Research article

Results on some robust multi-cost variational models

  • Received: 19 September 2024 Revised: 30 December 2024 Accepted: 06 January 2025 Published: 15 January 2025
  • MSC : 90C32, 26B25, 90C17, 49J20, 90C46

  • In this study, a new family of robust multiobjective fractional variational control problems was introduced and investigated. To this end, a dual model was associated with the class of problems. Further, by considering variants of convexity for the involved functionals (determined by curvilinear integrals that did not depend on the path), we provided some characterization and equivalence results for the considered models. Moreover, an illustrative numerical example was formulated.

    Citation: Savin Treanţă, Muhammad Uzair Awan, Muhammad Zakria Javed, Bandar Bin-Mohsin. Results on some robust multi-cost variational models[J]. AIMS Mathematics, 2025, 10(1): 932-950. doi: 10.3934/math.2025044

    Related Papers:

  • In this study, a new family of robust multiobjective fractional variational control problems was introduced and investigated. To this end, a dual model was associated with the class of problems. Further, by considering variants of convexity for the involved functionals (determined by curvilinear integrals that did not depend on the path), we provided some characterization and equivalence results for the considered models. Moreover, an illustrative numerical example was formulated.



    加载中


    [1] S. Aggarwal, D. Bhatia, N. Lau, Duality in multiple right hand choice linear fractional problems, J. Inform. Optim. Sci., 12 (1991), 13–24. https://doi.org/10.1080/02522667.1991.10699046 doi: 10.1080/02522667.1991.10699046
    [2] M. Arana-Jiménez, G. Ruiz-Garzón, A. Rufián-Lizana, R. Osuna-Gómez, A necessary and sufficient condition for duality in multiobjective variational problems, Eur. J. Oper. Res., 201 (2010), 672–681. https://doi.org/10.1016/j.ejor.2009.03.047 doi: 10.1016/j.ejor.2009.03.047
    [3] X. H. Chen, Duality for a class of multiobjective control problems, J. Math. Anal. Appl., 267 (2002), 377–394. https://doi.org/10.1006/jmaa.2001.7873 doi: 10.1006/jmaa.2001.7873
    [4] B. D. Craven, B. M. Glover, Invex functions and duality, J. Aust. Math. Soc. A, 39 (1985), 1–20. https://doi.org/10.1017/S1446788700022126
    [5] K. Das, S. Treanţă, T. Saeed, Mond-Weir and wolfe duality of set-valued fractional minimax problems in terms of contingent epi-derivative of second-order, Mathematics, 10 (2022), 938. https://doi.org/10.3390/math10060938 doi: 10.3390/math10060938
    [6] T. R. Gulati, I. Husain, A. Ahmed, Optimality conditions and duality for multiobjective control problems, J. Appl. Anal., 11 (2005), 225–245. https://doi.org/10.1515/JAA.2005.225 doi: 10.1515/JAA.2005.225
    [7] M. Hachimi, B. Aghezzaf, Sufficiency and duality in multiobjective variational problems with generalized type I functions, J. Glob. Optim., 34 (2006), 191–218. https://doi.org/10.1007/s10898-005-1653-2 doi: 10.1007/s10898-005-1653-2
    [8] M. A. Hanson, On sufficiency of Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545–550. https://doi.org/10.1016/0022-247X(81)90123-2 doi: 10.1016/0022-247X(81)90123-2
    [9] A. Jayswal, I. Stancu-Minasian, I. Ahmad, On sufficiency and duality for a class of interval-valued programming problems, Appl. Math. Comput., 218 (2011), 4119–4127. https://doi.org/10.1016/j.amc.2011.09.041 doi: 10.1016/j.amc.2011.09.041
    [10] M. A. Khan, F. R. Al-Solamy, Sufficiency and duality in nondifferentiable minimax fractional programming with $(H_{p}, r)$-invexity, J. Egypt. Math. Soc., 23 (2015), 208–213. https://doi.org/10.1016/j.joems.2014.01.010 doi: 10.1016/j.joems.2014.01.010
    [11] K. Khazafi, N. Rueda, P. Enflo, Sufficiency and duality for multiobjective control problems under generalized $(B, \rho)$-type I functions, J. Glob. Optim., 46 (2010), 111–132. https://doi.org/10.1007/s10898-009-9412-4 doi: 10.1007/s10898-009-9412-4
    [12] D. S. Kim, A. L. Kim, Optimality and duality for nondifferentiable multiobjective variational problems, J. Math. Anal. Appl., 274 (2002), 255–278. https://doi.org/10.1016/S0022-247X(02)00298-6 doi: 10.1016/S0022-247X(02)00298-6
    [13] Z. A. Liang, Q. K. Ye, Duality for a class of multiobjective control problems with generalized invexity, J. Math. Anal. Appl., 256 (2001), 446–461. https://doi.org/10.1006/jmaa.2000.7284 doi: 10.1006/jmaa.2000.7284
    [14] Z. H. Liu, S. Migórski, S. D. Zeng, Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces, J. Differ. Equ., 263 (2017), 3989–4006. https://doi.org/10.1016/j.jde.2017.05.010 doi: 10.1016/j.jde.2017.05.010
    [15] S. Mititelu, Optimality and duality for invex multi-time control problems with mixed constraints, J. Adv. Math. Stud., 2 (2009), 25–34.
    [16] B. Mond, M. A. Hanson, Duality for control problems, SIAM J. Control, 6 (1968), 114–120. https://doi.org/10.1137/0306009
    [17] B. Mond, T. Weir, Generalized concavity and duality, In: Generalized Concavity in Optimization and Economics, New York: Academic Press, 1981,263–279.
    [18] B. Mond, I. Smart, Duality and sufficiency in control problems with invexity, J. Math. Anal. Appl., 136 (1988), 325–333. https://doi.org/10.1016/0022-247X(88)90135-7 doi: 10.1016/0022-247X(88)90135-7
    [19] R. N. Mukherjee, C. P. Rao, Mixed type duality for multiobjective variational problems, J. Math. Anal. Appl., 252 (2000), 571–586. https://doi.org/10.1006/jmaa.2000.7000 doi: 10.1006/jmaa.2000.7000
    [20] C. Nahak, S. Nanda, Sufficient optimality criteria and duality for multiobjective variational control problems with $V$-invexity, Nonlinear Anal., 66 (2007), 1513–1525. https://doi.org/10.1016/j.na.2006.02.006 doi: 10.1016/j.na.2006.02.006
    [21] V. A. D. Oliveira, G. N. Silva, On sufficient optimality conditions for multiobjective control problems, J. Glob. Optim., 64 (2016), 721–744. https://doi.org/10.1007/s10898-015-0351-y doi: 10.1007/s10898-015-0351-y
    [22] Ritu, S. Treanţă, D. Agarwal, G. Sachdev, Robust efficiency conditions in multiple-objective fractional variational control problems, Fractal Fract., 7 (2023), 18. https://doi.org/10.3390/fractalfract7010018 doi: 10.3390/fractalfract7010018
    [23] T. Saeed, Robust optimality conditions for a class of fractional optimization problems, Axioms, 12 (2023), 673. https://doi.org/10.3390/axioms12070673 doi: 10.3390/axioms12070673
    [24] T. Saeed, S. Treanţă, On sufficiency conditions for some robust variational control problems, Axioms, 12 (2023), 705. https://doi.org/10.3390/axioms12070705 doi: 10.3390/axioms12070705
    [25] S. Sharma, Duality for higher order variational control programming problems, Int. T. Oper. Res., 24 (2015), 1549–1560. https://doi.org/10.1111/itor.12192 doi: 10.1111/itor.12192
    [26] S. Treanţă, T. Saeed, Duality results for a class of constrained robust nonlinear optimization problems, Mathematics, 11 (2023), 192. https://doi.org/10.3390/math11010192 doi: 10.3390/math11010192
    [27] S. Treanţă, T. Saeed, Characterization results of solution sets associated with multiple-objective fractional optimal control problems, Mathematics, 11 (2023), 3191. https://doi.org/10.3390/math11143191 doi: 10.3390/math11143191
    [28] S. Treanţă, On well-posed isoperimetric-type constrained variational control problems, J. Differ. Equ., 298 (2021), 480–499. https://doi.org/10.1016/j.jde.2021.07.013 doi: 10.1016/j.jde.2021.07.013
    [29] G. C. Wu, D. Baleanu, S. D. Zeng, Finite-time stability of discrete fractional delay systems: Gronwall inequality and stability criterion, Commun. Nonlinear Sci. Numer. Simul., 57 (2018), 299–308. https://doi.org/10.1016/j.cnsns.2017.09.001 doi: 10.1016/j.cnsns.2017.09.001
    [30] G. J. Zalmai, Generalized $ (\mathcal{F}, b, f, \rho, \theta) $-univex $n$-set functions and semiparametric duality models in multiobjective fractional subset programming, Int. J. Math. Math. Sci., 2005 (2005), 949–973. https://doi.org/10.1155/IJMMS.2005.949 doi: 10.1155/IJMMS.2005.949
    [31] S. D. Zeng, S. Migórski, Z. H. Liu, Well-posedness, optimal control, and sensitivity analysis for a class of differential variational-hemivariational inequalities, SIAM J. Optim., 31 (2021), 2829–2862. https://doi.org/10.1137/20M1351436 doi: 10.1137/20M1351436
    [32] S. D. Zeng, S. Migórski, A. A. Khan, Nonlinear quasi-hemivariational inequalities: Existence and optimal control, SIAM J. Control Optim., 59 (2021), 1246–1274. https://doi.org/10.1137/19M1282210 doi: 10.1137/19M1282210
    [33] J. K. Zhang, S. Y. Liu, L. F. Li, Q. X. Feng, Sufficiency and duality for multiobjective variational control problems with $G$-invexity, Comput. Math. Appl., 63 (2012), 838–850. https://doi.org/10.1016/j.camwa.2011.11.049 doi: 10.1016/j.camwa.2011.11.049
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(60) PDF downloads(12) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog