Research article Special Issues

Cardiac memory phenomenon, time-fractional order nonlinear system and bidomain-torso type model in electrocardiology

  • Received: 11 June 2020 Accepted: 11 October 2020 Published: 02 November 2020
  • MSC : 35R11, 34A08, 35K57, 35B30, 92C50, 35Q92

  • Cardiac memory, also known as the Chatterjee phenomenon, refers to the persistent but reversible T-wave changes on ECG caused by an abnormal electrical activation pattern. After a period of abnormal ventricular activation in which the myocardial repolarization is altered and delayed (such as with artificial pacemakers, tachyarrhythmias with wide QRS complexes or ventricular pre-excitation), the heart remembers and mirrors its repolarization in the direction of the vector of "abnormally" activated QRS complexes. This phenomenon alters patterns of gap junction distribution and generates changes in repolarization seen at the level of ionic-channel, ionic concentrations, ionic-current gating and action potential. In this work, we propose a mathematical model of cardiac electrophysiology which takes into account cardiac memory phenomena. The electrical activity in heart through torso, which is dependent on the prior history of accrued heartbeats, is mathematically modeled by a modified bidomain system with time fractional-order dynamics (which are used to describe processes that exhibit memory). This new bidomain system, that I name "it memory bidomain system", is a degenerate nonlinear coupled system of reaction-diffusion equations in shape of a fractional-order differential equation coupled with a set of time fractional-order partial differential equations. Cardiac memory is represented via fractional-order capacitor (associate to capacitive current) and fractional-order cellular membrane dynamics. First, mathematical model is introduced. Afterward, results on generalized Gronwall inequality within the framework of coupled fractional differential equations are developed. Next, the existence and uniqueness of solution of state system are proved as well as stability result. Further, some preliminary numerical applications are performed to show that memory reproduced by fractional-order derivatives can play a significant role on key dependent electrical properties including APD, action potential morphology and spontaneous activity.

    Citation: Aziz Belmiloudi. Cardiac memory phenomenon, time-fractional order nonlinear system and bidomain-torso type model in electrocardiology[J]. AIMS Mathematics, 2021, 6(1): 821-867. doi: 10.3934/math.2021050

    Related Papers:

  • Cardiac memory, also known as the Chatterjee phenomenon, refers to the persistent but reversible T-wave changes on ECG caused by an abnormal electrical activation pattern. After a period of abnormal ventricular activation in which the myocardial repolarization is altered and delayed (such as with artificial pacemakers, tachyarrhythmias with wide QRS complexes or ventricular pre-excitation), the heart remembers and mirrors its repolarization in the direction of the vector of "abnormally" activated QRS complexes. This phenomenon alters patterns of gap junction distribution and generates changes in repolarization seen at the level of ionic-channel, ionic concentrations, ionic-current gating and action potential. In this work, we propose a mathematical model of cardiac electrophysiology which takes into account cardiac memory phenomena. The electrical activity in heart through torso, which is dependent on the prior history of accrued heartbeats, is mathematically modeled by a modified bidomain system with time fractional-order dynamics (which are used to describe processes that exhibit memory). This new bidomain system, that I name "it memory bidomain system", is a degenerate nonlinear coupled system of reaction-diffusion equations in shape of a fractional-order differential equation coupled with a set of time fractional-order partial differential equations. Cardiac memory is represented via fractional-order capacitor (associate to capacitive current) and fractional-order cellular membrane dynamics. First, mathematical model is introduced. Afterward, results on generalized Gronwall inequality within the framework of coupled fractional differential equations are developed. Next, the existence and uniqueness of solution of state system are proved as well as stability result. Further, some preliminary numerical applications are performed to show that memory reproduced by fractional-order derivatives can play a significant role on key dependent electrical properties including APD, action potential morphology and spontaneous activity.


    加载中


    [1] R. A. Adams, Sobolev spaces, Academic Press, New-York, 1975.
    [2] O. P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives, J. Phys. A, 40 (2007), 6287-6303. doi: 10.1088/1751-8113/40/24/003
    [3] R. Almeida, N. R. Bastos, M. T. Monteiro, Modeling some real phenomena by fractional differential equations, Math. Methods Appl. Sci., 39 (2016), 4846-4855. doi: 10.1002/mma.3818
    [4] T. Arpadffy-Lovas, I. Baczko, B. Balati, M. Bitay, N. Jost, C. Lengyel, et. al., Electrical Restitution and its modifications by antiarrhythmic drugs in undiseased human ventricular muscle, Front. Pharmacol., 11, (2020), 479.
    [5] T. Ashihara, J. Constantino, N. A. Trayanova, Tunnel propagation of postshock activations as a hypothesis for fibrillation induction and isoelectric window, Circ. Res., 102 (2008), 737-745.
    [6] O. V. Aslanidi, A. P. Benson, M. R. Boyett, H. Zhang, Mechanisms of defibrillation by standing waves in the bidomain ventricular tissue with voltage applied in an external bath, Physica D, 238 (2009), 984-991. doi: 10.1016/j.physd.2009.02.003
    [7] G. W. Beeler, H. Reuter, Reconstruction of the action potential of ventricular myocardial fibres, J. Physiol., 268 (1977), 177-210. doi: 10.1113/jphysiol.1977.sp011853
    [8] A. Belmiloudi, Time-varying delays in electrophysiological wave propagation along cardiac tissue and minimax control problems associated with uncertain bidomain type models, AIMS Mathematics, 4 (2019), 928-983. doi: 10.3934/math.2019.3.928
    [9] A. Belmiloudi, S. Corre, Mathematical modeling and analysis of dynamic effects of multiple time-varying delays on electrophysiological wave propagation in the heart, Nonlinear Anal-Real, 47 (2019), 18-44. doi: 10.1016/j.nonrwa.2018.09.025
    [10] A. Belmiloudi, Mathematical modeling and optimal control problems in brain tumor targeted drug delivery strategies, Int. J. Biomath., 10 (2017), 1750056. doi: 10.1142/S1793524517500565
    [11] A. Belmiloudi, Dynamical behavior of nonlinear impulsive abstract partial differential equations on networks with multiple time-varying delays and mixed boundary conditions involving time-varying delays, J. Dyn. Control Syst., 21 (2015), 95-146. doi: 10.1007/s10883-014-9230-y
    [12] A. Belmiloudi, Robust control problem of uncertain bidomain models in cardiac electrophysiology, Journal of Coupled Systems and Multiscale Dynamics, 1 (2013), 332-350. doi: 10.1166/jcsmd.2013.1023
    [13] A. Belmiloudi, Stabilization, optimal and robust control. Theory and applications in biological and physical sciences, Springer-Verlag, London, 2008.
    [14] A. Belmiloudi, Robust control problems associated with time-varying delay nonlinear parabolic equations, IMA J. Math. Control I., 20 (2003), 305-334. doi: 10.1093/imamci/20.3.305
    [15] A. Belmiloudi, Regularity results and optimal control problems for the perturbation of Boussinesq equations of the ocean, Numer. Func. Anal. Opt., 21 (2000), 623-651. doi: 10.1080/01630560008816941
    [16] M. Bendahmane, K. H. Karlsen, Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue, Netw. Heterog. Media, 1 (2006), 185-218. doi: 10.3934/nhm.2006.1.185
    [17] G. A. Bocharov, F. A. Rihan, Numerical modelling in biosciences using delay differential equations, J. Comput. Appl. Math., 125 (2000), 183-199. doi: 10.1016/S0377-0427(00)00468-4
    [18] M. Boulakia, M. A. Fernandez, J. F Gerbeau, N. Zemzemi, A coupled system of PDEs and ODEs arising in electrocardiogramms modeling, Applied Math. Res. Exp., 28 (2008).
    [19] Y. Bourgault, Y. Coudiere, C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Anal-Real, 10 (2009), 458-482. doi: 10.1016/j.nonrwa.2007.10.007
    [20] N. Buric, K. Todorovic, N. Vasovic, Dynamics of noisy FitzHugh-Nagumo neurons with delayed coupling, Chaos, Solitons and Fractals, 40 (2009), 2405-2413. doi: 10.1016/j.chaos.2007.10.036
