h(1−12α)(ηp+mζp−λ−mλ)2eΩ(ηp+mζp+λ(m+1)m). | (3.23) |
By using the condition given in Eq (3.19), inequality (3.20) is obtained.
In the following, we give the Hadamarad type inequality for k-FIs via strongly exponentially (α,h−m)−p-convex functions.
Theorem 3.3. With the same conditions on U, V and h as were taken in Theorem 3.1, and in addition if (3.19) holds, then we have:
A(Ω)(h(12α)+mh(1−12α))[U((ηp+mζp2)1p)(JΨk,η+(ζ;Υ)+JΦk,ζ−(η;Υ))+ϖmh(12α)h(1−12α)((kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+(ηp+mζp−λ−mλ)2)(ζ;Υ)eΩ((mζp+ηp−ζp)/m)+(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−(ηp+mζp−λ−mλ)2)(η;Υ)eΩ(ζp))]≤(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+U∘G)(ζ;Υ)+(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−U∘G)(η;Υ)≤(ζ−η)((V(ζ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(ζ)−V(η))ςk;Υ)+(V(ζ)−V(η))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(ζ)−V(η))ςk;Υ))[U((ζ)1p)eΩ((ζ)1p)Xηζ(h,Qα;V′)+mU((ηm)1p)eΩ(ηm)1pXηζ(h,1−Qα;V′)−ϖ(η−mζ)2h(1)(V(ζ)−V(η))m(ζ−η)eΩ(ζ+ηm)], | (3.24) |
where G(σ)=σ1p, A(Ω)=eΩη when Ω≥0 and A(Ω)=eΩζ when Ω<0.
Proof. Under the given assumptions, the following inequalities are valid:
(V(λ)−V(η))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)V′(λ)≤(V(ζ)−V(η))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(ζ)−V(η))ςk;Υ)V′(λ),λ∈[η,ζ], | (3.25) |
(V(ζ)−V(λ))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(ζ)−V(λ))ςk;Υ)V′(λ)≤(V(ζ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(ζ)−V(η))ςk;Υ)V′(λ)λ∈[η,ζ]. | (3.26) |
By utilizing the strongly exponentially (α,h−m)−p-convexity of U, we obtain:
U((λ)1p)≤h(λ−ηζ−η)αU((ζ)1p)eΩ((ζ)1p)+mh(1−(λ−ηζ−η)α)U((ηm)1p)eΩ(ηm)1p−ϖ(η−mζ)2meΩ(ζ+ηm)h(λ−ηζ−η)αh(1−(λ−ηζ−η)α). | (3.27) |
From inequalities (3.25) and (3.27), the following inequality is valid:
∫ζη(V(λ)−V(η))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)V′(λ)U((λ)1p)dλ≤(V(ζ)−V(η))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(ζ)−V(η))ςk;Υ)[U((ζ)1p)eΩ((ζ)1p)∫ζηh(λ−ηζ−η)αV′(λ)dλ+mU((ηm)1p)eΩ(ηm)1p∫ζηh(1−(λ−ηζ−η)α)V′(λ)dλ−ϖ(η−mζ)2meΩ(ζ+ηm)∫ζηh(λ−ηζ−η)αh(1−(λ−ηζ−η)α)V′(λ)dλ]. |
By utilizing the right integral operator (2.2) on the left-hand side and making substitution Q=(λ−η)/(ζ−η) on the right-hand side, we obtain:
(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−U∘G)(η;Υ)≤(ζ−η)(V(ζ)−V(η))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(ζ)−V(η))ςk;Υ)[U((ζ)1p)eΩ((ζ)1p)∫10h(Qα)V′(η+Q(ζ−η))dQ+mU((ηm)1p)eΩ(ηm)1p∫10h(1−Qα)V′(η+Q(ζ−η))dQ−ϖ(η−mζ)2meΩ(ζ+ηm)∫10h(Qα)h(1−Qα)V′(η+Q(ζ−η))dQ]. | (3.28) |
The above inequality takes the following form:
(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−U∘G)(η;Υ)≤(ζ−η)(V(ζ)−V(η))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(ζ)−V(η))ςk;Υ)[U((ζ)1p)eΩ((ζ)1p)Xηζ(h,Qα;V′)+mU((ηm)1p)eΩ(ηm)1pXηζ(h,1−Qα;V′)−ϖ(η−mζ)2h(1)(V(ζ)−V(η))m(ζ−η)eΩ(ζ+ηm)]. | (3.29) |
