Citation: Rabha W. Ibrahim, Dumitru Baleanu. Geometric behavior of a class of algebraic differential equations in a complex domain using a majorization concept[J]. AIMS Mathematics, 2021, 6(1): 806-820. doi: 10.3934/math.2021049
[1] | G. G. Gundersen, Research questions on meromorphic functions and complex differential equations, Comput. Meth. Funct. Th., 17 (2017), 195-209. doi: 10.1007/s40315-016-0178-7 |
[2] | G. Yongyi, X. Zheng, F. Meng, Painleve analysis and abundant meromorphic solutions of a class of nonlinear algebraic differential equations, Math. Probl. Eng., 2019 (2019), 1-11. |
[3] | R. W. Ibrahim, R. M. Elobaid, S. J. Obaiys, On the connection problem for Painleve differential equation in view of geometric function theory, Mathematics, 8 (2020), 1-11. |
[4] | R. W. Ibrahim, J. M. Jahangiri, Boundary fractional differential equation in a complex domain, Bound. Value Probl., 2014 (2014), 1-11. doi: 10.1186/1687-2770-2014-1 |
[5] | R. W. Ibrahim, M. Darus, On a new solution of fractional differential equation using complex transform in the unit disk, Math. Comput. Appl., 19 (2014), 152-160. |
[6] | R. W. Ibrahim, Fractional algebraic nonlinear differential equations in a complex domain, Afrika Mat., 26 (2015), 385-397. doi: 10.1007/s13370-013-0212-0 |
[7] | N. Steinmetz, Nevanlinna theory, normal families, and algebraic differential equations, Cham: Springer, 2017. |
[8] | Q. Wang, M. Liu, N. Li, On algebraic differential equations concerning the Riemann-zeta function and the Euler-gamma function, arXiv preprint arXiv: 2005.02707, 2020. |
[9] | C. Fernando, P. Chartier, A. Escorihuela-Tomàs, Y. Zhang, Compositions of pseudo-symmetric integrators with complex coefficients for the numerical integration of differential equations, J. Comput. Appl. Math., 381 (2020), 1-19. |
[10] | B. Edwin, S. Majid, Quantum complex structures, Quantum Riemannian Geometry, Springer, Cham, (2020), 527-564. |
[11] | D. H. Phong, Geometric partial differential equations from unified string theories, arXiv preprint arXiv: 1906.03693, (2019), 1-22. |
[12] | Y. I. Brodsky, Elements of geometric theory of complex systems behavior, 2020. DOI: 10.37394/23203.2020.15.3-CorpusID:211851348. |
[13] | W. M. Seiler, M. Seiss, Singular initial value problems for scalar quasi-linear ordinary differential equations, arXiv preprint arXiv: 2002.06572, 2020. |
[14] | F. Aaron, The complex geometry of the free particle, and its perturbations, arXiv preprint arXiv: 2008.03836, 2020. |
[15] | V. V. Kravchenko, S. Morelos, S. M. Torba, Liouville transformation, analytic approximation of transmutation operators and solution of spectral problems, Appl. Math. Comput., 273 (2016), 321-336. |
[16] | Y. Gu, C. Wu, X. Yao, W. Yuan, Characterizations of all real solutions for the KdV equation and WR, Appl. Math. Lett., 107 (2020), 106446. doi: 10.1016/j.aml.2020.106446 |
[17] | Y. Gu, Y. Kong, Two different systematic techniques to seek analytical solutions of the higher-order modified Boussinesq equation, IEEE Access, 7 (2019), 96818-96826. doi: 10.1109/ACCESS.2019.2929682 |
[18] | Y. Gu, F. Meng, Searching for analytical solutions of the (2+1)-dimensional KP equation by two different systematic methods, Complexity, 2019 (2019), 1-11. |
[19] | S. S. Miller, P. T. Mocanu, Differential subordinations: Theory and applications, Marcel Dekker Inc. Press, New York, 2000. |
[20] | G. Shweta, S. Kumar, V. Ravichandran, First order differential subordinations for Caratheodory functions, Kyungpook Math. J., 58 (2018), 257-270. |
[21] | C. D. Michael, Majorization-subordination theorems for locally univalent functions. III, Trans. Amer. Math. Soc., 198 (1974), 297-306. doi: 10.1090/S0002-9947-1974-0349987-5 |