Research article

Non-self-centrality number of some molecular graphs

  • Received: 08 January 2021 Accepted: 19 April 2021 Published: 31 May 2021
  • MSC : 05C12

  • Let $ \mathscr{G} $ be a molecular graph, the eccentricity $ e(w) $ of the vertex $ w $ in $ \mathscr{G} $ is the maximum distance of $ w $ from any other vertex of $ \mathscr{G} $. The non-self-centrality number (NSC) of a graph $ \mathscr{G} $ is defined by $ N(\mathscr{G}) = \sum_{w\not = z}|e(w)-e(z)|, $ where summation goes over all the unordered pairs of vertices of $ \mathscr{G} $. We determine non-self-centrality number of $ TUC_{4}C_{8} $ and $ V $-phenylenic nanotubes in this paper.

    Citation: Rashid Farooq, Laiba Mudusar. Non-self-centrality number of some molecular graphs[J]. AIMS Mathematics, 2021, 6(8): 8342-8351. doi: 10.3934/math.2021483

    Related Papers:

  • Let $ \mathscr{G} $ be a molecular graph, the eccentricity $ e(w) $ of the vertex $ w $ in $ \mathscr{G} $ is the maximum distance of $ w $ from any other vertex of $ \mathscr{G} $. The non-self-centrality number (NSC) of a graph $ \mathscr{G} $ is defined by $ N(\mathscr{G}) = \sum_{w\not = z}|e(w)-e(z)|, $ where summation goes over all the unordered pairs of vertices of $ \mathscr{G} $. We determine non-self-centrality number of $ TUC_{4}C_{8} $ and $ V $-phenylenic nanotubes in this paper.



    加载中


    [1] A. R. Ashrafi, M. Ghorbani, M. Jalali, Eccentric connectivity polynomial of an infinite family of fullerenes, Optoelectron. Adv. Mat., 3 (2009), 823–826.
    [2] A. R. Ashrafi, M. Saheli, M. Ghorbani, The eccentric connectivity index of nanotubes and nanotori, J. Comput. Appl. Math., 235 (2011), 4561–4566. doi: 10.1016/j.cam.2010.03.001
    [3] A. R. Ashrafi, T. Doslic, M. Saheli, The eccentric connectivity index of $TUC_{4}C_{8}(R)$ nanotubes, Math Commun. Math. Comput. Chem., 65 (2011), 221–230.
    [4] M. Azari, Further results on non-self-centrality measures of graphs, Filomat, 32 (2018), 5137–5148. doi: 10.2298/FIL1814137A
    [5] Y. C. Kwun, M. Munir, W. Nazeer, S. Rafique, S. M. Kang, M-polynomial and degree-based topological indices of V-phenylenic nanotubes and nanotori, Sci. Rep., 7 (2017), 8756. doi: 10.1038/s41598-017-08309-y
    [6] M. Stefu, M. V. Diudea, Wiener index of $C_{4}C_{8}$ nanotubes, Math. Commun. Math. Comput. Chem., 50 (2004), 133–144.
    [7] K. Xu, K. C. Das, A. D. Maden, On a novel eccentricity-based invariant of a graph, Acta Math. Sin. (Engl. Ser.), 32 (2016), 1477–1493. doi: 10.1007/s10114-016-5518-z
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2242) PDF downloads(100) Cited by(0)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog