Citation: Aziz Belmiloudi. Cardiac memory phenomenon, time-fractional order nonlinear system and bidomain-torso type model in electrocardiology[J]. AIMS Mathematics, 2021, 6(1): 821-867. doi: 10.3934/math.2021050
[1] | R. A. Adams, Sobolev spaces, Academic Press, New-York, 1975. |
[2] | O. P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives, J. Phys. A, 40 (2007), 6287-6303. doi: 10.1088/1751-8113/40/24/003 |
[3] | R. Almeida, N. R. Bastos, M. T. Monteiro, Modeling some real phenomena by fractional differential equations, Math. Methods Appl. Sci., 39 (2016), 4846-4855. doi: 10.1002/mma.3818 |
[4] | T. Arpadffy-Lovas, I. Baczko, B. Balati, M. Bitay, N. Jost, C. Lengyel, et. al., Electrical Restitution and its modifications by antiarrhythmic drugs in undiseased human ventricular muscle, Front. Pharmacol., 11, (2020), 479. |
[5] | T. Ashihara, J. Constantino, N. A. Trayanova, Tunnel propagation of postshock activations as a hypothesis for fibrillation induction and isoelectric window, Circ. Res., 102 (2008), 737-745. |
[6] | O. V. Aslanidi, A. P. Benson, M. R. Boyett, H. Zhang, Mechanisms of defibrillation by standing waves in the bidomain ventricular tissue with voltage applied in an external bath, Physica D, 238 (2009), 984-991. doi: 10.1016/j.physd.2009.02.003 |
[7] | G. W. Beeler, H. Reuter, Reconstruction of the action potential of ventricular myocardial fibres, J. Physiol., 268 (1977), 177-210. doi: 10.1113/jphysiol.1977.sp011853 |
[8] | A. Belmiloudi, Time-varying delays in electrophysiological wave propagation along cardiac tissue and minimax control problems associated with uncertain bidomain type models, AIMS Mathematics, 4 (2019), 928-983. doi: 10.3934/math.2019.3.928 |
[9] | A. Belmiloudi, S. Corre, Mathematical modeling and analysis of dynamic effects of multiple time-varying delays on electrophysiological wave propagation in the heart, Nonlinear Anal-Real, 47 (2019), 18-44. doi: 10.1016/j.nonrwa.2018.09.025 |
[10] | A. Belmiloudi, Mathematical modeling and optimal control problems in brain tumor targeted drug delivery strategies, Int. J. Biomath., 10 (2017), 1750056. doi: 10.1142/S1793524517500565 |
[11] | A. Belmiloudi, Dynamical behavior of nonlinear impulsive abstract partial differential equations on networks with multiple time-varying delays and mixed boundary conditions involving time-varying delays, J. Dyn. Control Syst., 21 (2015), 95-146. doi: 10.1007/s10883-014-9230-y |
[12] | A. Belmiloudi, Robust control problem of uncertain bidomain models in cardiac electrophysiology, Journal of Coupled Systems and Multiscale Dynamics, 1 (2013), 332-350. doi: 10.1166/jcsmd.2013.1023 |
[13] | A. Belmiloudi, Stabilization, optimal and robust control. Theory and applications in biological and physical sciences, Springer-Verlag, London, 2008. |
[14] | A. Belmiloudi, Robust control problems associated with time-varying delay nonlinear parabolic equations, IMA J. Math. Control I., 20 (2003), 305-334. doi: 10.1093/imamci/20.3.305 |
[15] | A. Belmiloudi, Regularity results and optimal control problems for the perturbation of Boussinesq equations of the ocean, Numer. Func. Anal. Opt., 21 (2000), 623-651. doi: 10.1080/01630560008816941 |
[16] | M. Bendahmane, K. H. Karlsen, Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue, Netw. Heterog. Media, 1 (2006), 185-218. doi: 10.3934/nhm.2006.1.185 |
[17] | G. A. Bocharov, F. A. Rihan, Numerical modelling in biosciences using delay differential equations, J. Comput. Appl. Math., 125 (2000), 183-199. doi: 10.1016/S0377-0427(00)00468-4 |
[18] | M. Boulakia, M. A. Fernandez, J. F Gerbeau, N. Zemzemi, A coupled system of PDEs and ODEs arising in electrocardiogramms modeling, Applied Math. Res. Exp., 28 (2008). |
[19] | Y. Bourgault, Y. Coudiere, C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Anal-Real, 10 (2009), 458-482. doi: 10.1016/j.nonrwa.2007.10.007 |
[20] | N. Buric, K. Todorovic, N. Vasovic, Dynamics of noisy FitzHugh-Nagumo neurons with delayed coupling, Chaos, Solitons and Fractals, 40 (2009), 2405-2413. doi: 10.1016/j.chaos.2007.10.036 |
[21] | J. O. Campos, R. S. Oliveira, R. W. dos Santos, B. M. Rocha, Lattice Boltzmann method for parallel simulations of cardiac electrophysiology using GPUs, J. Comput. Appl. Math., 295 (2016), 70-82. doi: 10.1016/j.cam.2015.02.008 |
[22] | M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J. Int., 13 (1967), 529-539. doi: 10.1111/j.1365-246X.1967.tb02303.x |
[23] | E. M. Cherry, F. H. Fenton, T. Krogh-Madsen, S. Luther, U. Parlitz, Introduction to Focus Issue: Complex Cardiac Dynamics, Chaos, 27 (2017), 093701. doi: 10.1063/1.5003940 |
[24] | P. Colli Franzone, G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level. In: Evolution Equations, Semigroups and Functional Analysis (eds.A. Lorenzi, B. Ruf), Birkhauser, Basel, 49-78, 2002. |
[25] | P. Colli Franzone, L. Guerri, S. Tentoni, Mathematical modeling of the excitation process in myocardial tissue: Influence of fiber rotation on wavefront propagation and potential field, Math. Biosci., 101 (1990), 155-235. doi: 10.1016/0025-5564(90)90020-Y |
[26] | T. Comlekoglu, S. H. Weinberg, Memory in a fractional-order cardiomyocyte model alters properties of alternans and spontaneous activity, Chaos, 27 (2017), 093904. doi: 10.1063/1.4999351 |
[27] | S. Corre, A. Belmiloudi, Coupled lattice Boltzmann simulation method for bidomain type models in cardiac electrophysiology with multiple time-delays, Math. Model. Nat. Pheno., 14 (2019), 207. doi: 10.1051/mmnp/2019045 |
[28] | S. Corre, A. Belmiloudi, Coupled lattice Boltzmann method for numerical simulations of fully coupled Heart and Torso bidomain system in electrocardiology, Journal of Coupled System and Multiscale Dynamics, 4 (2016), 207-229. doi: 10.1166/jcsmd.2016.1109 |
[29] | S. Corre, A. Belmiloudi, Coupled Lattice Boltzmann Modeling of Bidomain Type Models in Cardiac Electrophysiology, Mathematical and Computational Approaches in Advancing Modern Science and Engineering (eds. J. Bélair, et al.), Springer, 209-221, 2016. |
[30] | H. Dal, S. Goktepe, M. Kaliske, E. Kuhl, A fully implicit finite element method for bidomain models of cardiac electromechanics, Comput. Method. Appl. M., 253 (2013), 323-336. doi: 10.1016/j.cma.2012.07.004 |
[31] | S. Das, K. Maharatna, Fractional dynamical model for the generation of ECG like signals from filtered coupled Van-der, Comput. Methods Programs Biomed., 122 (2013), 490-507. |
[32] | K. Diethelm, Fractional differential equations, Springer, Berlin, 2010. |
[33] | K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229-248. doi: 10.1006/jmaa.2000.7194 |
[34] | S. Dipierro, E. Valdinoci, A simple mathematical model inspired by the Purkinje cells: from delayed travelling waves to fractional diffusion, Bull. Math. Biol., 80 (2018), 1849-1870, doi: 10.1007/s11538-018-0437-z |
[35] | M. Dupraz, S. Filippi, A. Gizzi, A. Quarteroni, R. Ruiz-Baier, Finite element and finite volume-element simulation of pseudo-ECGs and cardiac alternans, Math. Method. Appl. Sci., 38 (2015), 1046-1058. |
[36] | D. Baleanu, A. M. Lopes, (eds.) Applications in engineering, life and social sciences. In: Handbook of fractional calculus with applications, De Gruyter, 2019. |
[37] | K. A. Ellenbogen, B. L. Wilkoff, G. N. Kay, C. P. Lau, A. Auricchio, Clinical cardiac pacing, defibrillation and resynchronization therapy, Elsevier - Health Sciences Division; 5th Revised edition, 2017. |
[38] | F. Fenton, A. Karma, Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation, Chaos, 8 (1998), 20-47. doi: 10.1063/1.166311 |
[39] | R. Fitzhugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445-465. doi: 10.1016/S0006-3495(61)86902-6 |
[40] | L. Glass, Synchronization and rhythmic processes in physiology, Nature, 410 (2001), 277-284. doi: 10.1038/35065745 |
