Research article Special Issues

On the Generalized $ \overline{\theta({\tt{t}})} $-Fibonacci sequences and its bifurcation analysis

  • Received: 08 October 2024 Revised: 24 December 2024 Accepted: 30 December 2024 Published: 16 January 2025
  • MSC : 39A70, 39A10, 26A33, 47B39, 65J10, 65Q10

  • This paper introduces a general nabla operator of order two that includes coefficients of various trigonometric functions. We also introduce its inverse, which leads us to derive the second-order $ \overline{\theta({\tt{t}})} $-Fibonacci polynomial, sequence, and its summation. Here, we have obtained the derivative of the $ \overline{\theta({\tt{t}})} $-Fibonacci polynomial using a proportional derivative. Furthermore, this study presents derived theorems and intriguing findings on the summation of terms in the second-order Fibonacci sequence, and we have investigated the bifurcation analysis of the $ \overline{\theta({\tt{t}})} $-Fibonacci generating function. In addition, we have included appropriate examples to demonstrate our findings by using MATLAB.

    Citation: Rajiniganth Pandurangan, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez. On the Generalized $ \overline{\theta({\tt{t}})} $-Fibonacci sequences and its bifurcation analysis[J]. AIMS Mathematics, 2025, 10(1): 972-987. doi: 10.3934/math.2025046

    Related Papers:

  • This paper introduces a general nabla operator of order two that includes coefficients of various trigonometric functions. We also introduce its inverse, which leads us to derive the second-order $ \overline{\theta({\tt{t}})} $-Fibonacci polynomial, sequence, and its summation. Here, we have obtained the derivative of the $ \overline{\theta({\tt{t}})} $-Fibonacci polynomial using a proportional derivative. Furthermore, this study presents derived theorems and intriguing findings on the summation of terms in the second-order Fibonacci sequence, and we have investigated the bifurcation analysis of the $ \overline{\theta({\tt{t}})} $-Fibonacci generating function. In addition, we have included appropriate examples to demonstrate our findings by using MATLAB.



    加载中


    [1] T. Abdeljawad, F. M. Atici, On the definitions of nabla fractional operators, Abstr. Appl. Anal., 2012 (2012), 1–13. https://doi.org/10.1155/2012/406757 doi: 10.1155/2012/406757
    [2] F. M. Atici, P. Eloe, On the definitions of nabla fractional operators, Electron. J. Qual. Theory Differ. Equ., 3 (2009), 1–12. https://doi.org/10.14232/ejqtde.2009.4.3 doi: 10.14232/ejqtde.2009.4.3
    [3] P. L. Butzer, U. Westphal, An introduction to fractional calculus, Fract. Calc. Appl. Anal., (2000), 1–85. https://doi.org/10.1142/9789812817747-0001 doi: 10.1142/9789812817747-0001
    [4] E. A. Gonzalez, I. Petraˇs, Advances in fractional calculus: Control and signal processing applications, Proceedings of the 2015 16th International Carpathian Control Conference (ICCC), (2015), 147–152.
    [5] J. Guckenheimer, On the bifurcation of maps of the interval, Invent. Math., 39 (1977), 165–178. https://doi.org/10.1007/BF01390107 doi: 10.1007/BF01390107
    [6] J. Hein, Z. McCarthy, N. Gaswick, B. McKain, K. Speer, Laplace transforms for the nabla-difference operator, Panam. Math. J., 21 (2011), 79–96.
    [7] G. Jumarie, Table of some basic fractional calculus formulae derived from a modified riemann liouville derivative for non-differentiable functions, Appl. Math. Lett., 22 (2009), 378–385. https://doi.org/10.1016/j.aml.2008.06.003 doi: 10.1016/j.aml.2008.06.003
    [8] Y. A. Kuznetsov, Y. A. Kuznetsov, Numerical analysis of bifurcations, Elements of applied bifurcation theory, Appl. Math. Sci., 22 (2023), 505–585. https://doi.org/10.1007/978-3-031-22007-4-10 doi: 10.1007/978-3-031-22007-4-10
    [9] A. L. G. Laura, K. B. Grace, The calculus of proportional $\alpha$-derivatives, Rose-Hulman Undergraduate Math. J., 18 (2017), 20–42.
    [10] R. I. Leine, D. V. Campen, B. V. Vrande, Bifurcations in nonlinear discontinuous systems, Nonlinear Dyn., 23 (2000), 105–164. https://doi.org/10.1023/A:1008384928636 doi: 10.1023/A:1008384928636
    [11] G. Mani, A. Gnanaprakasam, O. Ege, A. Aloqaily, N. Mlaiki, Fixed point results in $c*$-algebra-valued partial b-metric spaces with related application, Mathematics, 11 (2023), 1158. https://doi.org/10.3390/math11051158 doi: 10.3390/math11051158
    [12] G. Mani, A. Gnanaprakasam, L. Guran, R. George, Z. D. Mitrovi, Some results in fuzzy b-metric space with b-triangular property and applications to fredholm integral equations and dynamic programming, Mathematics, 11 (2023), 4101. https://doi.org/10.3390/math11194101 doi: 10.3390/math11194101
    [13] G. Mani, S. Haque, A. Gnanaprakasam, O. Ege, N. Mlaiki, The study of bicomplex-valued controlled metric spaces with applications to fractional differential equations, Mathematics, 11 (2023), 2742. https://doi.org/10.3390/math11122742 doi: 10.3390/math11122742
    [14] R. Matu, Application of fractional order calculus to control theory, Math. Models. Methods. Appl. Sci., 5 (2011), 1162–1169. https://doi.org/10.1007/978-3-031-22007-4-10 doi: 10.1007/978-3-031-22007-4-10
    [15] E. Mikail, E. Ayhan, On k¨othe-toeplitz duals of generalized difference sequence spaces, Bull. Malays. Math. Sci. Soc., 23 (2000), 25–32. https://math.usm.my/bulletin/html/vol23-1-3.htm
    [16] P. Rajiniganth, S. Saravanan, M. Rhaima, H. Ghoudi, The generalized discrete proportional derivative and its applications, Fractal Fract., 7 (2023), 838. https://doi.org/10.3390/fractalfract7120838 doi: 10.3390/fractalfract7120838
    [17] P. Rajiniganth, K. Suresh, S. T. M. Thabet, M. V. Cortez, I. Kedim, $\phi(x)$-tribonnaci polynomial, numbers, and its sum, J. Math. Comput. Sci., 37 (2025), 32–44. https://dx.doi.org/10.22436/jmcs.037.01.03 doi: 10.22436/jmcs.037.01.03
    [18] P. Rajiniganth, T. Aparna, I. Khan, K. Suresh, More generalized $k^{(\epsilon)}$-fibonacci sequence, series, and its applications, AIP Adv., 14 (2024), 015233. https://doi.org/10.1063/5.0180627 doi: 10.1063/5.0180627
    [19] C. Sergent, M. Corazzol, G. Labouret, F. Stockart, M. Wexler, J. R. King, et al., Bifurcation in brain dynamics reveals a signature of conscious processing independent of report, Nat Commun., 12 (2021), 1149. https://doi.org/10.1038/s41467-021-21393-z doi: 10.1038/s41467-021-21393-z
    [20] A. Setniker, Sequential differences in nabla fractional calculus, PhD thesis, University of Nebraska-Lincoln, (2019), 1–167.
    [21] S. Sinha, The fibonacci numbers and its amazing applications, Int. J. Eng. Sci. Invent., 6 (2017), 7–14.
    [22] H. Wysocki, The nabla difference model of the operational calculus, Demonstr. Math., 46 (2013), 315–326. https://doi.org/10.1515/dema-2013-0461 doi: 10.1515/dema-2013-0461
    [23] T. Yaying, B. Hazarika, E. Mikail, On generalized fibonacci difference sequence spaces and compact operators, Asian-Eur. J. Math., 15 (2022), 2250116. https://doi.org/10.1515/dema-2013-0461 doi: 10.1515/dema-2013-0461
    [24] T. Yaying, B. Hazarika, S. A. Mohiuddine, M. Mursaleen, K. J. Ansari, Sequence spaces derived by the triple band generalized fibonacci difference operator, Adv. Differ. Equ., 23 (2020), 1–19. https://doi.org/10.1186/s13662-020-03099-6 doi: 10.1186/s13662-020-03099-6
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(112) PDF downloads(13) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog