In the setting of a Heisenberg group, we first studied the sharp weak estimate for the $ n $-dimensional fractional Hardy operator from $ L^p $ to $ L^{q, \infty} $. Next, we studied the sharp bounds for the $ m $-linear $ n $-dimensional integral operator with a kernel on weighted Lebesgue spaces. As an application, the sharp bounds for Hardy, Hardy-Littlewood-Pólya, and Hilbert operators on weighted Lebesgue spaces were obtained. Finally, according to the previous steps, we also found the estimate for the Hausdorff operator on weighted $ L^p $ spaces.
Citation: Tianyang He, Zhiwen Liu, Ting Yu. The Weighted $ \boldsymbol{L}^{\boldsymbol{p}} $ estimates for the fractional Hardy operator and a class of integral operators on the Heisenberg group[J]. AIMS Mathematics, 2025, 10(1): 858-883. doi: 10.3934/math.2025041
In the setting of a Heisenberg group, we first studied the sharp weak estimate for the $ n $-dimensional fractional Hardy operator from $ L^p $ to $ L^{q, \infty} $. Next, we studied the sharp bounds for the $ m $-linear $ n $-dimensional integral operator with a kernel on weighted Lebesgue spaces. As an application, the sharp bounds for Hardy, Hardy-Littlewood-Pólya, and Hilbert operators on weighted Lebesgue spaces were obtained. Finally, according to the previous steps, we also found the estimate for the Hausdorff operator on weighted $ L^p $ spaces.
[1] | W. G. Faris, Weak Lebesgue spaces and quantum mechanical binding, Duke Math. J., 43 (1976), 365–373. https://doi.org/10.1215/S0012-7094-76-04332-5 doi: 10.1215/S0012-7094-76-04332-5 |
[2] | A. Benyi, C. T. Oh, Best constants for certain multilinear integral operators, J. Inequal. Appl., 2006, 28582. https://doi.org/10.1155/jia/2006/28582 |
[3] | T. Batbold, Y. Sawano, Sharp bounds for $m$-linear Hilbert-type operators on the weighted Morrey spaces, Math. Inequal. Appl., 20 (2017), 263–283. https://doi.org/10.7153/mia-20-20 doi: 10.7153/mia-20-20 |
[4] | M. Christ, L. Grafakos, Best constants for two nonconvolution inequalities, P. Am. Math. Soc., 123 (1995), 1687–1693. https://doi.org/10.1090/s0002-9939-1995-1239796-6 doi: 10.1090/s0002-9939-1995-1239796-6 |
[5] | J. Y. Chu, Z. W. Fu, Q. Y. Wu, $L^p$ and BMO bounds for weighted Hardy operators on the Heisenberg group, J. Inequal. Appl., 2016, 1–12. https://doi.org/10.1186/s13660-016-1222-x |
[6] | T. Coulhon, D. M$\ddot{u}$ller, J. Zienkiewicz, About Riesz transforms on the Heisenberg groups, Math. Ann., 305 (1996), 369–379. https://doi.org/10.1007/bf01444227 doi: 10.1007/bf01444227 |
[7] | Z. W. Fu, L. Grafakos, S. Z. Lu, F. Y. Zhao, Sharp bounds for $m$-linear Hardy and Hilbert operators, Houston J. Math., 38 (2012), 225–243. |
[8] | G. Gao, X. Hu, C. Zhang, Sharp weak estimates for Hardy-type operators, Ann. Funct. Anal., 7 (2016), 421–433. https://doi.org/10.1215/20088752-3605447 doi: 10.1215/20088752-3605447 |
[9] | G. Gao, F. Y. Zhao, Sharp weak bounds for Hausdorff operators, Anal. Math., 41 (2015), 163–173. https://doi.org/10.1007/s10476-015-0204-4 doi: 10.1007/s10476-015-0204-4 |
[10] | Q. J. He, M. Q. Wei, D. Y. Yan, Sharp bound for generalized $m$-linear $n$-dimensional Hardy-Littlewood-Pólya operator, Anal. Theor. Appl., 37 (2021), 1–14. https://doi.org/10.4208/ata.OA-2020-0039 doi: 10.4208/ata.OA-2020-0039 |
[11] | G. H. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314–317. https://doi.org/10.1007/bf01199965 |
[12] | A. Korányi, H. Reimann, Quasiconformal mappings on the Heisenberg group, Invent. Math., 80 (1985), 309–338. https://doi.org/10.1007/bf01388609 doi: 10.1007/bf01388609 |
[13] | S. Z. Lu, D. D. Yan, F. Y. Zhao, Sharp bounds for Hardy type operators on higher-dimensional product spaces, J. Inequal. Appl., 2013 (2013), 1–11. https://doi.org/10.1186/1029-242x-2013-148 doi: 10.1186/1029-242x-2013-148 |
[14] | S. Lu, Some recent progress of $n$-dimensional Hardy operators, Adv. Math. China, 42 (2013), 737–747. |
[15] | Y. Mizuta, A. Nekvinda, T. Shimomura, Optimal estimates for the fractional Hardy operator, Stud. Math., 227 (2015), 1–19. https://doi.org/10.4064/sm227-1-1 doi: 10.4064/sm227-1-1 |
[16] | S. Semmes, An introduction to Heisenberg groups in analysis and geometry, Not. Am. Math. Soc., 50 (2003), 173–186. |
[17] | S. Stević, Note on norm of an $m$-linear integral-type operator between weighted-type spaces, Adv. Differ. Equ., 2021 (2021), 1–10. https://doi.org/10.1186/s13662-021-03346-4 doi: 10.1186/s13662-021-03346-4 |
[18] | S. Thangavelu, Harmonic analysis on the Heisenberg group, MA: Birkhauser Boston, 159 (1998). |
[19] | Q. Y. Wu, Z. W. Fu, Sharp estimates of $m$-linear $p$-adic Hardy and Hardy-Littlewood-Pólya operators, Appl. Math., 2011, 1–20. |
[20] | H. X. Yu, J. F. Li, Sharp weak bounds for $n$-dimensional fractional Hardy operators, Front. Math. China, 13 (2018), 449–457. https://doi.org/10.1007/s11464-018-0685-0 doi: 10.1007/s11464-018-0685-0 |
[21] | F. Y. Zhao, Z. W. Fu, S. Z. Lu, Endpoint estimates for $n$-dimensional Hardy operators and their commutators, Sci. China Math., 55 (2012), 1977–1990. https://doi.org/10.1007/s11425-012-4465-0 doi: 10.1007/s11425-012-4465-0 |
[22] | F. Y. Zhao, S. Z. Lu, The best bound for $n$-dimensional fractional Hardy operators, Math. Inequal. Appl., 18 (2015), 233–240. https://doi.org/10.7153/mia-18-17 doi: 10.7153/mia-18-17 |
[23] | G. Zhang, Q. Li, Q. Wu, The Weighted and estimates for fractional Hausdorff operators on the Heisenberg Group, J. Funct. Space., 2020. |
[24] | V. A. Zorich, O. Paniagua, Mathematical analysis II, Berlin: Springer, 2016. https://doi.org/10.5860/choice.42-0997b |
[25] | X. S. Zhang, M. Q. Wei, D. Y. Yan, Sharp bound of Hausdorff operators on Morrey spaces with power weights, J. Univ. Chinese Acad. Sci., 38 (2021), 577. |