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1. Introduction

In the past decades, scalar and multiobjective variational or programming problems with mixed
constraints have been of real importance. We list here the following researchers and their research:
Mond and Hanson [16], Hanson [8], Craven and Glover [4], Mond and Smart [18], Mukherjee
and Rao [19], and Aggarwal et al. [1]. These researchers studied optimality criteria (necessary
and sufficient), the construction of dual variants, and areas of applicability, such as variational
control models. Here, we mention the following researchers: Zalmai [30], Zhian and Qingkai [13],
Mititelu [15], Chen [3], Hachimi and Aghezzaf [7], Nahak and Nanda [20], Kim and Kim [12], Gulati
et al. [6], Jayswal et al. [9], Arana-Jiménez et al. [2], Zhang et al. [33], and Khazafi et al. [11]. Das et
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al. [5] studied some fractional minimax models with set values and established second-order sufficient
optimality conditions. Some duals for the considered problem, under generalized second-order cone
convexity and contingent epi-derivative hypotheses, have been formulated. Khan and Al-Solamy [10]
formulated duality and sufficiency findings in (H,, r)-invex non-smooth minimax fractional problems.
Sharma [25] presented a duality for higher-order controlled variational problems. Later, Oliveira and
Silva [21] investigated sufficient criteria of optimality for multiple-objective control problems. Liu
et al. [14] analyzed a special type of variational inequalities with non-local boundary conditions.
One year later, Wu et al. [29] investigated the stability of discrete fractional systems with delays.
Treantd and Tareq [26] presented some duality results for a robust optimization problem. Ritu et
al. [22], by considering uncertain data in each objective and constraint functional, investigated some
multi-dimensional vector variational problems, and stated robust necessary and sufficient efficiency
conditions for the problems under consideration. Saeed [23], considering the parametric approach,
studied a category of fractional variational models governed by uncertainty in the cost functional.
Also, robust Karush-Kuhn-Tucker (KKT)-type necessary and sufficient criteria of optimality have been
provided by employing the convexity/concavity hypotheses of the considered functionals. For other
excellent contributions to control theory and variational analysis, we mention the papers [31, 32].

In this paper, seen as a natural continuation of the investigations in the referred to articles, we
formulate a new class of robust multiobjective fractional variational control problems. Then, a dual
model is associated with the above-mentioned class of problems. Further, by considering variants
of convexity for the involved functionals (determined by curvilinear integrals that do not depend on
the path), we provide characterization and equivalence results on solution sets for the considered
models. In addition, a numerical example is formulated. Saeed and Treanta [24], taking into account
convexity assumptions, studied the sufficient conditions of optimality for a family of fractional control
problems. Treantd and Saeed [27] analyzed robust weak, strong, and strict converse dual theorems
for multiple objective minimization models driven by multiple integral functionals. The limitations
associated with the papers and the principal novelties of this study are: (i) Appearance of mixed-type
constraints; (ii) appearance of uncertainty both in the objective- and constraint-type functionals; and
(ii1) the employment of parametric robust techniques to investigate the considered variational control
models. The methodology used in this paper is a combination of techniques from the Lagrange-
Hamilton theory, calculus of variations, and control theory. Based on our knowledge, robust dual
outcomes associated with such types of variational models are new in the field. Related to some future
research directions of the works, let us consider the situations where the partial derivatives of second-
order are included, and the functionals are not under (strictly) convexity assumptions (here, we use the
ideas formulated in Treanta [28], by considering concepts of monotonicity, pseudomonotonicity, and
hemicontinuity for curvilinear integral-type functionals).

2. Preliminaries

In this paper, we consider R, R*, R”, and R" as standard Euclidean spaces. Consider the compact
set C in R* and a piecewise smooth curve U C C that links two different pairs, 7, = (tg) and | = (tf),
in C. Also, let A be the family of state functions of the C I class, denoted by F = (F') : C — R, and
let B be the family of control functions of the C? class, denoted by K = (K’) : C — RP”. Also, consider

oF
the notations: Q := (t, F (1), K(1)), F(t) := ﬁ(t)’ and the relations used for any two pairs x,y € R"™:
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() x<yoex'<y"', Yu=1,n,
(@) x=yox"'=y"Y Yu=1,n,
(i) xSyex"<y", Yu=1,n,
(iv) x<yoex'<y"Y Vu=l,nandx" < y" for some u.

Next, we formulate the robust multiobjective fractional variational control problem under study:

f ve (Q, 7) dff f vp(Q. ) art f Ve (Q, %) dff
(CP)  min{>2 ==K .
N f re (Q, ) dff f rH(Q.a')dr f r(Q,a%) dff
U U U

subject to
JQ, F(1),7) £ 0,
8(Q, F(1),y) := F() - ©(Q,9) =0, (=1l,a
teC, F(t) = Fo, F(1y) = F1,
where

v?:CxAXBXG5—>R, 1,a, v‘f:(vé,...,vg),

o=
rP:CXAXBXH; >R, 6=1a, re=(p....r0),

fI(CR)XBXT 5 R, I=Tm,  f=(f....f",

g JNCR)xBxM, 5> Ru=1n g=(g".....8",

are of C'-class, Jl(C, R‘Y) is the bundle of of jets, f rg (Q, a‘s) dif > 0,6 =1,a,7= (%, = (&°), 7 =
U

(n'), and y = (y*) represent parameters of uncertainty in the compact convex sets G = (Gs) € R*,H =
(Hs;) ¢ R, T = (T)) ¢ R™, and M = (M") c R”, respectively, and all the considered curvilinear
integrals are assumed to be path-independent.

The associated counterpart of (CP) is formulated as follows:

max veg (€, 1) dr

7eG
(RCP) min <Y
(F.K) .
min ¢ (Q, @) df*
U aeH

max vé (Q, Tl) dr* f max vgi‘ Q, %) df*
U ‘

. yteG - 19€G,
‘= min e ,
(F.K) . .
min r; (Q, ! ) dr min rg (Q, ") dt*
U @'eH; ° Uy @*€Hq

subject to
fQF/(1),m)£0, teC,neT

8Q,Fi(1),y)=0, teC,yeM
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F(ty) = Fo, F(t) = F.
The robust feasible solution set associated to (CP) is written as below
={(F,K) € AXB: f(Q,F 1), m) =0,

8, F(1),y) =0, F(to) = Fy, F(t)) = F,, t€C, neT, ye M}

In the following, we introduce the parametric scalar optimal control problem associated with (CP):

(CP,,) {?%{ fU v (Q, ) dl - Q) fU re (Q,aW)dtf}

subject to

teC, F(t) = Fo, F(t)) = F1,

f[vg(Q,T) Yir (Q.e’)|df <0, §=T.a 6#w.
U

The associated counterpart of (CPy,) is stated as below

(RCP,,) min{f max vf (Q, ") df* - Y min r Q,a") dtf}
(F.K)

™eG, y @€ty

subject to
(F,K) e D,

f [vg (Q,T‘S) - Ygr;S (Q, a‘s)] dif <0, 6=1,a, 6 #w.
U

Definition 2.1 (F, K) € D is said to be weak robust optimal pair of (CP,,) if

max v? (Q,TW) drt — YO min rg (Q 1% )dﬁc

y 7€Gw y @"€Hy

<fmaxv§(Qa)dt§ Yfmmrg(Qa)dtf

™eG,, a”eH
for all (F,K) € D.
Definition 2.2 (F, K) € D is said to be a robust optimal solution in (CPy,) if
f max v§ Q T )dtf Y0 min rgv (Q, aw) drt

™€G,, y @'l °

< f max vy (€, ") dr — YO min r; (€, a") dr,

€G,, Uy @'€Hy, £

for all (F, K) € D.
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Definition 2.3 A vector-valued curvilinear integral functional f ve(Q, Fy(1), 7)df is called convex at
o U
(F,K)e AX Bif

f Ve(Q, T)dE - f Ve(Q, 7)dt* 2 f (F = F)ve p(Q, 7)dt* + f (K = K)ve x(Q, 7)dE*
U U U U

+ f (F; = Fovep,(Q, 1)dl
U
holds, for all (F,K) € A X B.

Definition 2.4 (F, K) € D is said to be a weak robust efficient solution for (CP) if (F, K) € D does not
exist, fulfilling

max vg (Q, 1) dt* max v (Q )dtf
U 7€G U 7€G ¢

f min 7 (Q, @) dr* f min rg t§
U acH U acH

Definition 2.5 (F,K) € D is said to be a robust efficient solution for (CP) if (F,K) € D does not

exist, satisfying
f max veg (2, 1) drt f rnaxvf ﬁ
y T€G y T€G

f min ¢ (Q, @) dt* f min I’}:: tf
y a€H y acH ~

Theorem 2.1 [Robust necessary conditions of efficiency for (CP)] Let (F, K) € D be a weak robust
efficient pair of (CP) and

maxvg(QT)—vg(QT) mmrg(Qa)—rg(Q a").

™€eG,,
Then, we have ¢ = (¢*) € R%, T = (T'(t)) e R",8 = (6“(¢)) € R", and & € T, y € M, fulfilling

3" [ver (Q.7) = Horer (Q.@)| + Y7 fr(Q. Fo(0), 7) + 6" gr(Q, F (1), 7)

—D| 7 fr,(Q. Fo(0).7) + 0 gr Q. F(0.7)| =0, ¢é=T.a

" [ver (Q.7) = Horex (Q.@)| + T7 il Q. Fr(1). 7) + 8 g (Q. Fo(1),7) = 0, £ =T,a
YT F(Q,F(),7) =0, T 20,
¢ >
forallt € C, except the discontinuities.
Proof. The proof follows the same lines as in Ritu et al. [22], so we omitted it. O
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3. Main results

A Wolfe robust dual of (CP) is written as below [see ' := (z, u(t), v(¢))]:

W-CP)  max j; {[ve (. 7) = H're (T, )| + X7 (T, pg, E

+6" ¢(T, g, y)ENdr*

subject to
¢T [VE,F (F’ T) - Horf,F (F9 a)] + TTfF(F’ luf’ ﬂ') + HTgF(F, ,ufa 7)

=D|Y" fr, (T iz 7) + 07 g, (T )| = 0, £ = T.a

¢ [vex (T.7) = Horex (T a)| + Y7 fy(T. o m) + 0" gt y) = 0, € = Loa
u(ty) = Fo, () = Fy,
>0, E'¢=1 E=(,..1)eR"

The associated counterpart of (W — CP) is given by:

(RW-CP)  max fU ([ve (0.7) = Hre (C.@)| + YT (T, e WE

+6" ¢(T, g, y)ENdr*

subject to
¢T [VE,F (F’ 7_—) - Horf,F (F9 6’)] + TTfF(F’ Ms 7_1-) + eTgF(F’ Ms 7)

=D|Y" fr, (T ) + 0" g, (T, 7)| = 0, £ = 1.

¢T I:vé:’K (r’ 7_-) - Horf’K (F’ dl)] + TTfK(F’/’léV’ ﬁ-) + QTgK(F’/’L{$ 7) = O, é‘: = l,a
u(to) = Fo, w(t) =Fy,
$>0, E'¢=1 E=(,...1)eRY,

forteG, acH,neT,yeM.

3.1
(3.2)
(3.3)
(3.4)

Consider Dy, = {(u,v, ¢, T, 0,71, a,m,y) fulfilling (3.1)—(3.4)} is the set of feasible solutions of

(RW — CP), called the robust set of feasible solutions to (W — CP).

Definition 3.1 (1, v, ¢, T, 6, T, @, 7, %) € D, is named weak robust efficient pair of (W — CP), if there is

no (u,v,¢,7,0,7,a,7m,7y) € Dy, with

f {[ve (T.7) = H're (T, @)| + YT £(T. e, T)E + 67 (T . ) Nt
U

< f {[ve (0. 7) = H're (T, @) | + Y7 f(T, . WE + 6" g(T, g, Y)ENE,
U

where T := (¢, i), #(1)).
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The Mond-Weir robust dual (see Mond and Weir [17]) of (CP), is introduced as follows:

(MW — CP) max f |ve (T.7) = H'r, (T, )| dff
WOV Jy

subject to
¢" [ver (0, 7) = Horer (T, )| + Y7 £, pg, 1) + 67 (T, 1z, y)

=D | Y fr, (T m) + 61 (T pt, y)| = 0, £ =T.a (3.5)

¢’ [Vf,K (T, 7) — Hore (T, a)] + Y7 fy Oz, 70) + 6" g (T, pagy) = 0, § = 1,a (3.6)
17T, g m) 2 0, 3.7)

8@, uey) =0, (3.8)

u(to) = Fo, u(ty) = Fy, (3.9)

>0, ET¢=1 E=(,..1)eR" (3.10)

The associated counterpart of (MW — CP) is defined as:

RMW — CP I,7)— H - ([,a)|df
( ) max fU |ve (0. 7) = H'r (T, @)

subject to
o' [Vg,F (T,7) — Hrer (T, C_Y)] + 7 fr (U, g, ®) + 0" g (T, iz, 7)

—Dé'[TTfF{(F,/l{’ 7_1') + QTgF((F,/lf’ 5/)] = O’ § = l’a

¢ [vex (T, 7) = Hre e (U, @) + 17 iU, i, ®) + 6" gk, 1, 7) = 0, £ = T,a
TTf(F7M{9 7[) z Oa

g ug,y) =0,
u(to) = Fo, u(ty) = Fy,
>0, E'¢=1, E=(,..1)eR
forteG, acH,neT,yeM.

Consider D,y = {(u, v, 9,7, 0,1, a,n,y) verifying (3.5)—(3.10)} is the set of feasible solutions of
(RMW — CP), called the robust set of feasible solutions of (MW — CP).
Definition 3.2 (i1,7,¢,7,0,7,&,7,7) € Dpw is said to be a weak robust efficient solution to

MW —-CP), if (u,v, ¢, 71,0, 7, ,m,7) € Dy, does not exist, with

fU |ve (T, 7) — HOr (T, @) | arf < fU |ve (T, 7) = H're (T, @) df".

Next, we introduce a robust mixed dual associated with (CP), given by:

(mixD-CP)  max fU {[ve @.7) = H're (T, )| + Y7 (T, pg, E
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+6" ¢(T, g, y)ENdr*

subject to
¢ [ver (0. 1) = Horep (D, )| + X7 fo(T. pt. ) + 67 g (T prg. )

=D| X" fr (T iz 7) + 0" g (T iz, y)| = 0, £ = T (3.11)

¢" [vex (T.7) = Hree (T, )| + Y7 fiT, i, ) + 6" gkt y) = 0, £ = T.a (3.12)
ulto) = Fo, p(ty) = Fr, (3.13)

$>0, E'¢=1 E=(,...1)eRY, (3.14)

Y (T, g, ) 20, (3.15)

8 g y) = 0. (3.16)

The robust counterpart associated with (mixD — CP) is defined as:

(RmixD — CP) max f {[ve (0. 7) = H're (T @) | + Y7 f(C, . DE
wOVO) Jy ’ ’
+6" ¢(T, g, y)ENdr*

subject to
¢ [ver (0,7 = Horer (T,@)| + Y7 £, e, 7) + 67 (T, 1, 7)

=D|Y" fr (T, ) + 60" g, (T, 7)| = 0, £ =T,

¢T I:v{",K (Fa 7_-) - Horf,K (r7 C_l’):l + TTfK(F7/J{9 ﬁ-) + QTgK(F9ﬂ_Z:’ 5/) = 0’ é: = l’a
u(to) = Fo, u(ty) = Fy,
$>0, ET¢=1 E=(,...1)eR",

TTf(ral'Q” ﬂ.) z 03

8, pyy) =0,
forteG, acH,neT,yeM.

Consider D, = {(u, v, ¢, Y, 6, 7, @, m,7y) which verifies (3.11)—(3.16)} is the set of feasible solutions
of (RmixD — CP), called the robust set of feasible solutions of (mixD — CP).
Definition 3.3 (i, v, ¢, Y,0,7,a,r, ¥) € Dy, is named the weak robust efficient pair of (mixD — CP), if

there is no (i, v, ¢, Y, 0, 7, @, 1, y) € Dy, with

f {[ve (T.7) = H're (T, @) + YT £(T. e, T)E + 67 (T . ) E)at*
U

< f {[ve (0. 2) = Hre (T, @)| + Y7 (T, g, E + 67 (T, p, Y)E)dr’.
U
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Next, we state a weak robust duality theorem for (CP).
Theorem 3.1 [Weak duality] Consider that (F,K) and (a,v,,Y,0,7,a,7,7) are robust feasible

pairs of (CP) and (mixD — CP), respectively, and maX,cg vgs(Q, T) = vg(fl, T), MiNgey ¢ (Q, a/) =
Ie (Q, c'z), and

f " [ve (.7) = H're (. @)| af’,
U

f YT £(., 7)dt* and f 6" (., %)dt* are convex at (i1, v). Under the above assumptions, we have
U U

fU [v,f(fz, B - H'r (Q, a/)] df

< f ([ve (F.7) - Hre (T, @)| + Y7 £(T. fip. DE + 6 9(T i, Y ENde.
U

Proof. Contrary, let us consider

f{max Ve (Q, T) — H min r; (Q, a)}dl‘»c < f{[vf (f‘, %) — H'; (f, c'x)]
U U

7€G acH

+Y" f(T, i, RE + 0" (T, fig, y)E}dt*

is valid. Since max.cg v¢ (Q, T) — H° mingey 1 (Q, a) = v (Q, %) — H'r; (Q, c‘x), we obtain

[ (@)~ Hone(@.a)] e < [ (e (F7) - e (.a)

v
is valid. As (F, K) is a robust feasible pair of (CP), it follows that

f ([ve (Q.7) - H're (Q.@)] + T f(Q, Fr OE + 87 g(Q, Fr, 9)E)det
U
< f ([ve (T.7) = H're (T, @)| + Y7 £(F. i, DE + 6" g(T, i, ) EYdE.
U
For ¢ > 0 and " E = 1, we get
f (" [ve (Q.7) - Hre (Qua)| + 17 £(Q, Fp. 1) + 6" 9(Q, Fro )t
U
< f (" [ve (T.7) - HOre (F.@)| + Y7 £(F. i, ) + 6" 9T i, 7). (3.17)
U

Since f ¢ [ve (.T) = Hre (@) ar, f Y7 f(.,7)df and f 0" g(.,y)df are convex at (i, ¥),
U U U

we get

[ 187 [ve (0.7 = 17 (0.) - 8 [ (. 7) = 70 (. ) 2
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_ = 8V§: - al”é: - _
L(F -’ [ﬁ (F, T) ~-H'—= (F, a)] drt
+f(f<—v)¢T %(f f)—HO%(f a)|dt* (3.18)
U aK 9 b b .
U U
+f(F§—ﬂ{)TTfF§(f,ﬂg,7_T)df§+ f(f(—f/)‘Y’TfK(f,ﬂgﬁ)dﬁ (3.19)
U U

and
f 10"g(Q, Froy) — Y g(T, fig, y)¥dt* 2 f (F - 08" gr(T, fig, y)dt*
U U

+ f (F¢ = 18" gr, (T, fip, y)di* + f (K = 96" g (T, g, y)dr-. (3:20)
U U
By adding (3.18)—(3.20) and using the dual constraints of (i, v, ¢, Y, 0, 7, T, ¥), we get
[@ be(@r)- 1 (0.0)] 71 Fomy 4 0 B
U
f (6" [ve (T.7) - H're (T @) + T £ e, 7) + 0 @, e, 9)VeE,
U

which contradicts (3.17). O

1\

A robust strong duality for (CP) is established by the following theorem.
Theorem 3.2 [Strong duality] Ler (F, K) be a weak robust efficient pair of (CP), max.cg{ve (Q, T) -

H° min,cy re (Q, cy)} = Vg (Q,‘T’) - HOI"§ (Q, &), and the constraint qualification criteris are satisfied.

Then, there exist ¢ € R%, Y = (T,(t)) € R™ 0= (0,(1) eR, andrn €T,y €M, T€Ga € H, such that

(F,K,$,7T,0,T,a,r,7) is a robust feasible pair of (mixD — CP). In addition, if Theorem 3.1 is valid,
the pair (F,K,$,T,0,7,&,x,y) becomes a weak robust efficient pair of (mixD — CP).
Proof. Since (F, K) is a weak robust efficient pair of (CP) (see Theorem 2.1), there exist ¢ € R?, T =

(Ti(t) €eR™,O=B() eR", and 7 € T,y € M, T € G @ € H, such that (3.1)~(3.4) are valid at (F, K).
Thus, (F,K,¢,T,60,7,a,7,%) is a robust feasible pair of (mixD — CP) and the values of the objective

is not a weak efficient pair of (mixD — CP). Consequently, there is (u, v, ¢, Y,0,7,a&,m,7), satisfying
f ([ve (Q.7) = Hore (Qu@)| + 1" Q. Fr. DE + 6" 9(Q, Fr. y)ENdr
U

< f {[ve 0. %) = Hre (T, @)| + YT (T, . RE + 67 g(T, ., Y ENeE
U

Taking into account Theorem 2.1, we obtain

fU [ve (.7) - HOr (2, a)| ar

AIMS Mathematics Volume 10, Issue 1, 932-950.
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< f |ve (0. 7) = HOre (T, @)| + 7 f(T pp, DE + 67 g(T, 1, )ENE-.
U

Since max eg{ve (Q, T) — H' mingey r¢ (Q, a)} = v (Q, 7") - H'; (Q, c’y), we have

7eG aeH -

f{maxvf(fl ) H° mlnrf( )}dt’f<
U

f {[ve 0. 7) = H're (T, @) | + YT (T, . DE + 6" g(T, o, Y ENdr,
U

which contradicts Theorem 3.1. Thus, (F,K,¢,Y,0,7,&,7,7) is a weak robust efficient pair of
(mixD — CP). O

Finally, we formulate a robust strict converse dual model for (CP).
Theorem 3.3 [Strict converse duality] Consider that (i1, v, ¢, Y, 0,7, &, 7,¥) is a robust feasible pair

of (mixD — CP) and

nTlean{vf (Q ) H° 1’;161151 re (Q a)} = Vg ( ¢ ,f) — H'; (Q, c‘y)

and f o’ [vg (., T)— Hol"g (. C_L’)] dr, f Y7 £(., 7)dt* and f 0" g(.,%)dt* are strictly convex at (i, V). If
(F,K )UE D satisfies Y Y

jﬂggafmqgapﬁ
- f ([ve (F.7) = Hre (T.@)| + Y7 £(T. fip. DE + 6 9T, . Y ENdr.
U

Then, the pair (F, K) is a weak robust efficient pair of (CP).
Proof. Since (F,K,$,Y,0,7,a&,7,7) is a robust feasible pair of (mixD — CP), by multiplying (3.11)

and (3.12) by (F - ) and (K - 9), respectively, we get

[ =i |5 (07) - 105 ()

+0" gp(T, i (0),y) - Dg[TTsz(l:’ e (0), ) + éTgF{(f’ ,l_lg(l)a7_’)]}61ff

A L= 0v§ - (91’5 _
+ fU(K - )¢ [G_K (F’ T) - Hoa_K (F’ a)
+0" gx (T, i (1), y)¥dt* = 0. (3.21)

Next, on the contrary, we assume that (F, K) is not a weak robust efficient pair of (CP). Therefore,
there exists (F, K) € D with

+ tY’TfF(l:" ﬁ{(t)’ ﬁ')

+ ‘Y‘TfK(l:a ﬁ{(t)’ 7_1-)

L{ri%xvg(ﬁ ) H° mmrg(fl a)}a’tf

acH

< L{maxvsc (Q T) H’ min r; (Q a/)}dtf,

7€G acH
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or, equivalently,

fU |ve (@.7) - HOre (O, @) aF < fU[Vg (Q.7) - H'r¢ (Q. @)| ar".

By considering the assumption
f |ve(Q.7) - H'r: (Q. @) | dff
U

- f ([ve (F.7) - Hre (T.@)| + Y7 £(T. fip. DE + 6 9T, . Y ENdr,
U

therefore, the above inequality implies

[ (@ 7) = rore(@ua)] e < [ (e (7) - 1 (7.0) +

U

Since ¢ > 0, we get

" [vc(07) - (@@ < [ 67 e () - e ()]

U U

YA, fig, ®) + 6" g(T, i, )i (3.22)

By considering the strict convexity of f (be [vf (,7)—H° re G, d/)] dr* at (i, v), we have
U

and, by (3.22) and feasibility property of (i, v), implies
I org -
2 ¢ = 0”"¢ -

- [k-ni [% (F.7) - 2% (F.a)

Again, using the hypothesis for f YT f(., 7)df at (1, v), it follows that
U

dr* < 0. (3.23)

f (T7 (0, Fou ) — 77 F(E i OV > f (F = )T fu( fips RV
U U
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+ f (Fr = i)Y fr,(C, fig, R)dE + f (K = )Y fx (T, i, 7)dE. (3.24)

Also, as (£, K) and (F, K, ¢, T,0,7,1,%) are robust feasible pairs of (CP) and (mixD — CP), we get
U U
and, by using (3.24), we obtain

L}F—ﬁrwvﬂiﬂpﬁwﬁ+b£a§—ﬁa??ﬁgiﬂpﬁwﬁ

+ f (K = )Y fg(T, i, 7)de < 0. (3.25)
U

Similarly, since f 6"g(.,F o y)dt* is also a strictly convex function, we get
U

f (F — 8" gr(T, i, y)dr* + f (F; = 1)0" gp (T, fi, y)dr*
U U

+ f (K —9)8" gx(T, i, y)dt < 0. (3.26)
U

By adding the relations (3.23), (3.25), and (3.26), we get the following result
an or, ;’r —

f(F [ (FT)—HaF(F a)

+07 g (T f1(1).7) = D[ Y7 fir (T 1 (0). 7) + 07 g, (T, 1, (0). ) |y

mewbH )m&@@

+0" g (T, i (1), y))dr <0,

which is a contradiction with (3.21), and this completes the proof. O
Numerical application. Let us highlight the theoretical findings derived in the previous sections

+ tY‘T.]“F(l:" ,L_l((t), 77()

+ Y7 fx (T, (1), 7)

of the paper. Suppose we interested in only affine real-valued piecewise differentiable control and
state functions, where G = H = [1,2], C c R? is a square fixed by the diagonally opposite corners
to = (5,13) = (0,0) and t; = (2,1}) = (3,1) € R%, and T C C is a piecewise differentiable curve
that links the previous two different pairs. Define the following robust scalar fractional variational
control problem:

f Ve (Q,7)dE f [K* + 7](dt' + dt*)
v _ }

(CPI) min { :
f re (Q, @) dit f [aFe* 2 )(dr' + dr?)
U T

(F().K()
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subject to
fQ F 1) :=F*+F -2<0,

fQ F (1)) = oF +2K-1=0, {=1,2
ot
F(ty) :=F0,0)=Fy:=1, F(ty) := F(l,l) =F = l
2°2 3
The above problem, in fact, extremizes the mechanical work provided by variable forces governed by

data uncertainty, namely: F, = (K> + 7,K*> + 1) and F, = (eFe* 2, aFe* *2). The non-fractional
optimization problem associated with (CP1) is given by:

(NCPI) min { [K? +7)(dt" +di?) — H® | [aFe*+2)(dt' + dtz)}
(F(),K() T

T
subject to
F?+F-2<0,
oF

— +2K-1=0, £=1,2

ot¢ ¢
11 1
F =1, Fl=,=|==
0,0)=1, (2,2) 3

and the associated counterpart of (NCP1) is given as follows:

(RNCPI) min { max[K?2 + 7](dt' + d*) — H° f mi}rll[aFeZFJr%](dtl +dt2)}
T e

(FOKO) ' Jr 7€G
subject to
F*+F-2<0,
oF
— +2K-1=0, £=1,2
oté ¢
11 1
F0,00=1, Fl=z,=|==.
001 (L)

Next, for I" := (¢, u(?), v(t)), we introduce a robust mixed dual of (CP1), defined by:

(mixD-CPI) (Hr(r;i)é)) fl; { [V;’r T, 1) - Horf T, a/)] + YA, uy)

+6" g(T, up))drt

subject to
¢ |ver (T,7) = Horer (T, @) | + Y £r(T, 1) + 6" g (T, 1)

~D [T fr (Topr) + 678, (T =0, £=T.2 (3.27)
¢|vex (T 1) = Horex (T.o) | + Y fi (T, pa) + 0" g(Copa) = 0, €=1,2 (3.28)
plto) = Fo,  p(tr) = F, (3.29)
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¢ =0, (3.30)
T, ) =20, (3.31)
g, ) = 0. (3.32)

The counterpart associated with (mixD-CP1) is defined as below:

(RmixD-CP1)  max fU ([ve (0. %) = HOre (D, @)| + YT, 1)

+6" g(T, )}t

subject to
¢ |ver (T.7) = Horer (T, @)| + Y fr(T, 1) + 6" g7 (T, 1)

=D fir, (Toe) + 6" g, (Tp)| =0, £=T1.2

¢ [vex (0.7) = Horeg (T, @) + Y fx(Copp) + 0 gx(Cop) = 0, £=1.2
plto) = Fo,  u(th) = Fi,
¢ >0,
YT, ue) 20,
g, up) =0,

fort € G, a € H.
The robust set of feasible solutions associated with (NCP1) is

OF _OF

D=, K)eAXB:-2<F<1, —=—
{( ) ol or

11\ 1
=1-2K, F(0,0)=1, F(E,E) = 5}

and, by direct computation, we find (F, K) = (—%(t1 +12) + 1, %) e D, and at t! = 2 = 0 it satisfies
the conditions (3.27)—~(3.32) with H° = 1% the uncertainty parameters 7 = 2,@ = 1, and Lagrange
36¢2
5

multipliers ¢ = %,T =06, =6, = ;- Further, it can also be easily verified that the involved

functionals fT QZ)[V;; — Horf](dt1 +dr), fT Yf(dt' +dr?), fT 6" g(dt' + dr?) are strictly convex at (4, V) =

(1, %) € D. By direct computation, we obtain

fU (v, 7) — HOr, (@, )] e

- fU {([ve (F.7) = Hre (T @) | + TA@. 1) + 6" 9T i)}t

Hence, all the conditions of Theorem 3.3 are satisfied, ensuring that (f, E) 1s a weak robust efficient
solution to (CP1).
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4. Conclusions

In this paper, we formulated a new class of robust multiobjective fractional variational control
problems. Then, a dual model was associated with the above-mentioned class of problems. Further,
by considering variants of convexity for the involved functionals (determined by curvilinear integrals
that do not depend on the path), we have provided some characterization and equivalence results for
the models considered. In addition, a numerical example was formulated.
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