We investigate the global structure of nodal solutions for the Kirchhoff-type problem
$ \left\{\begin{array}{ll} -(a+b\int_{0}^{1}|u'|^2dx)u'' = \lambda f(u),\ x\in (0,1),\\[2ex] u(0) = u(1) = 0, \end{array} \right. $
where $ a > 0, b > 0 $ are real constants, $ \lambda $ is a real parameter. $ f\in C(\mathbb{R}, \mathbb{R}) $ and there exist four constants $ s_1\leq s_2 < 0 < s_3\leq s_4 $ such that $ f(0) = f(s_i) = 0, i = 1, 2, 3, 4 $, $ f(s) > 0 $ for $ s\in(s_1, s_2)\cup(0, s_3)\cup(s_4, +\infty), f(s) < 0 $ for $ s\in(-\infty, s_1)\cup(s_2, 0)\cup(s_3, s_4) $. Under some suitable assumptions on nonlinear terms, we prove the existence of unbounded continua of nodal solutions of this problem which bifurcate from the line of trivial solutions or from infinity, respectively.
Citation: Fumei Ye, Xiaoling Han. Global bifurcation result and nodal solutions for Kirchhoff-type equation[J]. AIMS Mathematics, 2021, 6(8): 8331-8341. doi: 10.3934/math.2021482
We investigate the global structure of nodal solutions for the Kirchhoff-type problem
$ \left\{\begin{array}{ll} -(a+b\int_{0}^{1}|u'|^2dx)u'' = \lambda f(u),\ x\in (0,1),\\[2ex] u(0) = u(1) = 0, \end{array} \right. $
where $ a > 0, b > 0 $ are real constants, $ \lambda $ is a real parameter. $ f\in C(\mathbb{R}, \mathbb{R}) $ and there exist four constants $ s_1\leq s_2 < 0 < s_3\leq s_4 $ such that $ f(0) = f(s_i) = 0, i = 1, 2, 3, 4 $, $ f(s) > 0 $ for $ s\in(s_1, s_2)\cup(0, s_3)\cup(s_4, +\infty), f(s) < 0 $ for $ s\in(-\infty, s_1)\cup(s_2, 0)\cup(s_3, s_4) $. Under some suitable assumptions on nonlinear terms, we prove the existence of unbounded continua of nodal solutions of this problem which bifurcate from the line of trivial solutions or from infinity, respectively.
[1] | X. Cao, G. Dai, Spectrum global bifurcation and nodal solutions to Kirchhoff–type equations, Electron. J. Differential Equations, 2018 (2018), 1–10. |
[2] | G. Dai, R. Hao, Existence of solutions for a $p(x)$-Kirchhoff-type equation, J. Math. Anal. Appl., 359 (2009), 275–284. doi: 10.1016/j.jmaa.2009.05.031 |
[3] | G. Dai, R. Ma, Solutions for a $p(x)$–Kirchhoff type equation with Neumann boundary data, Nonlinear Anal-Real, 12 (2011), 2666–2680. doi: 10.1016/j.nonrwa.2011.03.013 |
[4] | G. Dai, J. Wei, Infinitely many non–negative solutions for a $p(x)$–Kirchhoff–type problem with Dirichlet boundary condition, Nonlinear Anal., 73 (2010), 3420–3430. doi: 10.1016/j.na.2010.07.029 |
[5] | X. Han, G. Dai, On the sub–supersolution method for $p(x)$–Kirchhoff type equations, J. Inequal. Appl., 2012 (2012), 1–11. doi: 10.1186/1029-242X-2012-1 |
[6] | Z. Liang, F. Li, J. Shi, Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. I. H. Poincaré–AN, 31 (2014), 155–167. doi: 10.1016/j.anihpc.2013.01.006 |
[7] | J. Liao, P. Zhang, J. Liu, C. Tang, Existence and multiplicity of positive solutions for a class of Kirchhoff type problems at resonance, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 1959–1974. doi: 10.3934/dcdss.2016080 |
[8] | F. Liu, H. Luo, G. Dai, Global bifurcation and nodal solutions for homogeneous Kirchhoff type equations, Electron. J. Qual. Theory Differ. Equ., 29 (2020), 1–13. |
[9] | J. Sun, C. Tang, Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal., 74 (2011), 1212–1222. doi: 10.1016/j.na.2010.09.061 |
[10] | R. Ma, Global behavior of the components of nodal solutions of asymptotically linear eigenvalue problems, Appl. Math. Lett., 21 (2008), 754–760. doi: 10.1016/j.aml.2007.07.029 |
[11] | R. Ma, Y. An, Global structure of positive solutions for nonlocal boundary value problems involving integral conditions, Nonlinear Anal., 71 (2009), 4364–4376. doi: 10.1016/j.na.2009.02.113 |
[12] | R. Ma, X. Han, Existence and multiplicity of positive solutions of a nonlinear eigenvalue problem with indefinite weight function, Appl. Math. Comput., 215 (2009), 1077–1083. doi: 10.1016/j.amc.2009.06.042 |
[13] | R. Ma, X. Han, Existence of nodal solutions of a nonlinear eigenvalue problem with indefinite weight function, Nonlinear Anal., 71 (2009), 2119–2125. doi: 10.1016/j.na.2009.01.046 |
[14] | R. Ma, B. Thompson, Nodal solutions for nonlinear eigenvalue problems, Nonlinear Anal., 59 (2004), 707–718. doi: 10.1016/j.na.2004.07.030 |
[15] | J. T. Schwartz, Nonlinear Functional Analysis, Gordon and Breach, New York, 1969. |
[16] | M. H. Protter, H. F. Weinberger, Maximum Principles in Differential Equations, corrected reprint of the 1967 original, Springer-Verlag, New York, 1984. |
[17] | P. H. Rabinowitz, On bifurcation from infinity, J. Differ. Equations, 14 (1973), 462–475. doi: 10.1016/0022-0396(73)90061-2 |