Similarly, from inequalities (3.26) and (3.27), after simplification the following inequality is obtained:
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+U∘G)(ζ;Υ)≤(ζ−η)(V(ζ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(ζ)−V(η))ςk;Υ)[U((ζ)1p)eΩ((ζ)1p)Xηζ(h,Qα;V′)+mU((ηm)1p)eΩ(ηm)1pXηζ(h,1−Qα;V′)−ϖ(η−mζ)2h(1)(V(ζ)−V(η))m(ζ−η)eΩ(ζ+ηm)]. | (3.30) |
By adding inequalities (3.29) and (3.30), we obtain:
(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+U∘G)(ζ;Υ)+(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−U∘G)(η;Υ)≤(ζ−η)((V(ζ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(ζ)−V(η))ςk;Υ)+(V(ζ)−V(η))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(ζ)−V(η))ςk;Υ))[U((ζ)1p)eΩ((ζ)1p)Xηζ(h,Qα;V′)+mU((ηm)1p)eΩ(ηm)1pXηζ(h,1−Qα;V′)−ϖ(η−mζ)2h(1)(V(ζ)−V(η))m(ζ−η)eΩ(ζ+ηm)]. | (3.31) |
Now, multiplying the inequality (3.20) with (V(λ)−V(η))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)V′(λ) and integrating over [η,ζ], we have
U((ηp+mζp2)1p)∫ζη(V(λ)−V(η))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)V′(λ)dλ≤(h(12α)+mh(1−12α))∫ζη(V(λ)−V(η))Φk−1Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)×V′(λ)U((λ)1p)eΩ((λ)1p)dλ−ϖmh(12α)h(1−12α)∫ζη(V(λ)−V(η))Φk−1×Eρ,ϵ,μ,rς,Φ,φ,k(ϑ(V(λ)−V(η))ςk;Υ)V′(λ)(ηp+mζp−λ−mλ)2eΩ(ηp+mζp+λ(m+1)m)dλ. | (3.32) |
By utilizing the right integral operator defined in Eq (2.2) and inequality (2.5), we obtain:
A(Ω)(h(12α)+mh(1−12α))(U((ηp+mζp2)1p)JΦk,ζ−(η;Υ)+ϖmeΩ(ζp)h(12α)×h(1−12α)(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−(ηp+mζp−λ−mλ)2)(η;Υ))≤(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−U∘G)(η;Υ). | (3.33) |
Similarly, multiplying inequality (3.20) with (V(ζ)−V(λ))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(ζ)−V(λ))ςk;Υ)V′(λ) and integrating over [η,ζ], and then, by utilizing the left integral operator defined in Eq (2.1) and inequality (2.4), we obtain:
A(Ω)(h(12α)+mh(1−12α))(U((ηp+mζp2)1p)JΨk,η+(ζ;Υ)+ϖmeΩ((mζp+ηp−ζp)/m)h(12α)×h(1−12α)(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+(ηp+mζp−λ−mλ)2)(ζ;Υ))≤(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+U∘G)(ζ;Υ). | (3.34) |
By adding inequalities (3.33) and (3.34), we obtain:
A(Ω)(h(12α)+mh(1−12α))[U((ηp+mζp2)1p)(JΨk,η+(ζ;Υ)+JΦk,ζ−(η;Υ))+ϖmh(12α)h(1−12α)((kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+(ηp+mζp−λ−mλ)2)(ζ;Υ)eΩ((mζp+ηp−ζp)/m)+(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−(ηp+mζp−λ−mλ)2)(η;Υ)eΩ(ζp))]≤(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+U∘G)(ζ;Υ)+(kVZρ,ϵ,μ,rς,Φ,φ,ϑ,ζ−U∘G)(η;Υ). | (3.35) |
From inequalities (3.31) and (3.35), inequality (3.24) is obtained.
