Let $ \mathscr{G} $ be a molecular graph, the eccentricity $ e(w) $ of the vertex $ w $ in $ \mathscr{G} $ is the maximum distance of $ w $ from any other vertex of $ \mathscr{G} $. The non-self-centrality number (NSC) of a graph $ \mathscr{G} $ is defined by $ N(\mathscr{G}) = \sum_{w\not = z}|e(w)-e(z)|, $ where summation goes over all the unordered pairs of vertices of $ \mathscr{G} $. We determine non-self-centrality number of $ TUC_{4}C_{8} $ and $ V $-phenylenic nanotubes in this paper.
Citation: Rashid Farooq, Laiba Mudusar. Non-self-centrality number of some molecular graphs[J]. AIMS Mathematics, 2021, 6(8): 8342-8351. doi: 10.3934/math.2021483
Let $ \mathscr{G} $ be a molecular graph, the eccentricity $ e(w) $ of the vertex $ w $ in $ \mathscr{G} $ is the maximum distance of $ w $ from any other vertex of $ \mathscr{G} $. The non-self-centrality number (NSC) of a graph $ \mathscr{G} $ is defined by $ N(\mathscr{G}) = \sum_{w\not = z}|e(w)-e(z)|, $ where summation goes over all the unordered pairs of vertices of $ \mathscr{G} $. We determine non-self-centrality number of $ TUC_{4}C_{8} $ and $ V $-phenylenic nanotubes in this paper.
[1] | A. R. Ashrafi, M. Ghorbani, M. Jalali, Eccentric connectivity polynomial of an infinite family of fullerenes, Optoelectron. Adv. Mat., 3 (2009), 823–826. |
[2] | A. R. Ashrafi, M. Saheli, M. Ghorbani, The eccentric connectivity index of nanotubes and nanotori, J. Comput. Appl. Math., 235 (2011), 4561–4566. doi: 10.1016/j.cam.2010.03.001 |
[3] | A. R. Ashrafi, T. Doslic, M. Saheli, The eccentric connectivity index of $TUC_{4}C_{8}(R)$ nanotubes, Math Commun. Math. Comput. Chem., 65 (2011), 221–230. |
[4] | M. Azari, Further results on non-self-centrality measures of graphs, Filomat, 32 (2018), 5137–5148. doi: 10.2298/FIL1814137A |
[5] | Y. C. Kwun, M. Munir, W. Nazeer, S. Rafique, S. M. Kang, M-polynomial and degree-based topological indices of V-phenylenic nanotubes and nanotori, Sci. Rep., 7 (2017), 8756. doi: 10.1038/s41598-017-08309-y |
[6] | M. Stefu, M. V. Diudea, Wiener index of $C_{4}C_{8}$ nanotubes, Math. Commun. Math. Comput. Chem., 50 (2004), 133–144. |
[7] | K. Xu, K. C. Das, A. D. Maden, On a novel eccentricity-based invariant of a graph, Acta Math. Sin. (Engl. Ser.), 32 (2016), 1477–1493. doi: 10.1007/s10114-016-5518-z |