[41] | J. M. Gomes, R. Weber dos Santos, E. M. Cherry, Alternans promotion in cardiac electrophysiology models by delay differential equations, Chaos, 27 (2017), 093915. doi: 10.1063/1.4999471 |
[42] | G. H. Hardy, J. E. Littlewood, Some properties of fractional integrals I, Math. Z., 27 (1928). |
[43] | D. A. Israel, D. J. Edell, R. G. Mark, Time delays in propagation of cardiac action potential, Am. J. Physiol., 258 (1990), H1906-17. |
[44] | D. Jeyaraj, M. Ashwath, D. S. Rosenbaum, Pathophysiology and clinical implications of cardiac memory, Pacing Clin Electrophysiol, 33 (2010), 346-352. doi: 10.1111/j.1540-8159.2009.02630.x |
[45] | S. J. Kalbfleisch, J. Sousa, R. el-Atassi, H. Calkins, J. Langberg, F. Morady, Repolarization abnormalities after catheter ablation of accessory atrioventricular connections with radiofrequency current, J. Am. Coll. Cardiol., 18 (1991), 1761-1766. doi: 10.1016/0735-1097(91)90518-E |
[46] | J. Keener, J. Sneyd, Mathematical Physiology, Springer-Verlag, New York, 2009. |
[47] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, 2006. |
[48] | A. Kubica, M. Yamamoto, Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients, Fract. Calc. Appl. Anal., 21 (2018), 276-311. doi: 10.1515/fca-2018-0018 |
[49] | G. W. Leibniz, Letter from Hanover, Germany, to G.F.A. L'Hôpital, September 30; 1695, Mathematische Schriften, 2 (1849), 301-302. |
[50] | L. Li, J. G. Liu, A generalized definition of Caputo derivatives and its application to fractional ODEs, SIAM J. Math. Anal., 50 (2018), 2867-2900. doi: 10.1137/17M1160318 |
[51] | G. Lines, M. Buist, P. Grottum, A. J. Pullan, J. Sundnes, A. Tveito, Mathematical models and numerical methods for the forward problem in cardiac electrophysiology, Computing and Visualization in Science, 5 (2003), 215-239. |
[52] | J. L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Tome 1 & 2, Dunod, Paris, 1968. |
[53] | C. H. Luo, Y. Rudy, A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction, Circ. Res., 68 (1991), 1501-1526. |
[54] | C. H. Luo, Y. Rudy, A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes, Circ. Res., 74 (1994), 1071-1096. |
[55] | R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59 (2010), 1586-1593. doi: 10.1016/j.camwa.2009.08.039 |
[56] | C. C. Mitchell, D. G. Schaeffer, A two-current model for the dinamics of cardiac membrane, Bull. Math. Biol., 65 (2003), 767-793. doi: 10.1016/S0092-8240(03)00041-7 |
[57] | J. Roger, A. McCulloch, A collocation-Galerkin finite element model of cardiac action potential propagation, IEEE T. Biomed. Eng., 41 (1994), 743-757. doi: 10.1109/10.310090 |
[58] | T. Nakagawa, T. Yagi, A. Ishida, Y. Mibiki, Y. Yamashina, H. Sato, et al., Differences between cardiacmemory Twave changes after idiopathic left ventricular tachycardia and ischemic T wave inversion induced by acute coronary syndrome, J. Electrocardiol., 49 (2016), 596-602. |
[59] | N. Ozgen, Z. Lu, G. J. Boink, D. H. Lau, I. N. Shlapakova, Y. Bobkov, et al., Microtubules and angiotensin II receptors contribute to modulation of repolarization induced by ventricular pacing, Heart Rhythm, 9 (2012), 1865-72. |
[60] | L. Padeletti, C. Fantappie, L. Perrotta, G. Ricciardi, P. Pieragnoli, M. Chiostri, et al., Cardiac memory in humans: vectocardiographic quantification in cardiac resynchronization therapy, Clin. Res. Cardiol., 100 (2011), 100-51. |
[61] | A. Panfilov, R. Aliev, A simple two-variable model of cardiac excitation, Chaos Solitons and Fractals, 7 (1996), 293-301. doi: 10.1016/0960-0779(95)00089-5 |
[62] | I. Petras, Fractional-order chaotic systems, Fractional-order nonlinear systems, Springer, 2011. |
[63] | A. N. Plotnikov, A. Shvilkin, W. Xiong, J. R. de Groot, L. Rosenshtraukh, S. Feinmark, et al., Interactions between antiarrhythmic drugs and cardiac memory, Cardiovasc. Res., 50 (2001), 335-344. |
[64] | A. J. Pullan, M. L. Buist, L. K. Cheng, Mathematically modelling the electrical activity of the heart-from cell to body surface and back again, World Scientific, Singapore, 2005. |
[65] | A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, Vol. 37 of Texts in Applied Mathematics (2nd ed.), Springer-Verlag, Berlin, 2007. |
[66] | M. B. Rosenbaum, H. H. Blanco, M. V. Elizari, J. O. Lazzari, J. M. Davidenko, Eletrotonic modulation of the T-wave and cardiac memory, Am. J. Cardiol., 50 (1982), 213-222. doi: 10.1016/0002-9149(82)90169-2 |
[67] | Y. Sakamoto, Y. Inden, H. Okamoto, K. Mamiya, T. Tomomatsu, A. Fujii, et al., T-wave changes of cardiac memory caused by frequent premature ventricular contractions originating from the right ventricular outflow tract, J. Cardiovasc. Electrophysiol., 30 (2019), 1549-1556. |
[68] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon, 1993. Theory and applications; Edited and with a foreword by S. M. Nikolski; Translated from the 1987 Russian original; Revised by the authors. |
[69] | R. F. Sandra, M. A. Savi, An analysis of heart rhythm dynamics using a three-coupled oscillator model, Chaos, Solitons and Fractals, 41 (2009), 2553-2565. doi: 10.1016/j.chaos.2008.09.040 |
[70] | T. Seidman, H. Z. Zhou, Existence and uniqueness of optimal controls for a quasilinear parabolic equation, SIAM J. Control Optim., 20 (1982), 747-762. doi: 10.1137/0320054 |
[71] | A. Shvilkin, H. D. Huang, M. E. Josephson, Cardiac memory: diagnostic tool in the making, Circ-Arrhythmia Elect., 8 (2015), 475-482. doi: 10.1161/CIRCEP.115.002778 |
[72] | A. Shvilkin, K. K. Ho, M. R. Rosen, M. E. Josephson, T-vector direction differentiates post-pacing from ischemic T-wave inversion in precordial leads, Circulation, 111 (2005), 969-974. doi: 10.1161/01.CIR.0000156463.51021.07 |
[73] | E. A. Sosunov, E. P. Anyukhovsky, M. R. Rosen, Altered ventricular stretch contributes to initiation of cardiac memory, Heart Rhythm, 5 (2008), 106-113. doi: 10.1016/j.hrthm.2007.09.008 |
[74] | J. Sundnes, G. Lines, X. Cai, B. F. Nielsen, K. A. Mardal, A. Tveito, Computing the electrical activity in the heart, Springer, Berlin, 2006. |
[75] | M. C. Suran, A. D. Margulescu, R. Bruja, D. Vinereanu, Surface ECG criteria can discriminate post-septal pacing cardiac memory from ischemic T wave inversions, J. Electrocardiol., 58 (2020), 10-17. doi: 10.1016/j.jelectrocard.2019.10.004 |
[76] | W. Tan, C. Fu, C. Fu, W. Xie, H. Cheng, An anomalous subdiffusion model for calcium spark in cardiac myocytes, Appl. Phys. Lett., 91 (2007), 183901. doi: 10.1063/1.2805208 |
[77] | R. Temam, Navier-Stokes equations, North-Holland, Amsterdam, 1984. |
[78] | L. Tung, A bi-domain model for describibg ischemic myocardial d-c potentials [Thesis/Dissertation], Massachussets Institute of Technology, 1978. |
[79] | K. H. Ten Tusscher, A. V. Panfilov, Alternans and spiral breakup in a human ventricular tissue model, Am. J. Physiol-Heart C., 291 (2006), H1088-H1100. |
[80] | M. Veneroni, Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field, Nonlinear Anal-Real, 10 (2009), 849-868. |
[81] | E. J. Vigmond, R. W. dos Santos, A. J. Prassl, M. Deo, G. Plank, Solvers for the cardiac bidomain equations, Prog. Biophys. Mol. Bio., 96 (2008), 3-18. |
[82] | J. W. Waks, D. A. Steinhaus, A. Shvilkin, D. B. Kramer, Post-pacemaker T-wave Inversions: Cardiac Memory, Am. J. Med., 129 (2016), 170-172. doi: 10.1016/j.amjmed.2015.09.001 |
[83] | B. J. West, M. Turalska, P. Grigolini, Networks of echoes: imitation, innovation and invisible leaders, Springer Science & Business Media, 2014. |
[84] | S. Westerlund, L. Ekstam, Capacitor theory, IEEE T. Dielect. El. In., 1 (1994), 826-839. |
[85] | H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081. doi: 10.1016/j.jmaa.2006.05.061 |
[86] | Y. Zhou, Basic theory of fractional differential equations, World Scientific, Singapore, 2014. |