Corollary 3.3. For Ψ=Φ in (3.24), the following inequality is valid:
A(Ω)(h(12α)+mh(1−12α))[U((ηp+mζp2)1p)(JΨk,η+(ζ;Υ)+JΨk,ζ−(η;Υ))+ϖmh(12α)h(1−12α)((kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+(ηp+mζp−λ−mλ)2)(ζ;Υ)eΩ((mζp+ηp−ζp)/m)+(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,ζ−(ηp+mζp−λ−mλ)2)(η;Υ)eΩ(ζp))]≤(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,η+U∘G)(ζ;Υ)+(kVZρ,ϵ,μ,rς,Ψ,φ,ϑ,ζ−U∘G)(η;Υ)≤(ζ−η)(V(ζ)−V(η))Ψk−1Eρ,ϵ,μ,rς,Ψ,φ,k(ϑ(V(ζ)−V(η))ςk;Υ)[U((ζ)1p)eΩ((ζ)1p)Xηζ(h,Qα;V′)+mU((ηm)1p)eΩ(ηm)1pXηζ(h,1−Qα;V′)−ϖ(η−mζ)2h(1)(V(ζ)−V(η))m(ζ−η)eΩ(ζ+ηm)]. | (3.36) |
Remark 3.1. From Theorem 3.1 and Theorem 3.2, many new bounds of several FIs (given in Remark 2.1) for various kinds of convex functions (given in Remark 2.2) can be obtained. Similarly, from Theorem 3.3, many new Hadamard type inequalities for several FIs (given in Remark 2.1) via various kinds of convex functions (given in Remark 2.2) can be obtained. Further, from Theorem 3.1 for λ=η and λ=ζ, applications of Theorem 3.1 can be obtained. We leave this for readers.
We investigated the bounds of generalized k-FIs that had interesting consequences in particular cases. To derive these bounds, strongly exponentially (α,h−m)−p-convexity was applied in different forms. The results provided a lot of new inequalities for well-known FIs by using suitable substitutions. Further, an identity was established and applied to obtain the Hadamard type inequality for generalized k-FIs. These integral operators can be further applied to generalize fractional integral equations and integral inequalities.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The research work of the fourth author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2022R1A2C2004874) and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry Energy (MOTIE) of the Republic of Korea (No. 20214000000280). The research work of the third author is supported by Project number (RSP2023R440), King Saud University, Riyadh, Saudi Arabia.
Authors declare no conflict of interest.
[1] | G. Stampacchia, Formes bilineaires coercivities sur les ensembles convexes, C. R. Acad. Sci. Paris, 258 (1964), 4413–4416. |
[2] | Q. H. Ansari, Topics in nonlinear analysis and optimization, World Education, Delhi, 2012. |
[3] |
C. L. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20 (2004), 103–120. https://doi.org/10.1088/0266-5611/20/1/006 doi: 10.1088/0266-5611/20/1/006
![]() |
[4] |
A. Gibali, Two simple relaxed perturbed extragradient methods for solving variational inequalities in Euclidean spaces, J. Nonlinear Var. Anal., 2 (2018), 49–61. https://doi.org/10.23952/jnva.2.2018.1.05 doi: 10.23952/jnva.2.2018.1.05
![]() |
[5] | D. Kinderlehrer, G. Stampacchia, An introduction to variational inequalities and their applications, Academic Press, New York, 1980. |
[6] | Y. Liu, A modified hybrid method for solving variational inequality problems in Banach spaces, J. Nonlinear Funct. Anal., 2017 (2017). https://doi.org/10.23952/jnfa.2017.31 |
[7] |
L. C. Zeng, S. M. Guu, J. C. Yao, Characterization of H-monotone operators with applications to variational inclusions, Comput. Math. Appl., 50 (2011), 329–337. https://doi.org/10.1016/j.camwa.2005.06.001 doi: 10.1016/j.camwa.2005.06.001
