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Abstract: This paper introduces a general nabla operator of order two that includes coefficients of
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order θ(t)-Fibonacci polynomial, sequence, and its summation. Here, we have obtained the derivative
of the θ(t)-Fibonacci polynomial using a proportional derivative. Furthermore, this study presents
derived theorems and intriguing findings on the summation of terms in the second-order Fibonacci
sequence, and we have investigated the bifurcation analysis of the θ(t)-Fibonacci generating function.
In addition, we have included appropriate examples to demonstrate our findings by using MATLAB.
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1. Introduction

Fractional calculus is a subdivision of classical calculus that concerns itself with derivatives as
well as integrals of nearly any fractional order. This mathematical field has gained significant
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attention due to its ability to model complex phenomena more accurately than integer-order calculus.
Fractional calculus offers robust methods for characterizing memory and hereditary features of
different materials and processes, rendering it essential in disciplines such as control theory [14],
signal processing [4], and differential equations [11–13]. The foundations of fractional calculus were
laid by early mathematicians such as Leibniz, Liouville, and Riemann, who explored the concept of
generalizing the order of differentiation and integration beyond integers [3, 7]. Modern advancements
have further developed these ideas, leading to a robust theoretical framework and numerous practical
applications.

The nabla difference operator is a discrete counterpart of the continuous derivative, employed in
discrete calculus, specifically in the context of time-scale calculus. This operator, often denoted by
∇, operates on functions defined on discrete domains, such as sequences or time scales. The nabla
difference operator plays a crucial role in various fields, including exact analysis, discrete dynamic
systems, and operational calculus in [9, 21, 22]. It facilitates the formulation and solution of difference
equations, which are the discrete counterparts of differential equations. The papers “On the definitions
of nabla fractional operators” and “Discrete fractional calculus includes the nabla operator” go into
great detail about what nabla fractional operators are and how they can be used in real life. They
stress how important they are in the field of discrete mathematics [1, 2]. Recently, the nabla difference
operator has been seen in sequential differences in the nabla fractional calculus, the combined delta-
nabla sum operator in discrete fractional calculus, and discrete fractional calculus consisting of the
nabla operator in [2, 20]. These studies contribute to a deeper understanding of the interplay between
discrete and continuous analysis. In research [15], such as on Köthe-Toeplitz duals of generalized
difference sequence spaces and Laplace transforms for the nabla-difference operator, investigations
into the theoretical underpinnings and applications of these operators in discrete calculus [6].

The Fibonacci sequence is a widely recognized integer sequence defined by the recurrence relation
Fr = Fr−1 + Fr−2, where F0 is 0 and F1 is 1. This sequence appears in various natural phenomena and
has numerous applications in computer science, mathematics, and financial modeling. The study of
sequence spaces derived from difference operators has gained significant attention, particularly with
generalized Fibonacci difference operators. The derivation of sequence spaces arising from
triple-band generalized Fibonacci difference operator [18, 24], investigates the structural properties of
these spaces, while generalized Fibonacci difference sequence spaces and compact operators [17, 23]
explores their impact on the boundedness and compactness of sequences. These works extend
classical sequence space theory by integrating the recursive properties of Fibonacci sequences,
highlighting new connections in functional analysis.

The motivation for this study arises from the need to further explore and expand the theoretical
systems and applications of the nabla difference operator in generating and analyzing Fibonacci
sequences. We present the trigonometric nabla difference operator of order 2 and its discrete integral,
analyzing the θ(t)-sequences, their summation, and the proportional derivative of the
θ(t)-polynomials.

The contributions of the research are delineated as follows:

1. By utilizing various trigonometric coefficients in the θ(t)-Fibonacci equation and its inverses, we
formulate new sequences and analyze their characteristics.

2. The nabla difference operator of order 2 facilitates the generation of θ(t)-Fibonacci sequences
and their exact and numerical solutions.
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3. We provide chaotic behavior of the generating function of the second-order Fibonacci sequence
with the coefficients of trigonometric functions.

4. The study includes MATLAB examples to demonstrate the practical applications of our
theoretical findings.

Throughout this article, we make use of the notations and elucidations from the following Table 1.

Table 1. The notations and elucidations.
ξ Shift (translation) value (i.e., ξ ∈ [0,∞))
t(x) t(t − ξ)(t − 2ξ)(t − 3ξ)...(t − (x − 1)ξ)

t − (n + r)ξ tn,r, where n, r are integers and t ∈ (−∞,∞).
E∗-solution Exact solution
N∗-solution Numerical solution
θ(t)-sequence Fibonacci sequence derived from general difference equation (Nabla) with

trigonometric coefficients of order 2.
θ(t)-equation General difference equation (Nabla) with trigonometric coefficients of

order 2.

2. Second-order θ(t)-Fibonacci sequence and its sum

Here, we formulate a generic nabla-difference operator that includes a trigonometric co-efficient
∇
θ(t)

v(t) = v(t) − α1sin(b1t)v(t0,1) − α2sin(b2t)v(t0,2) which generates second-order θ(t)-Fibonacci

sequence and its sum.

Definition 2.1. Let t be any positive real number and n ≥ 2; a second-order generic θ(t)-sequence is
defined recurrently as Ft,0 = 1, Ft,1 = α1sin(b1t), and

Ft,n = α1sin(b1tn,1)Ft,n−1 + α2sin(b2tn,2)Ft,n−2. (2.1)

Definition 2.2. For any positive real number t, a generic nabla difference operator of order two using
sine (any trigonometric) function coefficients on v(t), denoted as ∇

θ(t)
v(t), is defined as

∇
θ(t)

v(t) = v(t) − α1sin(b1t)v(t0,1) − α2sin(b2t)v(t0,2), (2.2)

and the inverse of ∇
θ(t)

v(t) = u(t) is defined as

v(t) = ∇
θ(t)

−1u(t). (2.3)

Definition 2.3. [16] A proportional α- derivative is defined by

Dαf(t) = αf
′

(t) + (1 − α)f(t), α ∈ [0, 1], (2.4)

is the proportional α-derivative of f(t). Here Dα is proportional α- provided the function f(t) is
differentiable at t.
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Lemma 2.1. For any real number t, v(t) is a function. Then it leads

∇
θ(t)

−1ast
[
1 −
α1sin(b1t)

asξ −
α2sin(b2t)

a2sξ

]
= ast. (2.5)

Proof: By doing v(t) = at0,0 in (2.2), we observe that

∇
θ(t)

ast = ast
[
1 −
α1sin(b1t)

asξ −
α2sin(b2t)

a2sξ

]
.

Now, the function v(t) follows from the Definition 2.2.

Remark 2.1. When α1 = 1 = α2 in lemma 2.1, then we observe that

∇
θ(t)

−1ast
[
1 −

sin(b1t)
asξ −

sin(b2t)
a2sξ

]
= ast. (2.6)

Corollary 2.1. For any real number t, est is a function. Then we observe

∇
θ(t)

−1est
[
1 − α1sin(b1t)e−sξ − α2sin(b2t)e−2sξ

]
= est. (2.7)

Proof: By doing a = e in (2.5), we conclude the proof.

Corollary 2.2. For any real number t, e−st is a function. Then we observe

∇
θ(t)

−1e−st
[
1 − α1sin(b1t)esξ − α2sin(b2t)e2sξ

]
= e−st. (2.8)

Proof: By doing a = e−1 in (2.5), we conclude the proof.

Corollary 2.3. For any real number t, e−st is a function. Then we observe

∇
θ(t)

−1e−st
[
1 − sin(b1t)esξ − sin(b2t)e2sξ

]
= e−st. (2.9)

Proof: By doing α1 = α2 = 1 in (2.8), we conclude the proof.

Propsition 2.1. If the function v(t) =
−1
∇
θ(t)

u(t) is a E∗-solution of (2.2), Ft,0 = 1,Ft,1 = α1sin(b1t) and

Ft,n+1 = α1sin(b1tn,0)Ft,n + α2sin(b2tn,−1)Ft,n−1, for i = 0, 1, 2, ... then, the E∗-solution is equal to a
N∗-solution, which is given by

v(t) − Ft,n+1v(tn,1) − α2sin(b2tn,0)Ft,nv(tn,2) =
n∑

i=0

Ft,iu(t0,−i). (2.10)

Proof: For the function v(t), the Definition 2.2 yields

v(t) = u(t) + α1sin(b1t)v(t0,1) + α2sin(b2t)v(t0,2). (2.11)

By changing k by k0,1 and then put the value of v(t0,1) into (2.11), we get
v(t) = u(t) + Ft,1u(t0,1) + [Ft,1α1sin(b1t0,1)+

α2sin(b2t)]v(t0,2) + Ft,1α2sin(b2t0,1)v(t0,3), (2.12)
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which leads to v(t) = Ft,0u(t) + Ft,1u(t0,1)+

Ft,2v(t0,2) + α2sin(b2t0,1)Ft,1v(t0,3), (2.13)

where Ft,0 = 0, Ft,1 = α1sin(b1t) and Ft,2 = Ft,n+1 = α1sin(b1t1,0)Ft,1 + α2sin(b2t1,−1)Ft,0. By
changing k by k0,2 in (2.11) and then putting the value of v(t0,2) into (2.13), we observe

v(t) = Ft,0u(t) + Ft,1u(t0,1) + Ft,2u(t0,2) + Ft,3v(t0,3) + α2sin(b2t0,2)Ft,2v(t0,4),

where Ft,3 = Ft,3 = α1sin(b1t2,0)Ft,2 + α2sin(b2t2,−1)Ft,1.
By carrying out this procedure repeatedly (2.10).

Corollary 2.4. If the function
−1
∇
θ(t)

u(t) = v(t), Ft,0 = 1,Ft,1 = sin(b1t) and

Ft,n+1 = sin(b1tn,0)Ft,n + sin(b2tn,1)Ft,n−1, for i = 0, 1, 2, ... then

v(t) − Ft,n+1v(t0,−1) − sin(b2tn,0)Ft,nv(t0,−2) =
n∑

i=0

F
t,i

u(t0,−i). (2.14)

Proof: The proof follows by doing α1 = 1 = α2 in Theorem 2.1.

Corollary 2.5. Let v(t) be any function and

∇
θ(t)

v(t) = ast

[
1 −
α1sin(b1t)

asξ −
α2sin(b2t)

a2sξ

]
,

then we observe that
ast − Ft,n+1as(tn,−1) − α2sin(b2tn,0)Ft,nas(tn,−2)

=

n∑
i=0

Ft,iast0,−i
[
1 −
α1sin(b1t0,−i)

asξ −
α2sin(b2t0,−i)

a2sξ

]
. (2.15)

Proof: By doing v(t) = ast and applying (2.5) in (2.10), we observed the proof.

The following illustration proves the significance of corollary 2.5.

Corollary 2.6. Let α1 = α2 = 1 in (2.15). Then we have
at0,0 − Ft,n+1atn,−1 − sin(b2tn,0)Ft,natn,−2

=

n∑
i=0

Ft,iat0,i
[
1 −

sin(b1t0,−i)
aξ

−
sin(b2t0,−i)

a2ξ

]
. (2.16)

Proof: By doing v(t) = at0,0 and putting (2.5) in (2.10), we complete the proof.

The following illustration proves the significance of corollary 2.6.

Corollary 2.7. Let est be a function of t ∈ (−∞,∞). Then
est − Ft,n+1es(tn,−1) − α2sin(b2tn,0)Ft,nes(tn,−2)

=

n∑
i=0

Ft,iest0,−i
[
1 − α1sin(b1t0,−i)e−ξ − α2sin(b2t0,−i)e−2ξ

]
. (2.17)

Proof: By doing v(t) = est and applying (2.8) in (2.5), we obtain (2.17).
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Propsition 2.2. Let x ∈ N(0) . Then, the E∗-solution of θ(t)-equation
v(t) − α1sin(b1t)v(t0,1) − α2sin(b2t)v(t0,2) =

[
tx

0,0 − α1sin(b1t)tx
0,1 − α2sin(b2t)tx

0,2

]
is

−1
∇
θ(t)

[
tx

0,0 − α1sin(b1t)tx
0,1 − α2sin(b2t)tx

0,2

]
= tx

0,0 (2.18)

Proof: By doing v(t) = tx
0,0 with the equation (2.2) and using (2.3), we obtain (2.18).

Corollary 2.8. By doing x = 2 with the Theorem 2.2, we observed

−1
∇
θ(t)

[
t2

0,0 − α1sin(b1t)t2
0,1 − α2sin(b2t)t2

0,2

]
= t2

0,0, (2.19)

which is the E∗-solution of the nabla difference equation of order two
∇
θ(t)

v(t) = t2
0,0 − α1sin(b1t)t2

0,1 − α2sin(b2t)t2
0,2.

Proof: From (2.18), replacing x = 2, we obtain (2.19).

Corollary 2.9. If v(t) =
−1
∇
θ(t)

[
tx

0,0 − α1sin(b1t)tx
0,1 − α2sin(b2t)tx

0,2

]
is a E∗-solution of the equation

(2.18), then
v(t) − Ft,n+1v(t0,−1) − α2sin(b2tn,0)Ft,nv(t0,−2)

=

n∑
i=0

Ft,i[tx
0,i − α1sin(b1t0,−i)tx

i,−1 − α1sin(b2t0,−i)tx
i,−2]. (2.20)

Proof: Taking u(t) = tx
0,0 − α1sin(b1t)tx

0,1 − α2sin(b2t)tx
0,2in (2.10), we have (2.20).

Propsition 2.3. If v(t) is a E∗-solution of sine-coefficients θ(t)-equation
v(t) − α1sin(b1t)v(t0,1) − α2sin(b2t)v(t0,2) = tx

0,0at0,0 − α1sin(b1t)tx
0,1at0,1 − α2sin(b2t)tx

0,2at0,2 ,
then we have
v(t) − Ft,n+1(tn,−1) − α2sin(b2tn,0)v(tn,−2)

=

n∑
i=0

Ft,it
x
0,ia
t0,i[1 − α1sin(b1t0,−i)tx

i,−1a−ξ − α2sin(b2t0,−i)tx
i,−2a−2ξ]. (2.21)

Proof: By doing u(t) =
[
tx

0,0at0,0 − α1sin(b1t)tx
0,1at0,1 − α2sin(b2t)tx

0,2at0,2
]

in (2.10) and using (2.5),
we get (2.21).

Corollary 2.10. A E∗-solution of θ(t)-equation is
∇
θ(t)

v(t) = t3
0,0at0,0 − α1sin(b1t)t3

0,1at0,1 − α2sin(b2t)t3
0,2at0,2 is t3at0,0

and hence we have
t3

0,0at0,0 − Ft,n+1t
3
n,−1atn,−1 − α2sin(b2tn,0)t3

n,−2atn,−2

=

n∑
i=0

Ft,it
3
0,ia
t0,i − α1sin(b1t0,−i)t3

i,−1ati,−1 − α2sin(b2t0,−i)t3
i,−2ati,−2 . (2.22)

Proof: The proof is completed by doing x = 3 in Theorem 2.3.
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Propsition 2.4. Let v(t) be a solution of θ(t)-equation
v(t) − α1sin(b1t)v(t0,1) − α2sin(b2t)v(t0,2) = t(x)at0,0 − α1sin(b1t)t

(x)
0,1at0,1 − α2sin(b2t)t

(x)
0,2at0,2 , then

we have
v(t) − Ft,n+1v(tn,−1) − α2sin(b2tn,0)v(tn,−2)

=

n∑
i=0

Ft,iat0,i[t(x)
0,i − α1sin(b1t0,−i)t

(x)
i,−1a−ξ − α2sin(b2t0,−i)t

(x)
i,−2a−2ξ]. (2.23)

Proof: By doing v(t) = t(x)
0,0at0,0 in (2.10) and using (2.5), we get (2.23).

Corollary 2.11. Let v(t) be a solution of θ(t)-equation
v(t) − sin(b1t)v(t0,1) − sin(b2t)v(t0,2) = t(x)at0,0 − sin(b1t)t

(x)
0,1at0,1 − sin(b2t)t

(x)
0,2at0,2 , then we have

v(t) − Ft,n+1v(tn,−1) − sin(b2tn,0)v(tn,−2)

=

n∑
i=0

Ft,iat0,i[t(x)
0,i − sin(b1t0,−i)t

(x)
i,−1a−ξ − sin(b2t0,−i)t

(x)
i,−2a−2ξ]. (2.24)

Proof: By doing α1 = α2 = 1 in (2.23), we obtain (2.24).

3. Illustrative numerical examples

The objective of this section is to demonstrate the efficacy of the primary findings presented in this
paper by employing precise examples from the literature. Also, we have investigated graphical
representations of Fibonacci sequences with the co-efficients of the Sine, Cosine and Co-secant
functions for different values of t in the following Figures 1–3.

The validity of the definition 2.1 is confirmed by the subsequent illustrative example 3.1.

Example 3.1. (i) By doing t = 10, b1 = 2, b2 = 1, ξ = 0.4, α1 = 2, and α2 = 1 in (2.1), we obtain a
Sine-Fibonacci sequence {1, 1.8259, 0.7097,−0.9351, 1.9327,−3.9778, · · · }.
(ii) When t = 15, ξ = 0.5, α1 = 0.2, α2 = 0.1, r1 = 3, and r2 = 1 in (2.1), we have a
Cosine-Fibonacci sequence {1.0000,−1.5194, 1.9182,−3.9008, 3.4203, 0.8856, 5.1684, · · · }.
Also, the sine Fibonacci polynomials are observed by
F0(t) = 1,
F1(t) = 2sin(2t),
F2(t) = 4sin(2t)sin(2t − 0.8) + sin(t),
F3(t) = 8sin(2t)sin(2t − 1.6)sin(2t − 0.8) + 2sin(t)sin(2t − 1.6) + 2sin(t − 0.4)sin(2t), etc.
Furthermore, using (2.4), we have the following proportional α-derivative of the sine Fibonacci
polynomials;
F α0 (t) = 0,
F α1 (t) = 4αcos(2t) + 2(1 − α)sin(2t),
F α2 (t) = 8α[sin(2t − 0.8)cos2t + cos(2t − 0.8)sin2t + cost]

+(1 − α)[4sin(2t − 0.8)sin2t + sint],
F α3 (t) = α[16cos(2t − 1.6)sin(2t − 0.8)sin(2t) + 16sin(2t − 1.6)cos(2t − 0.8)sin(2t)+

16sin(2t − 1.6)sin(2t − 0.8)cos(2t)2cos(t)sin(2t − 1.6) + 2sin(t)cos(2t − 1.6)+
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2cos(t − 0.4)sin(2t) + 4sin(t − 0.4)cos(2t)] + (1 − α)[8sin(2t − 1.6)sin(2t − 0.8)sin(2t)+
2sin(t)sin(2t − 1.6)], and etc.
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Figure 1. Sine and Cosine-Fibonacci Sequences for t = 10, ξ = 0.4, and t = 15, ξ = 0.5,
respectively.

One can derive second-order Fibonacci polynomials and sequences for each pair θ(t) ∈ R2. The
validity of the result 2.5 is confirmed by the subsequent illustrative example 3.2.

Example 3.2. Setting t = 11, b1 = 2, α1 = 3, s = 2, α2 = 2, n = 2, ξ = 0.3, b2 = 1, and a = 3 in
(2.15), we obtain the following:
(i) The sum of the sine-Fibonacci series

322 − Ft,3310.1 − 2Ft,2sin(10.4)319.6

=

2∑
i=0

Ft,i3(22−0.6i)
[
1 −

sin(22 − 0.6i)
30.6 −

sin(33 − 0.9i)
31.2

]
= 48298205761.12,

where Ft,0 = 1, Ft,1 = −0.03, Ft,2 = −2.04, Ft,3 = −5.65.
(ii) The sum of the cosine-Fibonacci series

322 − Ft,3310.1 − 2Ft,2cos(10.4)319.6

=

2∑
i=0

Ft,i3(22−0.6i)
[
1 −

cos(22 − 0.6i)
3

0.6

−
cos(33 − 0.9i)

31.2

]
= 78777462484.69,

where Ft,0 = 1, Ft,1 = −3.00, Ft,2 = 7.48,Ft,3 = −6.57,
and the cosine Fibonacci polynomials are given by
F0(t) = 1,
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F1(t) = 3cos(2t),
F2(t) = 9cos(2t − 0.6)cos(2t) + 2cos(t)
F3(t) = 27cos(2t − 1.2)cos(2t − 0.6)cos(2t) + 6cos(2t − 1.2)cos(t) + 2cos(t − 0.4)cos(2t), etc.
Furthermore, using (2.4), we have the following proportional α-derivative of the co-secant Fibonacci
polynomials;
F α0 (t) = 0,F α1 (t) = α[−6sin(2t)] + 3(1 − α)cos(2t),
F α2 t) = α[−18sin(2t − 0.6)cos(2t) − 18cos(2t − 0.6)
sin(2t) − 2sint] + (1 − α)9cos(2t − 0.6)cos(2t) + 2cos(t)], and etc.
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Figure 2. Sine and Cosine-Fibonacci Sequences for t = 11, ξ = 0.3.

The validity of the definition 2.7 is confirmed by the subsequent illustrative example 3.3.

Example 3.3. By doing α1 = 2, t = 10, α2 = 1, ξ = 0.4, b1 = 2, n = 2, and b2 = 1 in (2.16), we have
the following:
(i) The sine-Fibonacci sum of the series is

e−9 − F4e5 − (0.3)62Ft,3e−4 =
3∑

i=0
Ft,ie−(9−i)[1 − (0.8)(9 − i)3e − (0.3)(9 − i)2e2]

= 523194317.45, where Ft,0 = 1, Ft,1 = 1.83, Ft,2 = 0.71, and Ft,3 = −0.23.
(ii) The co-secant-Fibonacci sum of the series is

e−9 − F4e5 − (0.3)62Ft,3e−4 =
3∑

i=0
Ft,ie−(9−i)

[
1 − (0.8)(9 − i)3e − (0.3)(9 − i)2e2

]
= 1.49, where Ft,0 = 1,

Ft,1 = 5.31, Ft,2 = 0.71 and Ft,3 = −0.94.
Also, taking α1 = 1, b1 = 1, ξ = 0.5, α2 = 2, and b3 = 1 in (2.16), we have the following co-secant
Fibonacci polynomials:
F0(t) = 1, F1(t) = cosec(2t), F2(t) = cosec(t − 0.5)cosec(2t) + cosec(3t)
F3(t) = cosec(t − 1)cosec(t − 0.5)cosec(2t) + cosec(t − 1)cosec(3t) + cosec(t − 0.5)cosec(2t), etc.
Further-more, using (2.4), we have the following proportional α-derivative of the co-secant Fibonacci
polynomials;
F α0 (t) = 0, F α1 (t) = α[−2cosec(2t)cot(2t)] + (1 − α)cosec(2t),
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F α2 (t) = α[−2cosec(t−0.5)cot(t−0.5)cosec(2t)−2cosec(t−0.5)cosec(2t)cot(2t)−3cosec(3t)cot(3t)]+
(1 − α)[cosec(t − 0.5)cosec(2t) + cosec(3t)], and etc.
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Figure 3. Sine and Co-secant-Fibonacci Sequences for t = 10, ξ = 0.4, and t = 0.2, ξ =
1.8, respectively.

4. Bifurcation behavior of θ(t)-Fibonacci generating function

The objective of this section is to demonstrate the efficacy of the bifurcation analysis of the
θ(t)-Fibonacci generating function and primary findings presented in this paper by employing
analysis from the following precise examples.

A discrete one-dimensional dynamical system is a system subjected to a single equation of this type

x(t + 1) = f (t) (4.1)

where x ∈ Z and f is a function of x. The variable t is in general considered as the time, but in discrete
systems the time takes only discrete values, so that it is possible to take t ∈ Z.
A generalized discrete two-dimensional dynamical system is a system subjected to a single equation
of this type

x(t + 2ξ) = x(t + ξ) + x(t) (4.2)

where t ∈ R. When we reformulate Eq (4.2), we obtain a two-dimensional discrete system

x(t + ξ) = x1(t) + x2(t)
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x2(t + ξ) = x1(t).
A trajectory is a set {x(t)}∞t=0 of points satisfying the above equation (4.1). It is evident that the initial
point x0 = x(0) determines the entire trajectory. The behaviour of the dynamical system is therefore
given by all the trajectories {x(t) : x(0) = x0} for all initial values x0 ∈ I. When the value of the
parameter changes continuously, the behaviour of the system may change in a discontinuous way.
One says that a bifurcation occurs for an isolate value of the parameter at which the type of dynamic
changes. In bifurcation analysis, the region of stable operation is determined through the search of Hopf
bifurcation points. This gives an insight into how the variations in the system parameters influence
region of stable operation. This knowledge can be effectively used by the system designers to ensure
the stability of the actual system.

A bifurcation diagram is a traditional and visual way to look into how dynamical systems, difference
equations, and differential equations change over time [10]. This tool is excellent for looking at how the
system reacts to changes in parameters [19]. This diagram illustrates the system’s different dynamic
patterns and phase transitions by plotting the link between the system reaction and parameters [5,
8]. This section employs bifurcation theory to determine the existence of the period-doubling (flip)
bifurcation. We discuss the θ(t)-Fibonacci generating function and investigate the bifurcation analysis
of the θ(t)-Fibonacci sequences.
θ(t)-Fibonacci sequences are generated by

f (t) =
1

1 − θ1(t)t − θ2(t)t2
, (4.3)

where θ1(t) and θ2(t) are any trigonometric and hyperbolic functions. If θ1(t) = sin(b1t) and θ2(t) =
sin(b2t) in (4.3), then we have the Fibonacci generating function

f (t) =
1

1 − sin(b1t)t − sin(b2t)t2
. (4.4)

(ii). If θ1(t) = cos(b1t) and θ2(t) = cos(b2t) in (4.3), then we have the Fibonacci generating function

f (t) =
1

1 − cos(b1t)t − cos(b2t)t2
. (4.5)

4.1. Chaotic behavior of the fibonacci generating function

In dynamical systems theory, a period-doubling bifurcation occurs when a slight change in a
system’s parameters causes a new periodic trajectory to emerge from an existing periodic trajectory.
With the doubled period, it takes twice as long (or, in a discrete dynamical system, twice as many
iterations) for the numerical values visited by the system to repeat themselves. A period-halving
bifurcation occurs when a system switches to a new behavior with half the period of the original
system. A period-doubling cascade is an infinite sequence of period-doubling bifurcations. Such
cascades are a common route by which dynamical systems develop chaos.

Now, we consider the recurrent form of (4.3)

tr =
1

1 − θ1(tr−1)tr−1 − θ2(tr−1)t2r−1
, (4.6)
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and we consider the recurrent form of (4.4)

tr =
1

1 − sin(b1tr−1)tr−1 − sin(b2tr−1)t2r−1
. (4.7)

We consider the recurrent form of (4.5)

tn =
1

1 − cos(b1tn−1)tn−1 − cos(b2tn−1)t2n−1
. (4.8)

We examine the orbit {tr}
∞
r=0 for any point t0 within the domain of the map.

Figure 4(a) displays a periodic doubling bifurcation diagram of the Fibonacci generating
function of the co-efficient of the sine function with the initial condition t0 = 0.8 at the intrinsic
growth bifurcation parameter b2 = 2 and b1 ∈ [−8, 11]. Figure 4(b) displays periodic doubling
bifurcation diagram of the Fibonacci generating function of the co-efficient of the cosine function
with the initial condition t0 = 0.8 at the intrinsic growth bifurcation parameter b2 = 2 and b1 ∈ [−5, 5].
Figure 4(c) displays periodic doubling bifurcation diagram of the Fibonacci generating function of the
co-efficient of the tangent function with the initial condition t0 = 0.8 at the intrinsic growth
bifurcation parameter b2 = 1 and b1 ∈ [−5, 1]. Figure 4(d) displays periodic doubling bifurcation
diagram of the Fibonacci generating function of the co-efficient of the cosine function with the initial
condition t0 = 0.8 at the intrinsic growth bifurcation parameter b2 = 1 and b1 ∈ [−10, 5].
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Figure 4. Period doubling bifurcation diagram for θ(t)-Fibonacci generating function.

Figure 5(a) displays sub periodic doubling bifurcation diagram of the Fibonacci generating
function of the co-efficient of the sine function with the initial condition t0 = 0.8 at the intrinsic
growth bifurcation parameter b=2 and b1 ∈ [0, 0.3]. Figure 5(b) displays sub periodic doubling
bifurcation diagram of the Fibonacci generating function of the co-efficient of the cosine function
with the initial condition t0 = 0.8 at the intrinsic growth bifurcation parameter b2 = 2 and
b1 ∈ [0.58, 2]. Figure 5(c) displays sub periodic doubling bifurcation diagram of the Fibonacci
generating function of the co-efficient of the tangent function with the initial condition t0 = 0.8 at the
intrinsic growth bifurcation parameter b2 = 1 and b1 ∈ [−2.2,−1.8]. Figure 5(d) displays sub periodic
doubling bifurcation diagram of the Fibonacci generating function of the co-efficient of the cosine
function with the initial condition t0 = 0.8 at the intrinsic growth bifurcation parameter b2 = 1 and
b1 ∈ [−3,−2.1].
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Figure 5. Sub period doubling cascade for θ(t)-Fibonacci generating function.

5. Conclusions

This paper deduced an inverse formula for the θ(t)-Fibonacci sequence. The inverse of a generic
difference (nabla) operator with trigonometric coefficients of order 2 was used to derive this formula.
The results we have obtained regarding the E∗ and N∗ solutions, Fibonacci polynomials, and the
proportional derivative of the generic difference equation with trigonometric coefficients of order 2
will be applied to our future research. Additionally, we have conducted a bifurcation analysis of the
θ(t)-Fibonacci generating function.
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