In this research, we investigate the existence of at least one continuous solution of a problem with feedback control involving implicit pantograph equations of the Chandrasekhar type with state-dependent delay. In addition, we examine the possibility of the uniqueness of the solution under suitable assumptions. Furthermore, we analyze the problem's Hyers-Ulam stability and the continuous dependency of the unique solution on the original data and the parameter. Moreover, we look into this problem in the absence of feedback control. We provided a few instances to indicate our findings.
Citation: Ahmed M. A. El-Sayed, Eman M. Al-Barg, Hanaa R. Ebead. A comprehensive study of a feedback control problem with a state-dependent implicit pantograph equation of Chandrasekhar type[J]. AIMS Mathematics, 2025, 10(1): 951-971. doi: 10.3934/math.2025045
In this research, we investigate the existence of at least one continuous solution of a problem with feedback control involving implicit pantograph equations of the Chandrasekhar type with state-dependent delay. In addition, we examine the possibility of the uniqueness of the solution under suitable assumptions. Furthermore, we analyze the problem's Hyers-Ulam stability and the continuous dependency of the unique solution on the original data and the parameter. Moreover, we look into this problem in the absence of feedback control. We provided a few instances to indicate our findings.
[1] | P. Atkinson, Feedback control theory for engineers, Springer, 1968. https://doi.org/10.1007/978-1-4684-7453-4 |
[2] | M. R. Abdollahpour, M. T. Rassias, Hyers-Ulam stability of hypergeometric differential equations, Aequat. Math., 93 (2019), 691–698. https://doi.org/10.1007/s00010-018-0602-3 doi: 10.1007/s00010-018-0602-3 |
[3] | M. R. Abdollahpour, R. Aghayari, M. T. Rassias, Hyers-Ulam stability of associated Laguerre differential equations in a subclass of analytic functions, J. Math. Anal. Appl., 437 (2016), 605–612. https://doi.org/10.1016/j.jmaa.2016.01.024 doi: 10.1016/j.jmaa.2016.01.024 |
[4] | C. Alsina, R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl., 2 (1998), 373–380. https://doi.org/10.1155/S102558349800023X doi: 10.1155/S102558349800023X |
[5] | I. K. Argyros, Ouadratic equation and applications to Chandrasekhars and related equations, B. Aust. Math. Sot., 32 (1985), 275–292. https://doi.org/10.1017/S0004972700009953 doi: 10.1017/S0004972700009953 |
[6] | R. Bellman, Stability theory of differential equations, Dover Publications, 2013. |
[7] | J. Belair, Population models with state-dependent delays, CRC Press, 1991. https://doi.org/10.1201/9781003072706-13 |
[8] | J. Belair, C. Mackey, Consumer memory and price fluctuations on commodity markets: An integro-differential model, J. Dyn. Diff. Equat., 1 (1989), 299–325. https://doi.org/10.1007/BF01053930 doi: 10.1007/BF01053930 |
[9] | V. Berinde, Existence and approximation of solutions of some first order iterative differential equations, Miskolc Math. Notes, 11 (2010), 13–26. https://doi.org/10.18514/MMN.2010.256 doi: 10.18514/MMN.2010.256 |
[10] | A. Buicá, Existence and continuous dependence of solutions of some functional differential equations, Semin. Fixed Point Theor., 3 (1995), 1–14. |
[11] | J. Caballero, A. B. Mingarelli, K. Sadarangani, Existence of solutions of an integral equation of Chandrasekhar type in the theory of radiative transfer, Electron. J. Differ. Eq., 2006 (2006), 1–11. |
[12] | B. Cahlon, M. Eskin, Existence theorems for an integral equation of the Chandrasekhar H-equation with perturbation, J. Math. Anal. Appl., 83 (1981), 159-171. https://doi.org/10.1016/0022-247X(81)90254-7 doi: 10.1016/0022-247X(81)90254-7 |
[13] | T. Cardinali, S. Matucci, P. Rubbioni, Controllability of nonlinear integral equations of Chandrasekhar type, J. Fixed Point Theory Appl., 24 (2022), 58. https://doi.org/10.1007/s11784-022-00974-5 doi: 10.1007/s11784-022-00974-5 |
[14] | S. Chandrasekhar, Radiative transfer, Oxford University Press, 1950. http://doi.org/10.1002/qj.49707633016 |
[15] | S. Ya Feng, D. Chen Chang, Exact bounds and approximating solutions to the Fredholm integral equations of Chandrasekhar type, Taiwanese J. Math., 23 (2019), 409–425. https://doi.org/10.11650/tjm/181108 doi: 10.11650/tjm/181108 |
[16] | R. F. Curtain, A. J. Pritchard, Functional analysis in modern applied mathematics, Academic Press, 1977. |
[17] | M. De la Sen, S. Alonso-Quesada, Control issues for the Beverton-Holt equation in ecology by locally monitoring the environment carrying capacity, Non-adaptive and adaptive cases, Appl. Math. Comput., 215 (2009), 2616–2633. https://doi.org/10.1016/j.amc.2009.09.003 doi: 10.1016/j.amc.2009.09.003 |
[18] | P. De Leenheer, H. Smith, Feedback control for chemostat models, J. Math. Biol., 46 (2003), 48–70. https://doi.org/10.1007/s00285-002-0170-x doi: 10.1007/s00285-002-0170-x |
[19] | R. Driver, A two-body problem of classical electrodynamics: the one-dimensional case, Ann. Phys., 21 (1963), 122–142. https://doi.org/10.1016/0003-4916(63)90227-6 doi: 10.1016/0003-4916(63)90227-6 |
[20] | E. Eder, The functional differential equation $x'(t) = x(x(t))$, J. Differ. Equ., 54 (1984), 390–400. https://doi.org/10.1016/0022-0396(84)90150-5 doi: 10.1016/0022-0396(84)90150-5 |
[21] | A. M. A. El-Sayed, E. M. Al-Barg, H. R. Ebead, A Comprehensive View of the Solvability and Stability of a Feedback Control Problem with a State-Dependent Delay Implicit Pantograph Equation, Int. J. Anal. Appl., 22 (2024), 184. https://doi.org/10.28924/2291-8639-22-2024-184 doi: 10.28924/2291-8639-22-2024-184 |
[22] | A. M. A. El-Sayed, H. H. Hashem, A state-dependent Chandrasekhar integral equation, Int. J. Nonlinear Anal. Appl., 13 (2022), 3049-3056. https://doi.org/10.22075/ijnaa.2022.23027.2461 doi: 10.22075/ijnaa.2022.23027.2461 |
[23] | A. M. A. El-Sayed, H. H. Hashem, S. M. A. Al-Issa, comprehensive view of the solvability of non-local fractional orders pantograph equation with a fractal-fractional feedback control, AIMS Math., 9 (2024), 19276–19298. https://doi.org/10.3934/math.2024939 doi: 10.3934/math.2024939 |
[24] | A. M. A. El-Sayed, E. M. Hamdallah, H. R. Ebead, On a nonlocal boundary value problem of a state-dependent differential equation, Mathematics, 9 (2021), 2800. https://doi.org/10.3390/math9212800 doi: 10.3390/math9212800 |
[25] | M. Féckan, On a certain type of functional differential equations, Math. Slovaca, 43 (1993), 39–43. |
[26] | H. H. Hashem, A. M. A. El-Sayed, Stabilization of coupled systems of quadratic integral equations of Chandrasekhar type, Math. Nachr., 290 (2017), 341–348. https://doi.org/10.1002/mana.201400348 doi: 10.1002/mana.201400348 |
[27] | H. H. G. Hashem, Continuous dependence of solutions of coupled systems of state dependent functional equations, Adv. Differ. Equ. Contr., 22 (2020), 121–135. https://doi.org/10.17654/DE022020121 doi: 10.17654/DE022020121 |
[28] | H. H. Hashem, H. O. Alrashidi, Characteristics of solutions of nonlinear neutral integrodifferential equation via Chandrasekhar integral, J. Math. Comput. Sci., 24 (2021), 173–185. https://doi.org/10.22436/jmcs.024.02.08 doi: 10.22436/jmcs.024.02.08 |
[29] | M. A. Hernandez-Veron, E. Martinez, S. Singh, On the Chandrasekhar integral equation, Comput. Math. Methods, 3 (2021), e1150. https://doi.org/10.1002/cmm4.1150 doi: 10.1002/cmm4.1150 |
[30] | A. R. Humphries, B. Krauskopf, S. Ruschel, J. Sieber, Nonlinear effects of instantaneous and delayed state dependence in a delayed feedback loop, Discrete Cont. Dyn. B, 27 (2022), 7245–7273. https://doi.org/10.3934/dcdsb.2022042 doi: 10.3934/dcdsb.2022042 |
[31] | R. Johnson, Functional equations, approximations, and dynamic response of systems with variable time-delay, IEEE T. Automat. Contr., 17 (1972), 398–401. https://doi.org/10.1109/TAC.1972.1099999 doi: 10.1109/TAC.1972.1099999 |
[32] | L. V. Kantorovich, G. P. Akilov, Functional analysis, translated by howard L. silcock, 1982. |
[33] | M. Lauran, Existence results for some differential equations with deviating argument, Filomat, 25 (2011), 21–31. https://doi.org/10.2298/FIL1102021L doi: 10.2298/FIL1102021L |
[34] | Y. W. Lin, T. T. Lu, Qualitative behavior of a state-dependent functional differential equation, J. Appl. Comput. Math., 2 (2013), 2–5. https://doi.org/10.4172/2168-9679.1000144 doi: 10.4172/2168-9679.1000144 |
[35] | M. Miranda, E. Pascali, On a type of evolution of self-referred and hereditary phenomena, Aequ. Math., 71 (2006), 253–268. https://doi.org/10.1007/s00010-005-2821-7 doi: 10.1007/s00010-005-2821-7 |
[36] | P. Nasertayoob, S. M. Vaezpour, Positive periodic solution for a nonlinear neutral delay population equation with feedback control, J. Nonlinear Sci. Appl., 6 (2013), 227–233. https://doi.org/10.22436/JNSA.006.03.08 doi: 10.22436/JNSA.006.03.08 |
[37] | P. Nasertayoob, Solvability and asymptotic stability of a class of nonlinear functional-integral equation with feedback control, Commun. Nonlinear Anal., 5 (2018), 19–27. |
[38] | J. Patade, S. Bhalekar, Analytical Solution of Pantograph Equation with Incommensurate Delay, Phys. Sci. Rev., 3 (2018), 9. https://doi.org/10.1515/psr-2016-9103 doi: 10.1515/psr-2016-9103 |
[39] | S. Rezapour, S. Etemad, R. P. Agarwal, K. Nonlaopon, On a Lyapunov-type inequality for control of a y-model thermostat and the existence of its solutions, Mathematics, 10 (2022), 4023. https://doi.org/10.3390/math10214023 doi: 10.3390/math10214023 |
[40] | S. L. Ross, Differential equations, 1984. |
[41] | P. Waltman, Deterministic threshold models in the theory of epidemics, In: Lecture Notes in Biomathematics, Berlin: Springer, 1974. https://doi.org/10.1007/978-3-642-80820-3 |
[42] | C. Tunç, E. Biçer, Hyers-Ulam-Rassias stability for a first order functional differential equation, J. Math. Fund. Sci., 47 (2015), 143–153. https://doi.org/10.5614/j.math.fund.sci.2015.47.2.3 doi: 10.5614/j.math.fund.sci.2015.47.2.3 |
[43] | O. Tunç, C. Tunç, Ulam stabilities of nonlinear iterative integro-differential equations, RACSAM Rev. R. Acad. A, 117 (2023), 118. https://doi.org/10.1007/s13398-023-01450-6 doi: 10.1007/s13398-023-01450-6 |
[44] | O. Tunç, C. Tunç, G. Petruçel, J. C. Yao, On the Ulam stabilities of nonlinear integral equations and integro-differential equations, Math. Method. Appl. Sci., 47 (2024), 4014–4028. https://doi.org/10.1002/mma.9800 doi: 10.1002/mma.9800 |
[45] | N. M. Tuan, L. T. Nguyen, On solutions of a system of hereditary and self-referred partial-differential equations, Numer. Algor., 55 (2010), 101–113. https://doi.org/10.1007/s11075-009-9360-6 doi: 10.1007/s11075-009-9360-6 |
[46] | U. Van Le, L. T. Nguyen, Existence of solutions for systems of self-referred and hereditary differential equations, Electron. J. Differ. Eq., 2008 (2008), 51. |
[47] | J. Yang, J. Gimeno, R. D. la Llave, Parameterization method for state-dependent delay perturbation of an ordinary differential equation, SIAM J. Math. Anal., 53 (2021), 4. https://doi.org/10.1137/20M1311430 doi: 10.1137/20M1311430 |
[48] | M. Yusuf Waziri, W. J.Leong, M. Abu Hassan, M. Monsi, A low memory solver for integral equations of Chandrasekhar type in the radiative transfer problems, Math. Probl. Eng., 2011 (2011), 467017. https://doi.org/10.1155/2011/467017 doi: 10.1155/2011/467017 |
[49] | K. Zhao, Stability of a nonlinear Langevin system of ML-Type fractional derivative affected by time-varying delays and differential feedback control, Fractal Fract., 6 (2022), 725. https://doi.org/10.3390/fractalfract6120725 doi: 10.3390/fractalfract6120725 |