![]() |
[8] |
A. Hassouni, A. Moudafi, A perturbed algorithm for variational inclusions, J. Math. Anal. Appl., 185 (1994), 706–712. https://doi.org/10.1006/jmaa.1994.1277 doi: 10.1006/jmaa.1994.1277
![]() |
[9] |
Q. H. Ansari, J. C. Yao, A fixed point theorem and its applications to a system of variational inequalities, Bull. Aust. Math. Soc., 59 (1999), 433–442. https://doi.org/10.1017/S0004972700033116 doi: 10.1017/S0004972700033116
![]() |
[10] |
G. Cohen, F. Chaplais, Nested monotony for variational inequalities over a product of spaces and convergence of iterative algorithms, J. Optimiz. Theory Appl., 59 (1988), 360–390. https://doi.org/10.1007/BF00940305 doi: 10.1007/BF00940305
![]() |
[11] | H. Piri, R. Yavarimehr, Solving systems of monotone variational inequalities on fixed point sets of strictly pseudo-contractive mappings, J. Nonlinear Funct. Anal., 19 (2016). |
[12] |
R. U. Verma, Projection methods, algorithms and a new system of nonlinear variational inequalities, Comput. Math. Appl., 41 (2001), 1025–1031. https://doi.org/10.1016/S0898-1221(00)00336-9 doi: 10.1016/S0898-1221(00)00336-9
![]() |
[13] |
J. S. Pang, Asymmetric variational inequality problems over product sets: Applications and iterative methods, Math. Program., 31 (1985), 206–219. https://doi.org/10.1007/BF02591749 doi: 10.1007/BF02591749
![]() |
[14] | A. Cayley, Sur quelques propriétés des déterminants gauches, J. Rein. Angew. Math., 32 (1846), 119–123. |
[15] | G. Helmberg, Introduction to spectral theory in Hilbert space: The Cayley transform, Applied Mathematics and Mechanics, North Holland, Amsterdam, 6 (1969). |
[16] | R. P. Agarwal, D. O'Regan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8 (2007), 61–79. |
[17] |
W. R. Mann, Mean value methods in iteration, Proc. Am. Math. Soc., 4 (1953), 506–610. https://doi.org/10.1090/S0002-9939-1953-0054846-3 doi: 10.1090/S0002-9939-1953-0054846-3
![]() |
[18] | S. Ishikawa, Fixed points by a new iteration method, Proc. Am. Math. Soc. 44 (1974), 147–150. https://doi.org/10.1090/S0002-9939-1974-0336469-5 |
[19] | D. R. Sahu, Applications of S-iteration process to contrained minimization problem and split feasibility problems, Fixed Point Theor., 12 (2011), 187–204. |
[20] | R. P. Agarwal, D. O'Regan, D. R. Sahu, Fixed point theory for Lipschitzian-type mappings with Applications, Springer, New York, 2009. http://dx.doi.org/10.1016/B978-0-12-775850-3.50017-0 |
[21] | C. E. Chidume, C. E. Chidume, Geometric properties of Banach spaces and nonlinear iterations, Lecture Notes in Mathematics, Springer Verlag, 2009. |
[22] |
E. Hacioğlu, F. Gürsoy, S. Maldar, Y. Atalan, G. V. Milovanović, Iterative approximation of fixed points and applications to two-point second-order boundary value problems and to machine learning, Appl. Numer. Math., 167 (2021), 143–172. https://doi.org/10.1016/j.apnum.2021.04.020 doi: 10.1016/j.apnum.2021.04.020
![]() |
[23] | X. Ju, D. Hu, C. Li, X. He, G. Feng, A novel fixed-time converging neurodynamic approach to mixed variational inequalities and applications, IEEE T. Cybernetics, 2021. http://dx.doi.org/10.1109/TCYB.2021.3093076 |
[24] | X. Ju, C. Li, Y. H. Dai, J. Chen, A new dynamical system with self-adaptive dynamical stepsize for pseudomonotone mixed variational inequalities, Optimization, 2022. http://dx.doi.org/10.1080/02331934.2022.2094795 |
[25] |
W. Kumam, K. Khammahawong, P. Kumam, Error estimate of data dependence for discontinuous operators by new iteration process with convergence analysis, Numer. Funct. Anal. Optim., 40 (2019), 1644–1677. https://doi.org/10.1080/01630563.2019.1610437 doi: 10.1080/01630563.2019.1610437
![]() |
[26] |
G. Maniu, On a three-step iteration process for Suzuki mappings with Qualitative study, Numer. Funct. Anal. Optim., 41 (2020), 929–949. https://doi.org/10.1080/01630563.2020.1719415 doi: 10.1080/01630563.2020.1719415
![]() |
[27] |
D. R. Sahu, Q. H. Ansari, J. C. Yao, Convergence of inexact Mann iterations generated by nearly nonexpansive sequences and applications, Numer. Funct. Anal. Optim., 37 (2016), 1312–1338. https://doi.org/10.1080/01630563.2016.1206566 doi: 10.1080/01630563.2016.1206566
![]() |
[28] |
D. R. Sahu, Q. H. Ansari, J. C. Yao, The prox-Tiknonov-like forward-backward method and applications, Taiwanese J. Math., 19 (2015), 481–503. https://doi.org/10.11650/tjm.19.2015.4972 doi: 10.11650/tjm.19.2015.4972
![]() |
[29] | D. R. Sahu, S. M. Kang, A. Kumar, Convergence analysis of parallel S-iteration process for system of generalized variational inequalities, J. Funct. Space., 2017 (2017). https://doi.org/10.1155/2017/5847096 |
[30] |
D. R. Sahu, J. C. Yao, V. K. Sing, S. Kumar, Semilocal convergence analysis of S-iteration process of Newton-Kantorovich like in Banach spaces, J. Optim. Theory App., 172 (2016), 102–127. https://doi.org/10.1007/s10957-016-1031-x doi: 10.1007/s10957-016-1031-x
![]() |
[31] |
B. Tan, S. Y. Cho, Inertial extragradient algorithms with non-monotone stepsizes for pseudomonotone variational inequalities and applications, Comput. Appl. Math., 41 (2022), 121. http://dx.doi.org/10.1007/s40314-022-01819-0 doi: 10.1007/s40314-022-01819-0
![]() |
[32] |
B. Tan, X. Qin, J. C. Yao, Strong convergence of inertial projection and contraction methods for pseudomonotone variational inequalities with applications to optimal control problems, J. Global Optim., 82 (2022), 523–557. https://doi.org/10.1007/s10898-021-01095-y doi: 10.1007/s10898-021-01095-y
![]() |
[33] |
H. K. Xu, D. R. Sahu, Parallel normal S-iteration methods with applications to optimization problems, Numer. Func. Anal. Opt., 42 (2021), 1925–1953. https://doi.org/10.1080/01630563.2021.1950761 doi: 10.1080/01630563.2021.1950761
![]() |
[34] | D. R. Sahu, Altering points and applications, Nonlinear Stud., 21 (2014), 349–365. |
[35] |
R. Ahmad, I. Ali, M. Rahaman, M. Ishtyak, J. C. Yao, Cayley inclusion problem with its corresponding generalized resolvent equation problem in uniformly smooth Banach spaces, Appl. Anal., 101 (2022), 1354–1368. https://doi.org/10.1080/00036811.2020.1781822 doi: 10.1080/00036811.2020.1781822
![]() |
[36] |
W. V. Petryshyn, A characterization of strict convexity of Banach spaces and other uses of duality mappings, J. Funct. Anal., 6 (1970), 282–291. https://doi.org/10.1016/0022-1236(70)90061-3 doi: 10.1016/0022-1236(70)90061-3
![]() |