    [21] J. O. Campos, R. S. Oliveira, R. W. dos Santos, B. M. Rocha, Lattice Boltzmann method for parallel simulations of cardiac electrophysiology using GPUs, J. Comput. Appl. Math., 295 (2016), 70-82. doi: 10.1016/j.cam.2015.02.008
    [22] M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J. Int., 13 (1967), 529-539. doi: 10.1111/j.1365-246X.1967.tb02303.x
    [23] E. M. Cherry, F. H. Fenton, T. Krogh-Madsen, S. Luther, U. Parlitz, Introduction to Focus Issue: Complex Cardiac Dynamics, Chaos, 27 (2017), 093701. doi: 10.1063/1.5003940
    [24] P. Colli Franzone, G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level. In: Evolution Equations, Semigroups and Functional Analysis (eds.A. Lorenzi, B. Ruf), Birkhauser, Basel, 49-78, 2002.
    [25] P. Colli Franzone, L. Guerri, S. Tentoni, Mathematical modeling of the excitation process in myocardial tissue: Influence of fiber rotation on wavefront propagation and potential field, Math. Biosci., 101 (1990), 155-235. doi: 10.1016/0025-5564(90)90020-Y
    [26] T. Comlekoglu, S. H. Weinberg, Memory in a fractional-order cardiomyocyte model alters properties of alternans and spontaneous activity, Chaos, 27 (2017), 093904. doi: 10.1063/1.4999351
    [27] S. Corre, A. Belmiloudi, Coupled lattice Boltzmann simulation method for bidomain type models in cardiac electrophysiology with multiple time-delays, Math. Model. Nat. Pheno., 14 (2019), 207. doi: 10.1051/mmnp/2019045
    [28] S. Corre, A. Belmiloudi, Coupled lattice Boltzmann method for numerical simulations of fully coupled Heart and Torso bidomain system in electrocardiology, Journal of Coupled System and Multiscale Dynamics, 4 (2016), 207-229. doi: 10.1166/jcsmd.2016.1109
    [29] S. Corre, A. Belmiloudi, Coupled Lattice Boltzmann Modeling of Bidomain Type Models in Cardiac Electrophysiology, Mathematical and Computational Approaches in Advancing Modern Science and Engineering (eds. J. Bélair, et al.), Springer, 209-221, 2016.
    [30] H. Dal, S. Goktepe, M. Kaliske, E. Kuhl, A fully implicit finite element method for bidomain models of cardiac electromechanics, Comput. Method. Appl. M., 253 (2013), 323-336. doi: 10.1016/j.cma.2012.07.004
    [31] S. Das, K. Maharatna, Fractional dynamical model for the generation of ECG like signals from filtered coupled Van-der, Comput. Methods Programs Biomed., 122 (2013), 490-507.
    [32] K. Diethelm, Fractional differential equations, Springer, Berlin, 2010.
    [33] K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229-248. doi: 10.1006/jmaa.2000.7194
    [34] S. Dipierro, E. Valdinoci, A simple mathematical model inspired by the Purkinje cells: from delayed travelling waves to fractional diffusion, Bull. Math. Biol., 80 (2018), 1849-1870, doi: 10.1007/s11538-018-0437-z
    [35] M. Dupraz, S. Filippi, A. Gizzi, A. Quarteroni, R. Ruiz-Baier, Finite element and finite volume-element simulation of pseudo-ECGs and cardiac alternans, Math. Method. Appl. Sci., 38 (2015), 1046-1058.
    [36] D. Baleanu, A. M. Lopes, (eds.) Applications in engineering, life and social sciences. In: Handbook of fractional calculus with applications, De Gruyter, 2019.
    [37] K. A. Ellenbogen, B. L. Wilkoff, G. N. Kay, C. P. Lau, A. Auricchio, Clinical cardiac pacing, defibrillation and resynchronization therapy, Elsevier - Health Sciences Division; 5th Revised edition, 2017.
    [38] F. Fenton, A. Karma, Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation, Chaos, 8 (1998), 20-47. doi: 10.1063/1.166311
    [39] R. Fitzhugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445-465. doi: 10.1016/S0006-3495(61)86902-6
    [40] L. Glass, Synchronization and rhythmic processes in physiology, Nature, 410 (2001), 277-284. doi: 10.1038/35065745
    [41] J. M. Gomes, R. Weber dos Santos, E. M. Cherry, Alternans promotion in cardiac electrophysiology models by delay differential equations, Chaos, 27 (2017), 093915. doi: 10.1063/1.4999471
