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1. Introduction

The Chandrasekhar integral equation arises in the context of radiative transfer theory; this type
of equation is essential when examining the propagation of radiation through a medium that exhibits
scattering [14]. The study of Chandrasekhar’s integral equation is crucial in a variety of areas and
encountered in several applications, including mathematical and computational methods, astrological
applications, radiative transfer theory, and stellar atmospheres (see [5, 11, 12, 48]). Several researchers
have focused their attention on this type of equation as seen in [13, 15, 26, 28, 29] and the references
therein.

Feedback control system is a fundamental concept in engineering and automation that controls a
system’s behavior by modifying inputs based on output [1]. A controller is a biological system that
regulates the operation of other biological processes. Integrative feedback control is essential for
regulation, sensory adaptation, and long-term effects. Control variables are vital in dealing with
unanticipated occurrences that disrupt real-world ecosystems, potentially altering biological features.
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These difficulties are converted into mathematical models [17, 39, 49]. Several authors investigated
feedback problems. In [18], the authors established a necessary condition for a positive periodic
solution of a feedback control model for chemostats. A positive periodic solution with feedback
control involving a nonlinear neutral delay population problem has been analyzed in [36]. The author
of [37] studied the asymptotic stability and solvability of nonlinear functional-integral equations with
feedback control.

Stability analysis is an extensive and varied field with deep theoretical roots and numerous
applications in engineering, economics, biology, physics, and other disciplines. It is a prevalent topic
in the mathematical sciences [6]. An equation or problem can be used to simulate a physical process
if a minor change in it causes a corresponding small change in the outcome. Alsina and Ger [4]
initially examined the Hyers-Ulam stability of differential equations. Several papers have been
devoted to studying the Hyers-Ulam stability of differential and integral equations, for example,
(see [2, 3, 42–44]). Another concept in stability theory is continuous dependency [40], which analyzes
the behavior of mathematical solutions under different conditions. Hyers-Ulam stability assesses the
problem’s resilience to disruptions, while continuous dependency examines how even minor
parameter changes affect the problem’s unique solution. The study of the continuous dependence of
the solution has been addressed through many research works [22, 27].

Pantograph differential equations are an effective tool for modeling systems with feedback
interactions. From signal processing to finance, control systems, and neural networks, these equations
aid in the capture of complicated dynamics in which the present state-depends on past states at scaled
time intervals. Solving pantograph differential equations analytically is difficult because of their
nonlocal nature; often, numerical methods such as finite difference schemes are used to obtain
approximate solutions. Much research has been conducted on pantograph equations due to their
significance in various research areas. For instance, in [38], Patade et al. investigated the analytical
solution of the pantograph equation with two delays; they analyzed the existence, uniqueness, and
stability of the solution. In [23], the authors studied the solvability and the Hyers-Ulam stability of
non-local fractional orders of the pantograph equation with a feedback control.

State-dependent (self-reference) differential and integral equations are a special new type of
functional differential equations in which the deviation of the argument depends on the time and the
state together. In most differential and integral equations with deviating arguments that are found in
literature, the deviation of the argument involves only the time, although another important case in
theory and practice involves deviating arguments that depend on both the state variable x and the time
t (see for instance [9, 10, 20, 34]). This kind of delay is widely utilized in nonlinear analysis and has a
wide range of applications, including mechanical models [31], population models [7], infectious
disease transmission [41], the two-body problem of classical electrodynamics [19], the dynamics of
economical systems [8], and it has many applications in hereditary phenomena [35, 45, 46]. One of
the first researches in self-reference differential equations was presented by Eder [20], he classifies the
solutions to the differential equation x′(t) = x

(
x(t)
)
, t ∈ A ⊂ R, and demonstrated the existence and

uniqueness of the solution with the condition x(t0) = x0. Fe’ckan [25] introduced a generalization of
Eder’s results by studying the functional differential equation of the form
x′(t) = f

(
x(x(t))

)
, t ∈ A ⊂ R, where f ∈ C1(R). Buicá [10], examined the uniqueness of solution and

data dependence of the problem x′(t) = f (t, x(x(t))), t ∈ [a, b], x(t0) = x0, where t0, x0 ∈ [a, b] and
f ∈ C([a, b], [a, b]). Lin and Lu [34] studied the qualitative behavior of a state-dependent functional
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differential equation. Yang et al. [47] examined an ordinary differential equation with a
state-dependent delay. EL-Sayed et al. [24] investigated a nonlocal boundary value problem of a
state-dependent differential equation. In [22], the authors analyzed the state-dependent Chandrasekhar
integral equation

x(t) = b(t) + λx
( ∫ t

0

t
t + s

a(s)x(s)ds,
)
, t ∈ [0, 1],

they proved the existence of the solution for this equation and analyzed its continuous dependency on
function a. In [30], Humphries et al. examined the state-dependent delay system

x′(t) = αx(t) + βx(t − a − ηx(t − b)),

where the delay a + ηx(t − b) depends linearly on the state x with strength η. Lauran in [33], analyzed
iterative and non iterative first order differential equations of the form

dx(t)
dt
= f (t, x(t), x(λt))

and
dx(t)

dt
= f (t, x(t), x(x(t))),

respectively, with the initial condition x(t0) = x0. A generalization of the result in [33] was introduced
by Hashem et al. [27], they studied the system of the state dependent functional equations

x(t) = f1(t, y(t), x(y(t))), t ∈ [0, b],

y(t) = f2(t, x(t), y(x(t))), t ∈ [0, b],

the authors proved the existence of a unique solution of the system and discussed the continuous
dependence of the solution. In [21], the authors examined the existence of a unique solution of a
feedback control problem with an implicit state-dependent pantograph equation; in addition, they
investigated the Hyres-Ulam stability of the problem and the continuous dependence of the solution.

Inspired by modern literature, we consider the state-dependent implicit pantograph equation of the
Chandrasekhar type

dx
dt
= b1(t) + λ1x(

∫ 1

0

t
t + s

g1(s,
dy
ds

) ds), x(0) = x0, a.e. t ∈ (0, 1] (1.1)

with the feedback control

dy
dt
= b2(t) + λ2y(

∫ 1

0

t
t + s

g2(s,
dx
ds

) ds), y(0) = y0, a.e. t ∈ (0, 1]. (1.2)

Where λi ∈ (0, 1) and x0, y0 ∈ R are the initial data.
Our goal in this work is to investigate the existence and the uniqueness of the solution (x, y) ∈ X of

the problems (1.1) and (1.2). We prove the continuous dependence of the solution on the initial data
x0, y0 and the parameters λi. Furthermore, we establish the Hyres-Ulam stability of the problem. Next,
as a particular case of our work, we discuss an issue of the same type without feedback control.

We outline the main contributions of this paper as follows:

AIMS Mathematics Volume 10, Issue 1, 951–971.



954

• We examine the feedback control problems (1.1) and (1.2) of the state-dependent pantograph
equation of the Chandrasekhar type; we study the qualitative properties of the solution of (1.1)
under the feedback control (1.2).
• We explore the problem (5.1) of the state-dependent pantograph equation of the Chandrasekhar

type; we refer to the qualitative properties of the solution of (5.1) in the absence of the feedback
control.

This study enhances the qualitative analysis of a state-dependent pantograph differential equation
with feedback control. The article is structured as follows: Section 2 presents the appropriate
assumptions and proves the existence results for the solution of the implicit state-dependent
problem (1.1) with the feedback control (1.2) using Schauder fixed point theorem. The suitable
assumptions and proofs for the uniqueness of the solution will be provided in Section 3. Section 4
investigates the stability analysis of the problem due to the Hyers-Ulam stability. Additionally, we test
the possibility of the solution resisting disturbances through the study of the continuous dependency
on x0, y0 and the parameters λi. Furthermore, in Section 5, we examine a special case of our problem
without the control variable; we present some results supporting the problem’s existence and stability.
In Section 6, we give some instances that illustrate the findings. Finally, Section 7 provides a
conclusion.

Let C(I) be the class of all continuous functions on I = [0, 1] with the standard norm ∥u∥C =
supt∈I |u(t)|, and X = C(I) × C(I) be the Banach space with the norm ∥(u, v)∥X = max{∥u∥C, ∥v∥C}.
Let L1(I) be the space of real functions defined and Lebesgue integrable on the interval I, which is
equipped with the standard norm.

2. Existence results

Consider the problems (1.1) and (1.2) under the assumptions:

(1) gi : I × R → R satisfies Carathèodory condition [16], i.e., it is measurable in t ∈ I ∀ x ∈ R and
continuous in x ∈ R, ∀ t ∈ I, and there exist functions ai : I → R+ = [0,∞), ai ∈ L1(I) and
ai(t) ≤ Kitn, Ki ∈ (0, 1) where n ∈ N, ∀ t ∈ I, such that

|gi(t, x(t))| ≤ ai(t) |x(t)|, i = 1, 2.

(2) bi : I → R are continuous functions on I.
(3) There exists a real positive root r of the algebraic equation

Kλr2 − r + (B + λA) = 0,

where Kλr < 1, K = max{Ki}, λ = max{λi}, B = max{∥bi∥}, A = max{x0, y0}.

2.1. Formulation of problem

Let dx
dt = u(t), dy

dt = v(t), then

x(t) = x0 +

∫ t

0
u(s)ds, (2.1)

y(t) = y0 +

∫ t

0
v(s)ds. (2.2)
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Then the problems (1.1) and (1.2) will be given by

u(t) = b1(t) + λ1x(
∫ 1

0

t
t + s

g1(s, v(s))ds) (2.3)

v(t) = b2(t) + λ2y(
∫ 1

0

t
t + s

g2(s, u(s))ds). (2.4)

Where

x(
∫ 1

0

t
t + s

g1(s, v(s))ds) = x0 +

∫ ∫ 1
0

t
t+s g1(s,v(s))ds

0
u(s)ds

≤ x0 + ∥u∥
∫ 1

0

t
t + s

g1(s, v(s))ds

and

y(
∫ 1

0

t
t + s

g2(s, u(s))ds) = y0 +

∫ ∫ 1
0

t
t+s g2(s,u(s))ds

0
v(s)ds

≤ y0 + ∥v∥
∫ 1

0

t
t + s

g2(s, u(s))ds.

Define the operator F associated with (2.3) and (2.4) by

F(u, v) = (F1u, F2v),

where

F1u(t) = b1(t) + λ1x(
∫ 1

0

t
t + s

g1(s, v(s))ds),

F2v(t) = b2(t) + λ2y(
∫ 1

0

t
t + s

g2(s, u(s))ds).

Theorem 2.1. Let the assumptions (1)–(3) be satisfied. Then the problems (2.3) and (2.4) has at least
one solution .

Proof. Define set Qr ⊂ X as
Qr = {(u, v) ∈ X : ∥u∥ ≤ r, ∥v∥ ≤ r}.

Obviously, Qr is a closed convex bounded set. Now for (u, v) ∈ Qr, t ∈ I, we have

|F1u(t)| = |b1(t) + λ1x(
∫ 1

0

t
t + s

g1(s, v(s))ds)|

≤ |b1(t)| + λ1(|x0| + ∥u∥
∫ 1

0

t
t + s
|g1(s, v(s))|ds)

≤ ∥b1∥ + λ1|x0| + λ1∥u∥
∫ 1

0

t
t + s
|g1(s, v(s))|ds

≤ ∥b1∥ + λ1|x0| + λ1∥u∥K1

∫ 1

0

t
t + s

sn|v(s)|ds
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≤ ∥b1∥ + λ1|x0| + λ1∥u∥K1

∫ 1

0
|v(s)|ds

≤ ∥b1∥ + λ1|x0| + λ1∥u∥K1∥v∥

≤ ∥b1∥ + λ1|x0| + λ1K1r2.

Similarly,

|F2u(t)| ≤ |b2(t)| + λ2(|y0| + ∥v∥
∫ 1

0

t
t + s

g2(s, u(s))ds)

≤ ∥b2∥ + λ2|y0| + λ2∥v∥
∫ 1

0

t
t + s
|g2(s, u(s))|ds

≤ ∥b2∥ + λ2|y0| + λ2∥v∥K2

∫ 1

0

t
t + s

sn|u(s)|ds

≤ ∥b2∥ + λ2|y0| + λ2∥v∥K2

∫ 1

0
|u(s)|ds

≤ ∥b2∥ + λ2|y0| + λ2∥v∥K2∥u∥

≤ ∥b2∥ + λ2|y0| + λ2K2r2.

Then

∥F(u, v)∥X = ∥(F1u, F2v)∥X = max{∥F1u∥C, ∥F2v∥C}

≤ max{∥b1∥ + λ1|x0| + λ1K1r2, ∥b2∥ + λ2|y0| + λ2K2r2}

≤ B + λA + λKr2 = r.

Then the class of functions {F(u, v)} is uniformly bounded on I. Let (u, v) ∈ Qr and t1, t2 ∈ I with
t1 < t2 such that |t2 − t1| < δ, then

|F1u(t2) − F1u(t1)|

= |b1(t2) + λ1x(
∫ 1

0

t2

t2 + s
g1(s, v(s))ds) − b1(t1) − λ2x(

∫ 1

0

t1

t1 + s
g1(s, v(s))ds)|

≤ |b1(t2) − b1(t1)| + λ1(x0 + ∥u∥
∫ 1

0

t2

t2 + s
g1(s, v(s))ds) − λ1(x0 + ∥u∥

∫ 1

0

t1

t1 + s
g1(s, v(s))ds)

≤ |b1(t2) − b1(t1)| + λ1∥u∥
∫ 1

0

t2

t2 + s
|g1(s, v(s))|ds − λ1∥u∥

∫ 1

0

t1

t1 + s
|g1(s, v(s))|ds

≤ |b1(t2) − b1(t1)| + λ1∥u∥
∫ 1

0
(

t2

t2 + s
−

t1

t1 + s
)|g1(s, v(s))|ds

≤ |b1(t2) − b1(t1)| + λ1∥u∥
∫ 1

0

(t2 − t1)s
(t2 + s)(t1 + s)

|g1(s, v(s))|ds

≤ |b1(t2) − b1(t1)| + λ1∥u∥ |t2 − t1|

∫ 1

0

1
(t2 + s)

|g1(s, v(s))|ds

≤ |b1(t2) − b1(t1)| + λ1∥u∥ |t2 − t1|

∫ 1

0

K1sn

t2 + s
|v(s)|ds

AIMS Mathematics Volume 10, Issue 1, 951–971.



957

≤ |b1(t2) − b1(t1)| + λ1∥u∥ |t2 − t1| K1 ∥v∥
∫ 1

0

s
t2 + s

sn−1ds

≤ |b1(t2) − b1(t1)| + λKr2|t2 − t1|.

Then the class of functions {F1u} is equi-continuous.
Similarly,

|F2v(t2) − F2v(t1)|

= |b2(t2) + λ2y(
∫ 1

0

t2

t2 + s
g2(s, u(s))ds) − b2(t1) − λ2y(

∫ 1

0

t1

t1 + s
g2(s, u(s))ds)|

≤ |b2(t2) − b2(t1)| + λ2(y0 + ∥v∥
∫ 1

0

t2

t2 + s
|g2(s, u(s))|ds) − λ2(y0 + ∥v∥

∫ 1

0

t1

t1 + s
|g2(s, u(s))|ds)

≤ |b2(t2) − b2(t1)| + λ2∥v∥
∫ 1

0

t2

t2 + s
|g2(s, u(s))|ds − λ2∥v∥

∫ 1

0

t1

t1 + s
|g2(s, u(s))|ds

≤ |b2(t2) − b2(t1)| + λ2∥v∥
∫ 1

0
(

t2

t2 + s
−

t1

t1 + s
)|g2(s, u(s))|ds

≤ |b2(t2) − b2(t1)| + λ2∥v∥
∫ 1

0

(t2 − t1)s
(t2 + s)(t1 + s)

|g2(s, u(s))|ds

≤ |b2(t2) − b2(t1)| + λ2∥v∥ |t2 − t1|

∫ 1

0

1
(t2 + s)

|g2(s, u(s))|ds

≤ |b2(t2) − b2(t1)| + λ2∥v∥ |t2 − t1|

∫ 1

0

K2sn

t2 + s
|u(s)|ds

≤ |b2(t2) − b2(t1)| + λ2∥v∥ |t2 − t1| K2 ∥u∥
∫ 1

0

s
t2 + s

sn−1ds

≤ |b2(t2) − b2(t1)| + λKr2|t2 − t1|.

Then the class of functions {F2u} is equi-continuous. We deduce that F : Qr → Qr and the class
functions {F(u, v)} is equi-continuous. By Arzela-Theorem [32], {F(u, v)} is compact, then F is
compact.

Now, let {un}, {vn} ⊂ Qr such that un(t)→ u(t), vn(t)→ v(t), where n→ ∞, then

F1un(t) = b1(t) + λ1x(
∫ 1

0

t
t + s

g1(s, vn(s))ds),

F2vn(t) = b2(t) + λ2y(
∫ 1

0

t
t + s

g2(s, un(s))ds)

and

lim
n→∞

F1un(t) = b1(t) + λ1 lim
n→∞

x(
∫ 1

0

t
t + s

g1(s, vn(s))ds),

lim
n→∞

F2vn(t) = b2(t) + λ2 lim
n→∞

y(
∫ 1

0

t
t + s

g2(s, un(s))ds).
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Then, from assumption (1), we have

g1(s, vn(s))→ g1(s, v(s)), g2(s, un(s))→ g2(s, u(s))

and
|g1(s, v(s))| ≤ a1(t) |v(t)| ∈ L1[0, 1], |g2(s, u(s))| ≤ a2(t) |u(t)| ∈ L1[0, 1].

Applying Lebesgue dominated convergence theorem [32], we have

lim
n→∞

F1un(t) = b1(t) + λ1 lim
n→∞

x(
∫ 1

0

t
t + s

g1(s, vn(s)))ds

= b1(t) + λ1x(
∫ 1

0

t
t + s

lim
n→∞

g1(s, vn(s)))ds)

= b1(t) + λ1x(
∫ 1

0

t
t + s

g1(s, v(s)))ds) = F1u(t).

Similarly,

lim
n→∞

F2vn(t) = b2(t) + λ2 lim
n→∞

y(
∫ 1

0

t
t + s

g2(s, un(s)))ds

= b2(t) + λ2y(
∫ 1

0

t
t + s

lim
n→∞

g2(s, un(s)))ds)

= b2(t) + λ2y(
∫ 1

0

t
t + s

g2(s, u(s)))ds) = F2v(t).

Now,

lim
n→∞

F(un, vn) = lim
n→∞

(F1un, F2vn) = (F1u, F2u) = F(u, v).

Then F(u, v) is continuous. Now all conditions of Schauder’s fixed point theorem [32] are satisfied,
then the operator F has at least one fixed point (u, v) ∈ Qr, Consequently, there exist at least one
solution of the problems (2.3) and (2.4). □

Corollary 2.1. Let the assumptions of Theorem 2.1 be satisfied, by using Eqs (2.1) and (2.2), we deduce
that the problems (1.1) and (1.2) has at least one solution x ∈ C(I).

3. The uniqueness of the solution

Consider the following additional assumptions:

(1∗) gi : I × R→ R satisfies the Lipschitz condition with positive Lipschitz constants Mi such that

|gi(t, x) − gi(t, y)| ≤ Mi |x − y|, ∀ t ∈ I, x, y ∈ Qr max{Mi} = M, i = 1, 2.

Theorem 3.1. Let the assumptions (1)–(3) and (1∗) be satisfied, If 0 < λrM
(1−λrK) < 1, then the solution of

the problems (1.1) and (1.2) is unique.
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Proof. let (u1, v1), (u2, v2) be two solutions of (2.3) and (2.4), then

|u1(t) − u2(t)| =
∣∣∣∣λ1x(
∫ 1

0

t
t + s

g1(s, v1(s))ds) − λ1x(
∫ 1

0

t
t + s

g1(s, v2(s))ds)
∣∣∣∣

≤

∣∣∣∣λ1∥u1∥

∫ 1

0

t
t + s

g1(s, v1(s))ds − λ1∥u2∥

∫ 1

0

t
t + s

g1(s, v2(s))ds
∣∣∣∣

≤

∣∣∣∣λ1∥u1∥

∫ 1

0

t
t + s

g1(s, v1(s))ds − λ1∥u1∥

∫ 1

0

t
t + s

g1(s, v2(s))ds

+ λ1∥u1∥

∫ 1

0

t
t + s

g1(s, v2(s))ds − λ1∥u2∥

∫ 1

0

t
t + s

g1(s, v2(s))ds
∣∣∣∣

≤

∣∣∣∣λ1∥u1∥

∫ 1

0

t
t + s

g1(s, v1(s))ds − λ1∥u1∥

∫ 1

0

t
t + s

g1(s, v2(s))ds
∣∣∣∣

+
∣∣∣∣λ1∥u1∥

∫ 1

0

t
t + s

g1(s, v2(s))ds − λ1∥u2∥

∫ 1

0

t
t + s

g1(s, v2(s))ds
∣∣∣∣

≤ λ1∥u1∥

∫ 1

0

t
t + s
|g1(s, v1(s)) − g1(s, v2(s))|ds

+ λ1

∣∣∣∣∥u1∥ − ∥u2∥

∣∣∣∣ ∫ 1

0

t
t + s
|g1(s, v2(s))|ds

≤ λ1rM1

∫ 1

0

t
t + s
|v1(s) − v2(s)|ds + λ1∥u1 − u2∥

∫ 1

0

t
t + s
|g1(s, v2(s))|ds

≤ λ1rM1∥v1 − v2∥ + λ1∥u1 − u2∥

∫ 1

0

t
t + s

a1(s)|v2(s)|ds

≤ λ1rM1∥v1 − v2∥ + λ1rK1∥u1 − u2∥

∫ 1

0

t
t + s

snds

≤ λrM∥v1 − v2∥ + λrK∥u1 − u2∥,

and
(1 − λrK)∥u1 − u2∥ ≤ λrM∥v1 − v2∥,

then
∥u1 − u2∥ ≤

λrM
1 − λrK

∥v1 − v2∥.

Similarly,

∥v1 − v2∥ ≤
λrM

1 − λrK
∥u1 − u2∥.

Then

∥(u1, v1) − (u2, v2)∥ = ∥(u1 − u2), (v1 − v2)∥
= max{∥u1 − u2∥, ∥v1 − v2∥}

≤ max{
λrM

1 − λrK
∥v1 − v2∥,

λrM
1 − λrK

∥u1 − u2∥}

≤
λrM

1 − λrK
max{∥v1 − v2∥, ∥u1 − u2∥}
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≤
λrM

1 − λrK
∥(u1 − u2), (v1 − v2)∥

≤
λrM

1 − λrK
∥(u1, v1) − (u2, v2)∥.

Then

(1 −
λrM

1 − λrK
)∥(u1, v1) − (u2, v2)∥ ≤ 0.

Since 0 < λrM
1−λrK < 1, then the solution of the problems (2.3) and (2.4) is unique. □

Corollary 3.1. Let the assumptions of Theorem 3.1 be satisfied; according to the Eqs (2.1) and (2.2),
the solution (x, y) ∈ X of (1.1) and (1.2) is unique.

4. Stability analysis of the problem

4.1. Hyres-Ulam stability

Definition 4.1. Let the solution (x, y) ∈ X of (1.1) and (1.2) be exists, then the problems (1.1) and (1.2)
is Hyers-Ulam stable if ∀ϵ > 0, there exists δ(ϵ) > 0 such that for any δ-approximate solution (xs, ys) ∈
X of (1.1) and (1.2) satisfies

max{|
dxs

dt
− b1(t) − λ1xs(

∫ 1

0

t
t + s

g1(s,
dys

dt
)ds))|, |

dys

dt
− b2(t) − λ2ys(

∫ 1

0

t
t + s

g2(s,
dxs

dt
)ds))|} < δ,

implies
∥(x, y) − (xs, ys)∥X ≤ ϵ.

Theorem 4.1. If the assumptions of Theorem 3.1 are met, then the problems (1.1) and (1.2) is Hyers-
Ulam stable.

Proof. Let

max{|
dxs

dt
− b1(t) − λ1xs(

∫ 1

0

t
t + s

g1(s,
dys

dt
)ds))|, |

dys

dt
− b2(t) − λ2ys(

∫ 1

0

t
t + s

g2(s,
dys

dt
)ds))|} < δ,

then

|
dxs

dt
− b1(t) − λ1xs(

∫ 1

0

t
t + s

g1(s,
dys

dt
)ds))| < δ

−δ <
dxs

dt
− b1(t) − λ1xs(

∫ 1

0

t
t + s

g1(s,
dys

dt
)ds)) < δ.

Similarly,

|
dys

dt
− b2(t) − λ2ys(

∫ 1

0

t
t + s

g2(s,
dxs

dt
)ds))| < δ

−δ <
dys

dt
− b2(t) − λ2ys(

∫ 1

0

t
t + s

g2(s,
dxs

dt
)ds)) < δ.
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Let dxs
dt = us and dys

dt = vs, then

xs(t) = x0 +

∫ t

0
us(s)ds ⇒ xs(

∫ 1

0

t
t + s

g1(s, vs(s))ds) ≤ x0 + ∥us∥

∫ 1

0

t
t + s

g1(s, vs(s))ds,

ys(t) = y0 +

∫ t

0
us(s)ds ⇒ ys(

∫ 1

0

t
t + s

g2(s, us(s))ds) ≤ y0 + ∥vs∥

∫ 1

0

t
t + s

g1(s, us(s))ds.

Hence

−δ < us(t) − b1(t) − λ1xs(
∫ 1

0

t
t + s

g1(s, vs(s))ds) < δ,

−δ < vs(t) − b2(t) − λ2ys(
∫ 1

0

t
t + s

g2(s, us(s))ds) < δ.

Then,

|u(t) − us(t)| = |b1(t) + λ1x(
∫ 1

0

t
t + s

g1(s, v(s))ds) − us(t)|

= |b1(t) + λ1x(
∫ 1

0

t
t + s

g1(s, v(s))ds) − λ1xs(
∫ 1

0

t
t + s

g1(s, vs(s))ds)

+ λ1xs(
∫ 1

0

t
t + s

g1(s, vs(s))ds) − us(t)|

≤ |λ1x(
∫ 1

0

t
t + s

g1(s, v(s))ds) − λ1xs(
∫ 1

0

t
t + s

g1(s, vs(s))ds)|

+ |b1(t) + λ1xs(
∫ 1

0

t
t + s

g1(s, vs(s))ds) − us(t)|

≤ |λ1(x0 + ∥u∥
∫ 1

0

t
t + s

g1(s, v(s))ds) − λ1(x0 + ∥us∥

∫ 1

0

t
t + s

g1(s, vs(s))ds)| + δ

≤ λ1

∣∣∣∣∥u∥∫ 1

0

t
t + s

g1(s, v(s))ds − ∥us∥

∫ 1

0

t
t + s

g1(s, vs(s))ds
∣∣∣∣ + δ

≤ λ1

∣∣∣∣∥u∥∫ 1

0

t
t + s

g1(s, v(s))ds − ∥u∥
∫ 1

0

t
t + s

g1(s, vs(s))ds

+ ∥u∥
∫ 1

0

t
t + s

g1(s, vs(s))ds − ∥us∥

∫ 1

0

t
t + s

g1(s, vs(s))ds
∣∣∣∣ + δ

≤ λ1∥u∥
∫ 1

0

t
t + s
|g1(s, v(s)) − g1(s, vs(s))|ds + λ1

∣∣∣∣∥u∥ − ∥us∥

∣∣∣∣ ∫ 1

0

t
t + s
|g1(s, vs(s))|ds + δ

≤ λ1∥u∥M1

∫ 1

0

t
t + s
|v(s) − vs(s)|ds + λ1∥u − us∥

∫ 1

0

t
t + s

a1(s)|vs(s)|ds + δ

≤ λ1rM1∥v − vs∥ + λ1rK1∥u − us∥

∫ 1

0

t
t + s

snds + δ

≤ λ1rM1∥v − vs∥ + λ1rK1∥u − us∥ + δ,
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and

(1 − λ1rK1)∥u − us∥ ≤ δ + λ1rM1∥v − vs∥.

Hence

∥u − us∥ ≤
δ

(1 − λ1rK1)
+
λ1rM1

(1 − λ1rK1)
∥v − vs∥.

Similarly,

∥v − vs∥ ≤
δ

(1 − λ2rK2)
+
λ2rM2

(1 − λ2rK2)
∥u − us∥.

Then

∥(u, v) − (us, vs)∥X = ∥((u − us), (v − vs))∥X = max{∥(u − us)∥C, ∥(v − vs)∥C}

≤ max{
δ

(1 − λ1rK1)
+
λ1rM1

(1 − λ1rK1)
∥v − vs∥,

δ

(1 − λ2rK2)
+
λ2rM2

(1 − λ2rK2)
∥u − us∥}

≤
δ

(1 − λrk)
+max{

λ1rM1

(1 − λ1rK1)
∥v − vs∥,

λ2rM2

(1 − λ2rK2)
∥u − us∥}

≤
δ

(1 − λrK)
+
λrM

(1 − λrK)
max{∥v − vs∥, ∥u − us∥}

≤
δ

(1 − λrK)
+
λrM

(1 − λrK)
∥((u − us), (v − vs))∥X

≤
δ

(1 − λrK)
+
λrM

(1 − λrK)
∥(u, v) − (us, vs)∥X,

and

(1 −
λrM

(1 − λrK)
)∥(u, v) − (us, vs)∥ ≤

δ

(1 − λrK)
,

then

∥(u, v) − (us, vs)∥ ≤
δ

1 − (λrM + λrK)
= ϵ.

Now,

∥(x, y) − (xs, ys)∥X = ∥((x − xs), (y − ys))∥X = max{∥(x − xs)∥C, ∥(y − ys)∥C
≤ max{∥(u − us)∥C, ∥(v − vs)∥C} ≤ ∥((u − us), (v − vs))∥
≤ ∥(u, v) − (us, vs)∥ ≤ ϵ.

Then

∥(x, y) − (xs, ys)∥X ≤ ϵ.

Then the problems (1.1) and (1.2) is Hyers-Ulam stable. □
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4.2. Continuous dependence

Definition 4.2. The solution (u, v) ∈ Qr of (2.3) and (2.4) depends continuously on x0, y0, λ if ∀ ϵ >
0 there exists δ(ϵ) > 0 such that

max{|x0 − x∗0|, |y0 − y∗0|, |λi − λ
∗
i |} < δ ⇒ ∥(u, v) − (u∗, v∗)∥X < ϵ, i = 1, 2.

where

u∗(t) = b1(t) + λ∗1x∗(
∫ 1

0

t
t + s

g1(s, v∗(s))ds), (4.1)

v∗(t) = b2(t) + λ∗2y∗(
∫ 1

0

t
t + s

g2(s, u∗(s))ds). (4.2)

Theorem 4.2. Let the assumptions of Theorem 3.1 be satisfied, then (u, v) depends continuously on the
initial data x0, y0 and the parameters λi, i = 1, 2.

Proof. Let δ(ϵ) > 0 be given such that

max{|x0 − x∗0|, |y0 − y∗0|, |λi − λ
∗
i |} < δ, i = 1, 2.

and let (u∗, v∗) be the solution of (4.1) and (4.2), then

|u(t) − u∗(t)|

= |λ1x(
∫ 1

0

t
t + s

g1(s, v(s))ds) − λ∗1x∗(
∫ 1

0

t
t + s

g1(s, v∗(s))ds)|

≤ |λ1(x0 + ∥u∥
∫ 1

0

t
t + s

g1(s, v(s))ds) − λ∗1(x∗0 + ∥u
∗∥

∫ 1

0

t
t + s

g1(s, v∗(s))ds)|

≤ |λ1x0 − λ
∗
1x∗0| +

∣∣∣∣λ1∥u∥
∫ 1

0

t
t + s

g1(s, v(s))ds − λ∗1∥u
∗∥

∫ 1

0

t
t + s

g1(s, v∗(s))ds
∣∣∣∣

≤ |λ1x0 − λ1x∗0| + |λ1x∗0 − λ
∗
1x∗0| +

∣∣∣∣λ1∥u∥
∫ 1

0

t
t + s

g1(s, v(s))ds − λ1∥u∥
∫ 1

0

t
t + s

g1(s, v∗(s))ds

+ λ1∥u∥
∫ 1

0

t
t + s

g1(s, v∗(s))ds − λ∗1∥u
∗∥

∫ 1

0

t
t + s

g1(s, v∗(s))ds
∣∣∣∣

≤ λ1|x0 − x∗0| + |x
∗
0| |λ1 − λ

∗
1| + λ1∥u∥

∫ 1

0

t
t + s
|g1(s, v(s)) − g1(s, v∗(s))|ds

+
∣∣∣∣λ1∥u∥ − λ∗1∥u

∗∥

∣∣∣∣ ∫ 1

0

t
t + s
|g1(s, v∗(s))|ds

≤ λ1δ + |x∗0|δ + λ1∥u∥M1

∫ 1

0

t
t + s
|v(s) − v∗(s)|ds

+
∣∣∣∣λ1∥u∥ − λ1∥u∗∥ + λ1∥u∗∥ − λ∗1∥u

∗∥

∣∣∣∣ ∫ 1

0

t
t + s
|g1(s, v∗(s))|ds

≤ λ1δ + |x∗0| δ + λ1∥u∥M1∥v − v∗∥ +
(
λ1

∣∣∣∣∥u∥ − ∥u∗∥∣∣∣∣ + ∥u∗∥∣∣∣∣λ1 − λ
∗
1

∣∣∣∣) ∫ 1

0

t
t + s

a1(s) |v∗(s)|ds

≤ λ1δ + |x∗0| δ + λ1r M1∥v − v∗∥ + (λ1∥u − u∗∥ + ∥u∗∥ δ)
∫ 1

0

t
t + s

a1(s) |v∗(s)|ds
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≤ λ1δ + |x∗0| δ + λ1r M1∥v − v∗∥ + (λ1∥u − u∗∥ + ∥u∗∥ δ)r K1

∫ 1

0

t
t + s

snds

≤ (λ1 + |x∗0| + r2K) δ + λ1r M1∥v − v∗∥ + λ1r K1∥u − u∗∥,

and
(1 − λ1rK1)∥u − u∗∥ ≤ (λ1 + |x∗0| + r2K1) δ + λ1r M1∥v − v∗∥.

Then

∥u − u∗∥ ≤
λ1 + |x∗0| + r2K1

1 − λ1rK1
δ +

λ1r M1

1 − λ1rK1
∥v − v∗∥.

Similarly,

∥v − v∗∥ ≤
λ2 + |y∗0| + r2K2

1 − λ2rK2
δ +

λ2r M2

1 − λ2rK2
∥u − u∗∥.

Then

∥(u, v) − (u∗, v∗)∥X = ∥((u − u∗), (v − v∗))∥X = max{∥(u − u∗)∥C, ∥(v − v∗)∥C}

≤ max{
λ1 + |x∗0| + r2K1

1 − λ1r K1
δ +

λ1r M1

1 − λ1r K1
∥v − v∗∥,

λ2 + |y∗0| + r2K2

1 − λ2r K2
δ +

λ2r M2

1 − λ2r K2
∥u − u∗∥

≤
λ + A + r2K

1 − λrK
δ +max{

λ1r M1

1 − λ1r K1
∥v − v∗∥,

λ2r M2

1 − λ2r K2
∥u − u∗∥}

≤
λ + A + r2K

1 − λrK
δ +

λr M
1 − λr K

max{∥v − v∗∥, ∥u − u∗∥}

=
λ + A + r2K

1 − λrK
δ +

λr M
1 − λr K

∥((u − u∗), (v − v∗))∥X

=
λ + A + r2K

1 − λrK
δ +

λr M
1 − λr K

∥(u, v) − (u∗, v∗)∥X,

and

(1 −
λrM

1 − λrK
) ∥(u, v) − (u∗, v∗)∥X ≤

λ + A + r2K
1 − λr K

δ.

Then

∥(u, v) − (u∗, v∗)∥X ≤
λ + A + r2K

1 − (λr M + λr K)
δ = ϵ.

Thus
δ =

1 − (λr M + λr K)
λ + A + r2K

ϵ.

Which meas that δ = δ(ϵ). Moreover, we have λr M + λr K < 1 and A, r, k, λ > 0, then δ is positive.
This means that the solution of (2.3) and (2.4) depends continuously on the initial data x0, y0 and the
parameters λi, i = 1, 2. □

Definition 4.3. The solution (x, y) ∈ X of (1.1) and (1.2) depends continuously on u, v if ∀ ϵ > 0 there
exists δ(ϵ) > 0 such that

max{|u − u∗|, |v − v∗|} < δ(ϵ) ⇒ ∥(x, y) − (x∗, y∗)∥ < ϵ,
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where

x∗(t) = x0 +

∫ t

0
u∗(s)ds, (4.3)

y∗(t) = y0 +

∫ t

0
v∗(s)ds. (4.4)

Theorem 4.3. Let the assumptions of Theorem 4.2 be satisfied, then the solution (x, y) ∈ X depends
continuously on u, v.

Proof. Let (x∗, y∗) be the solution of (4.3) and (4.4), then

|x(t) − x∗(t)| ≤ |
∫ t

0
u(s)ds −

∫ t

0
u∗(s)ds|

≤

∫ t

0
|u(s) − u∗(s)|ds ≤ ∥u − u∗∥ ≤ δ = ϵ,

then
∥x − x∗∥ ≤ ϵ.

Similarly,

|y(t) − y∗(t)| ≤ |
∫ t

0
v(s)ds −

∫ t

0
v∗(s)ds|

≤

∫ t

0
|v(s) − v∗(s)|ds ≤ ∥v − v∗∥ ≤ δ = ϵ,

then
∥y − y∗∥ ≤ ϵ.

Now,

∥(x, y) − (x∗, y∗)∥X = ∥((x − x∗), (y − y∗))∥X = max{∥x − x∗∥C, ∥y − y∗∥C} ≤ ϵ.

Then
∥(x, y) − (x∗, y∗)∥X ≤ ϵ.

□

This means that the solution (x, y) ∈ X of (1.1) and (1.2) depends continuously on u, v.

Corollary 4.1. Let the assumptions of Theorem 4.3 be satisfied, then the solution (x, y) ∈ X of (1.1)
and (1.2) depends continuously on x0, y0 and the parameter λi.

5. Special case

In the lack of feedback control; as a special case of our work, we can investigate the following
problem of the state-dependent implicit pantograph differential equation of the chandrasekhar type.

dx
dt
= b(t) + λx(

∫ 1

0

t
t + s

g(s,
dx
dt

) ds), x(0) = x0, a.e. t ∈ (0, 1], (5.1)
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where λ ∈ (0, 1), b : I → R are continuous function and the function g : I × R → R satisfies
Caratheodory condition.

The existence of the unique solution of (5.1) will be studied. We will also prove the continuous
dependence of the solution on the initial data x0 and the parameter λ. Furthermore, we will establish
the Hyres-Ulam stability. This problem can be addressed under the following assumptions:

(i) g : I × R → R satisfies Carathèodory condition [16]. (i.e., it is measurable in t ∈ I ∀x ∈ R and
continuous in x ∈ R ∀t ∈ I) and there exists a function a : I → R+ = [0,∞), a ∈ L1(I) and
a(t) ≤ Ktn, K ∈ (0, 1), n ∈ N ∀ t ∈ I, such that

|g(t, x(t))| ≤ a(t) |x(t)|.

(ii) There exists a real positive root r of the algebraic equation

Kλr2 − r + (∥b∥ + λ|x0|) = 0.

such that Kλr < 1.

We can formulate the problem as follows: Put dx
dt = y(t), we get

y(t) = b(t) + λx(
∫ 1

0

t
t + s

g(s, y(s))ds). (5.2)

Using the same techniques, we can derive the following theorems:

Theorem 5.1. Let the assumptions (i)–(ii) be satisfied, then integral equation (5.2) has at least one
solution y ∈ C(I). Consequently, the problem (5.1) has at least one solution x ∈ C(I).

Theorem 5.2. Let the assumptions (i)–(ii) of Theorem 5.1 be satisfied, if g satisfies lipschetz condition
such that |g(t, x)−g(t, y)| ≤ c|x−y| ∀t ∈ I and x, y ∈ Qr where c is a positive constant. If λr(c+K) < 1,
then the solution of the problem (5.1) is unique.

Theorem 5.3. Let the assumptions of Theorem (5.2) be satisfied, then the problem (5.1) is Hyers-Ulam
stable.

Theorem 5.4. Let the assumptions of Theorem 5.2 be satisfied, then y ∈ C(I) depends continuously on
the initial data x0 and the parameter λ.

Theorem 5.5. Let the assumptions of Theorem 5.2 be satisfied, then the solution x ∈ C(I) depends
continuously on y.

Corollary 5.1. Let the assumptions of Theorems 5.4 and 5.5 be satisfied, then the solution x ∈ C(I)
depends continuously on the initial data x0 and the parameter λ.

6. Examples

Example 1. Consider the problem

dx
dt
=

1
3

(t2 + 1) +
1
2

x(
∫ 1

0

t
t + s

sin s3

5
dy
dt

ds), x(0) =
1
7
, t ∈ (0, 1]. (6.1)

AIMS Mathematics Volume 10, Issue 1, 951–971.



967

dy
dt
=

5
2

sin t +
1
3

x(
∫ 1

0

t
t + s

e−ss2

7
dx
dt

ds), y(0) =
1

10
, t ∈ (0, 1]. (6.2)

Let dx
dt = u, dy

dt = v then

u(t) =
1
3

(t2 + 1) +
1
2

x(
∫ 1

0

t
t + s

sin s3

5
v(s)ds),

v(t) =
5
2

sin t +
1
3

x(
∫ 1

0

t
t + s

e−ss2

7
u(s)ds).

Set

b1(t) =
1
3

(t2 + 1), b2(t) =
5
2

sin t

and

g1(t, v(t)) =
sin t3

5
v(t), g2(t, u(t)) =

e−tt2

7
u(t),

then

|g1(t, v(t))| ≤
1
5

t3 v(t), |g2(t, u(t))| ≤
1
7

t2 u(t)

and

a1(t) ≤
1
5

t3, a2(t) ≤
1
7

t2.

Where K = max{ 15 ,
1
7 } =

1
5 , λ = max{12 ,

1
3 } =

1
2 , A = max{ 17 ,

1
10 } =

1
7 , B = max{0.6667, 0.043} =

0.6667, M = max{ 15 ,
1
7 } =

1
5 . Then we get r1 = 0.8027, r2 = 9.1973, such that λr1K = 0.0803 < 1 and

λr2K = 0.9197 < 1.
It is clear that all assumptions of Corollary 2.1 are satisfied. Hence there exist at least one

solution (x, y) ∈ X of (6.1) and (6.2). Moreover,we have only r1 satisfies λr1(M + K) = 0.1605 < 1.
Thus all assumptions of Corollary 3.1 are satisfied, then the solution of problems (6.1) and (6.2) is
unique.
Example 2. Consider the problem

dx
dt
=

t2

2(4 − t)
+

1
3

x(
∫ 1

0

t
t + s

(
t2

4
sin t

dx
dt

)ds), x(0) =
1
2
, t ∈ (0, 1]. (6.3)

Let dx
dt = y then

y(t) =
t2

2(4 − t)
+

1
3

x(
∫ 1

0

t
t + s

(
t2

4
sin t y(s))ds), x(0) =

1
2
, t ∈ (0, 1].

Set

b(t) =
t2

2(4 − t)

and

g(t, y(t)) =
t2

4
sin t y(t),
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thus

|g(t, y(t))| ≤
t2

4
y(t)

and

a(t) ≤
1
4

t2.

Where K = 1
4 , λ =

1
3 , x0 =

1
2 , ∥b∥ = 1

6 , c = 1
4 . Then we get r1 = 0.343, r2 = 11.657, such that

λr1K = 0.0286 < 1 and λr2K = 0.9714 < 1.
It is clear that all assumptions of Theorem 5.1 are satisfied. Hence there exist at least one solution

x ∈ C[0, 1] of (6.3). Moreover, we have only r1 satisfies λr1(c + K) = 0.0572 < 1.
Thus all assumptions of Theorem 5.2 are satisfied, then the solution of Problem 6.3 is unique.

7. Conclusions

Differential equations with control variables are frequently encountered within several domains
such as control theory, optimization, dynamic systems, etc...The existence and uniqueness of solutions
of this type of equations is crucial. Sometimes the equations may not have a unique solution, or
solutions may need particular conditions to exist. Determining whether a solution is stable or not is
often challenging. Stability analysis is critical for control systems to guarantee that small perturbations
do not cause significant variations in system behavior. Research on feedback control problems with
state-dependent delays has numerous applications in biology, ecology, physics, engineering, and other
fields. This type of delay imparts memory effects into the system, which implies intricate and rich
dynamics. In this paper, we investigate the existence of at least one continuous solution to a feedback
control problem including implicit pantograph equations of the Chandrasekhar type. In addition, we
analyzed the uniqueness of the solution in light of appropriate assumptions. Also, we investigated the
problem’s Hyers-Ulam stability and the continuous dependence of the solution on the original data and
parameter. Furthermore, we introduce a brief study for the problem in the absence of feedback control.
Finally, we presented few examples in both cases when the problem contains a control variable and in
the absence of a control variable.
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