    [42] G. H. Hardy, J. E. Littlewood, Some properties of fractional integrals I, Math. Z., 27 (1928).
    [43] D. A. Israel, D. J. Edell, R. G. Mark, Time delays in propagation of cardiac action potential, Am. J. Physiol., 258 (1990), H1906-17.
    [44] D. Jeyaraj, M. Ashwath, D. S. Rosenbaum, Pathophysiology and clinical implications of cardiac memory, Pacing Clin Electrophysiol, 33 (2010), 346-352. doi: 10.1111/j.1540-8159.2009.02630.x
    [45] S. J. Kalbfleisch, J. Sousa, R. el-Atassi, H. Calkins, J. Langberg, F. Morady, Repolarization abnormalities after catheter ablation of accessory atrioventricular connections with radiofrequency current, J. Am. Coll. Cardiol., 18 (1991), 1761-1766. doi: 10.1016/0735-1097(91)90518-E
    [46] J. Keener, J. Sneyd, Mathematical Physiology, Springer-Verlag, New York, 2009.
    [47] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, 2006.
    [48] A. Kubica, M. Yamamoto, Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients, Fract. Calc. Appl. Anal., 21 (2018), 276-311. doi: 10.1515/fca-2018-0018
    [49] G. W. Leibniz, Letter from Hanover, Germany, to G.F.A. L'Hôpital, September 30; 1695, Mathematische Schriften, 2 (1849), 301-302.
    [50] L. Li, J. G. Liu, A generalized definition of Caputo derivatives and its application to fractional ODEs, SIAM J. Math. Anal., 50 (2018), 2867-2900. doi: 10.1137/17M1160318
    [51] G. Lines, M. Buist, P. Grottum, A. J. Pullan, J. Sundnes, A. Tveito, Mathematical models and numerical methods for the forward problem in cardiac electrophysiology, Computing and Visualization in Science, 5 (2003), 215-239.
    [52] J. L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Tome 1 & 2, Dunod, Paris, 1968.
    [53] C. H. Luo, Y. Rudy, A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction, Circ. Res., 68 (1991), 1501-1526.
    [54] C. H. Luo, Y. Rudy, A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes, Circ. Res., 74 (1994), 1071-1096.
    [55] R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59 (2010), 1586-1593. doi: 10.1016/j.camwa.2009.08.039
    [56] C. C. Mitchell, D. G. Schaeffer, A two-current model for the dinamics of cardiac membrane, Bull. Math. Biol., 65 (2003), 767-793. doi: 10.1016/S0092-8240(03)00041-7
    [57] J. Roger, A. McCulloch, A collocation-Galerkin finite element model of cardiac action potential propagation, IEEE T. Biomed. Eng., 41 (1994), 743-757. doi: 10.1109/10.310090
    [58] T. Nakagawa, T. Yagi, A. Ishida, Y. Mibiki, Y. Yamashina, H. Sato, et al., Differences between cardiacmemory Twave changes after idiopathic left ventricular tachycardia and ischemic T wave inversion induced by acute coronary syndrome, J. Electrocardiol., 49 (2016), 596-602.
    [59] N. Ozgen, Z. Lu, G. J. Boink, D. H. Lau, I. N. Shlapakova, Y. Bobkov, et al., Microtubules and angiotensin II receptors contribute to modulation of repolarization induced by ventricular pacing, Heart Rhythm, 9 (2012), 1865-72.
    [60] L. Padeletti, C. Fantappie, L. Perrotta, G. Ricciardi, P. Pieragnoli, M. Chiostri, et al., Cardiac memory in humans: vectocardiographic quantification in cardiac resynchronization therapy, Clin. Res. Cardiol., 100 (2011), 100-51.
    [61] A. Panfilov, R. Aliev, A simple two-variable model of cardiac excitation, Chaos Solitons and Fractals, 7 (1996), 293-301. doi: 10.1016/0960-0779(95)00089-5
    [62] I. Petras, Fractional-order chaotic systems, Fractional-order nonlinear systems, Springer, 2011.
    [63] A. N. Plotnikov, A. Shvilkin, W. Xiong, J. R. de Groot, L. Rosenshtraukh, S. Feinmark, et al., Interactions between antiarrhythmic drugs and cardiac memory, Cardiovasc. Res., 50 (2001), 335-344.
    [64] A. J. Pullan, M. L. Buist, L. K. Cheng, Mathematically modelling the electrical activity of the heart-from cell to body surface and back again, World Scientific, Singapore, 2005.
    [65] A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, Vol. 37 of Texts in Applied Mathematics (2nd ed.), Springer-Verlag, Berlin, 2007.
    [66] M. B. Rosenbaum, H. H. Blanco, M. V. Elizari, J. O. Lazzari, J. M. Davidenko, Eletrotonic modulation of the T-wave and cardiac memory, Am. J. Cardiol., 50 (1982), 213-222. doi: 10.1016/0002-9149(82)90169-2
    [67] Y. Sakamoto, Y. Inden, H. Okamoto, K. Mamiya, T. Tomomatsu, A. Fujii, et al., T-wave changes of cardiac memory caused by frequent premature ventricular contractions originating from the right ventricular outflow tract, J. Cardiovasc. Electrophysiol., 30 (2019), 1549-1556.
    [68] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon, 1993. Theory and applications; Edited and with a foreword by S. M. Nikolski; Translated from the 1987 Russian original; Revised by the authors.
    [69] R. F. Sandra, M. A. Savi, An analysis of heart rhythm dynamics using a three-coupled oscillator model, Chaos, Solitons and Fractals, 41 (2009), 2553-2565. doi: 10.1016/j.chaos.2008.09.040
    [70] T. Seidman, H. Z. Zhou, Existence and uniqueness of optimal controls for a quasilinear parabolic equation, SIAM J. Control Optim., 20 (1982), 747-762. doi: 10.1137/0320054
    [71] A. Shvilkin, H. D. Huang, M. E. Josephson, Cardiac memory: diagnostic tool in the making, Circ-Arrhythmia Elect., 8 (2015), 475-482. doi: 10.1161/CIRCEP.115.002778
    [72] A. Shvilkin, K. K. Ho, M. R. Rosen, M. E. Josephson, T-vector direction differentiates post-pacing from ischemic T-wave inversion in precordial leads, Circulation, 111 (2005), 969-974. doi: 10.1161/01.CIR.0000156463.51021.07
    [73] E. A. Sosunov, E. P. Anyukhovsky, M. R. Rosen, Altered ventricular stretch contributes to initiation of cardiac memory, Heart Rhythm, 5 (2008), 106-113. doi: 10.1016/j.hrthm.2007.09.008
    [74] J. Sundnes, G. Lines, X. Cai, B. F. Nielsen, K. A. Mardal, A. Tveito, Computing the electrical activity in the heart, Springer, Berlin, 2006.
    [75] M. C. Suran, A. D. Margulescu, R. Bruja, D. Vinereanu, Surface ECG criteria can discriminate post-septal pacing cardiac memory from ischemic T wave inversions, J. Electrocardiol., 58 (2020), 10-17. doi: 10.1016/j.jelectrocard.2019.10.004
    [76] W. Tan, C. Fu, C. Fu, W. Xie, H. Cheng, An anomalous subdiffusion model for calcium spark in cardiac myocytes, Appl. Phys. Lett., 91 (2007), 183901. doi: 10.1063/1.2805208
    [77] R. Temam, Navier-Stokes equations, North-Holland, Amsterdam, 1984.
    [78] L. Tung, A bi-domain model for describibg ischemic myocardial d-c potentials [Thesis/Dissertation], Massachussets Institute of Technology, 1978.
    [79] K. H. Ten Tusscher, A. V. Panfilov, Alternans and spiral breakup in a human ventricular tissue model, Am. J. Physiol-Heart C., 291 (2006), H1088-H1100.
    [80] M. Veneroni, Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field, Nonlinear Anal-Real, 10 (2009), 849-868.
    [81] E. J. Vigmond, R. W. dos Santos, A. J. Prassl, M. Deo, G. Plank, Solvers for the cardiac bidomain equations, Prog. Biophys. Mol. Bio., 96 (2008), 3-18.
    [82] J. W. Waks, D. A. Steinhaus, A. Shvilkin, D. B. Kramer, Post-pacemaker T-wave Inversions: Cardiac Memory, Am. J. Med., 129 (2016), 170-172. doi: 10.1016/j.amjmed.2015.09.001
    [83] B. J. West, M. Turalska, P. Grigolini, Networks of echoes: imitation, innovation and invisible leaders, Springer Science & Business Media, 2014.
    [84] S. Westerlund, L. Ekstam, Capacitor theory, IEEE T. Dielect. El. In., 1 (1994), 826-839.
    [85] H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081. doi: 10.1016/j.jmaa.2006.05.061
    [86] Y. Zhou, Basic theory of fractional differential equations, World Scientific, Singapore, 2014.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4636) PDF downloads(239) Cited by(0)

Article outline

Figures and Tables

Figures(25)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog