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1. Introduction

It is well-known that averaging operators play an important role in harmonic analysis. It is often
desirable to obtain sharp norm estimates for them in different function spaces. Our starting point is the
Hardy operator and its duality form:

1 X lo'e]
Hf = fo fwa, Hfw= [ D

X

where x > 0. Hardy [11] established the well-known Hardy integral inequalities

f CIHfGPdx < (2= f Cfordx, ps 1,
0 p—1 0
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and

\fﬂHV@Wﬂxé( yﬂfmvuwdm p>1,
0 p—1 0

where p’ = p/(p — 1). He proved that the constant p/(p — 1) is sharp. The corresponding higher-
dimensional Hardy operator was introduced by Faris [1] in his study of quantum mechanics. Christ
and Grafakos [4] gave the following equivalent definition of n-dimensional Hardy operators:

Hf(x) =

f()dy,

" Jiyi<ia
where x € R" \ {6}, and @ is the origin in R". They showed that

D W
%l nLP(RMDYY= —— —, 1< < 00,
I llLr @y Loy p—1n p
Here w, is the superficial area of the unit ball in R”. The Lebesgue spaces with power weights are
another kind of function space to consider the sharp estimates of the Hardy operator. The method

in [4] is invalid in this case. Fu et al. [7], by the method of rotation, established the following estimate:

Wy,

% P n P ny—
” n ”LM}(R )—>L|X|ﬁ(R )

<™

p
For more information about the Hardy operator, we refer to the reader to [14].

Meanwhile, the fractional Hardy operator is also very interesting since it is a useful tool to study
the embedding properties of function spaces. Mizuta et al. [15] showed that the optimal bound of the
fractional Hardy operator implies the sharp embedding properties of function spaces. There is much
literature on function spaces. Let f be a locally integrable function on R". Then the n-dimensional
fractional Hardy operator and its duality form are

1 . 1
Hf 0= [ o Hf o= [ or o
P iy il Y1
where 0 < @ < n, x € R"\ {0}. If @ = 0, the fractional Hardy operator is the classic Hardy operator.
There is much literature on the boundness of these operators [9,13,21,22]. Among them, Lu et al. [21]
obtained the following estimates. Suppose

1 1
O<a<n, 1<p<z, — - ==
10 q n
Then
HeofNrogny < C N Npony »
where
1 1 1-1 1/p—1
P /q p /q q /q . p /p=1/q (ﬂ)l_a/n cc< p p/q(&)l_a/n
q) \p-1] \g-1 q n S o \p-1 n '
If p =1, then

a)l’l
||Hw||L1(R")—>L"/<"*“)~°°(R") = (—)
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The optimal L” — L7 estimate was later obtained in [22]:

1/q —a/n 1-2
p? n n n Wp\ n

WHollr@my—La@n = (_) (_ ' B(_’ / )) (_) ’
q qa qa q'a n

where

and B (-, ) is the beta function defined by

1
Bz w) = f £ (10 dr,
0

where z and w are complex numbers with positive real parts. Comparing with the complicated bounds
in the power weighted spaces, the sharp weak bounds for H, and H;, seem easier to understand. Gao
and Zhao [9] set up

1-¢ 1y
_ (%) | H | _ (@)
LI(R”)HL”/(”fa)’m(R") - 1 ’ a NLP(R")— L4 (R") —

o :

a

g \1p
()"
p

It is then a nature problem to obtain the operator norms of H, and its dual operator H; in
corresponding power weighted spaces. For the latter, Gao et al. [8] set up

*
I :

)(n—tl+/?)/ (n+p)

n
1 o (MB)/(n=a+p),eo =|—
B> (& (n +

and

I

ity 1/p’
n q,00 ny _ e 1
2@ =5 =) (3)

Then Yu et al. [20] set up

1/p
Wy, l/q( Wy, )
Hy |l g imm = ,
” a ”L\xlﬂ(R )—>LMB(R) (l’l +ﬁ) n— I3

and w
|| H, ||L1(R")—’L:;ﬁ)/(”_”)'m(R”) = (#B)(n )/ (+B)

Inspired by them, we will study the sharp weak bound for the fractional Hardy operator on the
Heisenberg group, which plays an important role in several branches of mathematics. Now, allow us
to introduce some basic knowledge about the Heisenberg group which will be used later.

The Heisenberg group is a very typical non-commutative group, and research on up-modulation and
analytic problems is an extension of Euclidean space upharmonic and analytical problems, which is an
important part of non-commutative harmonic analysis [6, 18]. Harmonic analysis on the Heisenberg
group has been drawing more and more attention, see [5,23].

Let us introduce some basic knowledge about the Heisenberg group. The Heisenberg group H” is a
non-commutative nilpotent Lie group, with the underlying manifold R?* x R and the group law.
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Let
X= (X1, s X0m X2n41)s Y = V1see o5 Yo Yons1)s

and then

n
XXY= (X1 + Y150 X0+ You, Xons1 + Yone1 +2 Z(ijn+j = XjYn+j)-
=

The Heisenberg group H" is a homogeneous group with dilations
2
0,(X1, X2, . ooy Xop, Xona1) = (FX1, FX5 .y PX0p, P X0p1), 17> 0.

The Haar measure on H" coincides with the usual Lebesgue measure on R*"*!. We denote any
measurable set £ C H" by |E|, and then

6, (E) = r2|El,  d(6,x) = r¥x,

where Q = 2n + 2 is called the homogeneous dimension of H".
The Heisenberg distance derived from the norm

o 5 1/4
2 2
x|, = {[5 xi] + x2n+l] ;

i=1

where x = (x1, X2, . .., Xon, X24+1), 1S glven by

d(p,q) = d(q"'p,0) =g ply.

This distance d is left-invariant, meaning that d(p, ¢) remains constant when both p and ¢ are left shifted
by some fixed vector on H". Furthermore, d satisfies the trigonometric inequality defined by [12]:

d(p.q) < d(p,x) +d(x.q), p,x,.q€H"
For r > 0 and x € H", the ball and sphere with center x and radius r on H" are given by
B(x,r)={yeH":d(x,y) <r},

and
Sx,r)={yeH":d(x,y) =r}.

Then we obtain
|B(x, r)| = 1B, r)| = Qor°,
where 1
0 = 2" 2 (n/2)
CT (n+ DI ((n+1)/2)
represents the volume of the unit sphere B(0, 1) on H", and wy = Q€. The reader is referred to [16,18]
for more details.

Except for the fractional Hardy operator, we also study the sharp bounds for some m-linear n-
dimensional integral operators on the Heisenberg group. In 2017, Batbold and Sawano [3] studied

AIMS Mathematics Volume 10, Issue 1, 858-883.



862

one-dimensional m-linear Hilbert-type operators that include the Hardy-Littlewood-Pélya operator on
weighted Morrey spaces, and they obtained the sharp bounds. He et al. [10] extended the results in [3]
and obtained the sharp bound for the generalized Hardy-Littlewood-Pdlya operator on weighted central
and noncentral homogenous Morrey spaces. He set up

i 4%
LY (R |x] 9 )

m
I TChsee s fon) Dnsacee e < Co | J1 551
Jj=1

where

m
| | —d( g, 121
Cm:f K(yla""ym) |yt| @i ‘f)d)’1"'d}’m<°°-
Rem i=1

In 2011, Wu and Fu [19] got the sharp estimate of the m-linear p-adic Hardy operator on Lebesgue
spaces with power weights. Zhang et al. [25] obtained the sharp estimate for the m-linear n-dimensional
Hausdorff operator on the weighted Morrey space.

Inspired by the above, on the Heisenberg group, we first study the sharp weak estimate for the
n-dimensional fractional Hardy operator from L? to L?*. Second, we study a more general operator
which includes Hardy, Hardy-Littlewood-Polya, and Hilbert operators as a special case and consider
their operator norm on weighted Lebesgue space. Finally, we also find the sharp bound for the
Hausdorff operator on Lebesgue space, which generalizes the previous results.

To get the main conclusion, it is necessary to introduce some fundamental knowledge and
definitions. In the setting of the Heisenberg group, these operators and spaces are the fractional
Hardy operator, m-linear n-dimensional Hardy operator, m-linear n-dimensional Hardy-Littlewood-
Pélya operator, m-linear n-dimensional Hilbert operator, m-linear n-dimensional Hausdorft operator,
and weighted L? and L%*.

Definition 1.1. Let f be nonnegative locally integrable functions on H" and Q =2n+ 1,0 < a < Q.
The n-dimensional fractional Hardy operator is defined by

1
Hof (9 = —— fu Ty (1.1)
Vin<|Xlp

|l
where x € H"\ {0}.

Definition 1.2. Let m be a positive integer and f, ..., f,, be nonnegative locally integrable functions
on H". The m-linear n-dimensional Hardy operator is defined by

1
HE s fy)0) = — f FOD - fu )y - dy, (1.2)
Ixl, ™~ JI01 el
where x € H*\ {0}.
Definition 1.3. Let m be a positive integer and f, ..., f,, be nonnegative locally integrable functions
on H". The m-linear n-dimensional Hardy-Littlewood-Pdlya operator is defined by
) Jn(m)
HY(fr oo fi ) = f 2 f DOV Join) gy, ay,, (13)
" B [max (|X|h,|y1|h,-~-,|Ym|h "

where x € H"\ {0}.
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Definition 1.4. Let m be a positive integer and fi,. .., f,, be nonnegative locally integrable functions
on H". The m-linear n-dimensional Hilbert operator is defined by
Hilfowfi = [ oo [ 1O —dy, -+ dyn, (1.4)
H" H" (l-xlh + |)’1|h t+-t |ym|h )

where x € H*\ {0}.

Definition 1.5. Let m be a positive integer, fi,..., f,, be nonnegative locally integrable functions on
H", and ® be a nonnegative function on the Heisenberg group. The m-linear n-dimensional Hausdorff
operator is defined by

(13(5|y1|;1x, ey 6|ym|,jlx)

HE o fr)(6) = f
o/t * 12yl

Hn
where x € H*\ {0}.

Definition 1.6. Let 1 < p < co. The Lebesgue space on the Heisenberg LP (H") is defined by
Lr @ ") = {f € Lj,, : Ifllppgny < o0},

where

1/p
1l Loy = (fH |f ol dx) : (1.6)

Definition 1.7. Let w : H" — (0, o) be a positive measurable function, 1 < p < oo. The weighted
Lebesgue space on the Heisenberg LP (H", w) is defined by

LPH w)={f €L :Ifllp@w <o
where
1/p
1L n ey = (f If (O w (x) a’X) . (L.7)
Hﬂ

Definition 1.8. Ler w : H' — (0, o) be a positive measurable function, 1 < p < oo. The weighted
weak Lebesgue space on the Heisenberg LP (H", w) is defined by

L9 (H", w) = { feLll e < oo},
where
1/q
S Nl ) = SUP A (f Xix:fo>1) (0) w (x) dx) : (1.8)
>0 Hn
Next, we will provide the main results of this article.
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2. Sharp estimate for the fractional Hardy operator

In this section, we will study the weighted L” estimate for the fractional Hardy operator on the
Heisenberg group. For the n-dimensional fractional Hardy operator, our results have a restricted
condition: S = 0 when p = 1 and 8 > 0 when p > 1. Removing this restrictive condition requires a
more complicated argument, and it will be presented in a future paper.

Theorem 2.1. Let1<p<oo,1<q<oo,,8<Q(p—1),Q+y>0)and0<a<%_

If
y+0 _B+0
+a= ,
q P
then
U)Q % (L)Q (p - 1) l’i'
g (Q n y) (pQ -0 —ﬂ) ' _

Theorem 2.2. Let Q +5>0and 0 < a < Q. Then

wg
IH o1 ) L0100 o7y = (—

Q+p

(Q-)/(Q+B)
) (2.2)

Proof of Theorem 2.1. Noticing Q — 1% >0 - % = 0, by Holder’s inequality, we have

_B B
[ sl [ i
vl <l Ixly, ™ Jilu<ials
o \¥ ’
< ( [ v dy) ( [ wror |y|£dy)
|xl,; i<l Iyl <l
1 o 7 ;
h p V4 p
< ﬂ(ijq fﬁ“*QJdO (flf@Wﬁﬁ@J
|X|h 0 H”

[Heo f ()] =

x|~
1

L

0-£1\7
= 4272 x | wp X ! £l
o ¢” H5_ B LP(E Jaf)
p—1
1
_(@ep-D " N 9 by
- pQ _ Q _ﬁ ”f”LI’(H",Ixrﬁ) |x|h =Cp08f |X|h s

where ]
wQ(p—l))”’

Coopr=\—7——"7| W m.e-

p.0B.f (pQ—Q—,B Lr(En |xf))

_0_ B, _Q_ B,
Noticing [H,f (X)| < Cpopslal, " "\ wehave {x : [Hof (x)| > A} C {x: Cpopslal,” " > Ah
Since

+ +
O+y>0and 1721 4-B*C
q p
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we have

1

[Hefllaoqn ey = SUP A | Xttt oo (0 1]y dx)
>0

n

1

<sup 4
A>0

— 5

x) |x|” dx
X _Q_gmﬂ}( ) Xl )

n {x:Cpopsl, "
1

3 ( I’Qﬂf)Q+r 4q
=sup 4 f . . |X|Z dx) =sup A|wyp FO-1Y gy
>0 B(0,(-222L) 0+ >0 0

1
(CpQﬁf//l)q)q ( %) )"
=sup A|lwp X —————| =sup C X
/l>g © Q+7 /l>g PoLI Q+7
1 1
[ wo \* _[wo(p—=D\"
_(Q+» X@Q—Q—ﬁ)”mwwwy

Thus

wo a U)Q(p_l) "
Iﬂahmw%pmﬂwmb<(Q+y)(pQ—Q—ﬁ)

__B_
Jo(x) = |x|h 1 X {x:lxlp<1) (x).

. . _ ﬁ
Noticing Q + (1 — I%) = Q- -5 >0, we have

On the other hand, let

1

_B P
ol gy = ( f o, ™ Xteteny I 12, dx)
Hn

o L ’ (p-1)\r
AL 7] %
(LN e x) (‘”Qf p0-0-8

So we have proved that f, € L’(H", leg). Then we calculate H,, (fy) (x).

1 _B
7‘(& (fo) (x) = o= f lylh 1 ylylhsl} ()7) dy
|xl;7 ™ Jistu<ixtn
B
ot Xl _1--A_
—1 f|y|h<IXIh |y|hp ldy’ Il < 1 _ Wo { Ol ll r¢! rPdr, r<1
= —a _4 = — 0 1_4

|l f|y|h<1 Ivl,” 'dy, x|, > 1 |l fo 1 dr s 1

b
_ M{ W g < 1

pOQ-Q=B | k79  |xl, > 1
_ wo(p-1)
Denote C 05 = 5555 and

ﬁ
1 [ Hy () ()] > A} = {lxly < 1: Cppglaly ™ > AUl > 1: Cpoplal? @ > A,
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When 0 < A < C, g, noticing a < 1% and 8 < Q(p—1), we have @ < Q and

C,o0p\07
{xrl%(fo><x)|>ﬂ}={|x|h<1}u{|x|h>1:|x|h<( "fﬁ) }

. CP,Qﬁﬁ
—{x.|x|h<( N ) }

When A > C, o4, noticing a < I% and 8 < Q(p— 1), we have @ < Q and

Coros\Em
x| H, (fo)(x)| > A} = {x: Ixl, < ( p/,lQ,ﬁ),,l }

Based on the above analysis, we have

”WQ (fO)”Lq-M(H”,IxIZ)

1 1
q q
= max{ sup /l(f X (xHo G (0)l>2) (X) |x|de) , sup /l(f X (el Ho o)ty (X) |X|de) }
O</l<Cl’,Q.ﬂ n C Hr

p0pSA
=: max {M;, M5} .

Now we first calculate M;. Since

i
wo(p—1)\»
”fO”LI’(H"JxI[;) = (—) s V> -0,

pO-0-B
and
1 -1) -
-2y (,8+Q_a):Q(p ) ﬁ>0’
(Q-a)q Q-a p p(Q-a)
we have
i a
M; = sup /1( f XixlHo (ool (X) X1 dx ) = sup /1( f o lxlpdx )
0<<Cp0p " 0<1<Cpop |l <( thﬁ)Q’”
1
Wo |’ R
= Su C A " ©ayg
0</1<Cpp,Qﬁ ( Q + 7) ( p’Q’B)
1 1 1.1
(o) cran=(5) *(i2535)
=\5 =] Cros= x o
Q+y O+y pO-0-p
1 1
wo \7(wo(p—1)\~
= ( . ) ( ¢ ) 1 foll s
Q+y) \pQ-0-p8 "
1
Then we calculate M5, noticing [|foll, o ) = (;Ué(_pg__l;)p, vy > -0, and
gl
|- O+y - 1 (,3 Q_a/): B-0(p-1) <0
L - Li-a P p(E —a)p-1)
AIMS Mathematics
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and we have

1

7
f A |xI; dx
Il (228 pT

21—

M, = sup /1( f XixiHa(fo)l>a) (X) |X|de) = sup /1[
H)l

Cp,QpS/l vaQﬁ>/l

1

w K B, B,

= sup (22 (Cpas) o a
Cp0ps4 Q+r

) e () ()
08 = X
Q+r pOQ-0-8

( ) (‘”Q(p_l)) 1l
Q+vy) \pQ-0-8 OlLr e -

Its easy to see that M; = M,, and then

wo V' [wo(p—-1) ”
||7’{(z||Lp(Hn,|xﬁ)—> ||7'la||Lp,oo(Hn"X‘Z) - (Q -i—Q)/) (PQQ_ 0 _:3) '

This finishes the proof of Theorem 2.1.

Proof of Theorem 2.2. 1t is easy to see that

1
- f Fdy| < |—5= f S dy| =
], Jivi<ts |17

Notice [Ho f (0] < 12081 fll1gzny» @and we have {x : [H, f ()] > A4} € {x ¢ [} C 1 flligm > A} Since
Q—-a>0and Q+vy >0, we have

[Hof (0] = Il Al e -

O-a

O+y
L A( [ Ao (0 )

0-a Q-a
orey O+y
<sup 4 f X ity 11 oy (x) x| dx ) =sup A f | Ixlldx
>0 H" >0 bl <111 gy /) O
i g .
Wiy 0T ’ wo \
= Sup /l C()Qf r= +7dr = ( ) ”f”Ll =) -
>0 0 Q + Y ¢
Thus
g—(t
wo s
H. f (x)||L<Q+v>/<Q—a>,oo(Hn,|x|Z) < (—Q n 7) Ny -

On the other hand, let fy (x) = x{xu,<1} (x). Then we have

Wo
I foll 1 gy = f X<ty (X) dx = 0 < oo,
HYI

AIMS Mathematics Volume 10, Issue 1, 858—-883.
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and so fy € L' (H") and

1
Ha (fo) (%) = —5= f X<t () dy
Xl Jil<i,

= ; j|‘|h<|x|h dy’ |X|h S ! = %{ |X|Z’ |x|h < 1
|xl;7 J;hgl dy, xlp > 1 0 IXIZ_Q, lxl, > 1

Denote Co = -7 and
(2 1Ho (fo) )| > A} = {Ixly < 1 : IxlfCo > A U {lxly > 1 : |xl;™2Co > A},

When A > Cy, noticing 0 < a < Q, we have {x : |H, (fo) (x)| > A} = 2.
When 0 < 1 < Cyp, noticing 0 < @ < Q, we have

{x I He (fo) ()] > A} = {x : (CLQ) < lxly < (%)Q}

We have
lH, (fo) ()] L@@ (Hn [x]))

O-a Q-a
O+y O+y
- max{ sup /1( f X (el fool>a) (X) |X|de) ’Sup/l( f X (el ooty (%) |X|de) }
H~ H~

0</1<CQ A=Co

=: max {M3, M4} .

When A > Cy, then {x : [H, fy (x)| > 4} = @, and we have M, = 0. Then, we only need to calculate
M;. In addition, noticing

wWo
Q +ﬁ > O, 0 <a< Q, ”fO”Ll(H") = E’
we have
0-a
y O+y
M; = sup /l(f XixlHy fool>4) (X) |X|hdx)
0<A<Cyo H"?
i @
gw (CTQ)ﬁ e
= sup A f 1 o |x|de = sup 4 wa 1 r& gy
0<1<Cq (%)aqmq#)ﬁ 0<1<Cq (%)ﬁ
= sup — g
0<1<Cq Q Ty ¢ C¥
0
% (szar
wQ +y wQ +Y
= Co = ) I foll 1 zzm -
(Q + 7) Q+y “
Then 0
wo \07
”7‘{(1/”[,1(H”)—»L(Q"V)/(Q_‘Y)'w(H”,|X|Z = (Q + 7) .

This finishes the proof of Theorem 2.2. Notices that Theorem 2.2 no longer holds when « = 0.
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3. Sharp weighted L? estimate for the integral operator with a kernel

In this section, we will study the m-linear n-dimensional integral operator with a kernel on the
Heisenberg group. Let K : H"X- - -XH" — (0, o) be a measurable radial kernel such that K (yy, ..., y,,) =
K(Iy1ly > - [ymlp), satisfying

Q

= [ ko ,ym)]_[ly,|,§“7dy1---dym<oo, G.1)

where «, g/, g, and Q are the pre-defined indicator and some fixed indices, j = 1,2, ..., m. The m-linear
n-dimensional integral operator with a kernel is defined by

H" (fiy s frr) (X) = j};ﬂ e fﬂ‘{n K1y ym) [0, 1)+ fn (O, Y)Yy -+ - Ay, (3.2)

where x € R"\ {0} and f; is a measurable radial function on H" with j = 1,2, ..., m. Note that H his in
fact an integral operator having a homogeneous radial K of degree —mn.

In this paper, we will give the weighted L” estimate for the m-linear n-dimensional integral operator
with a kernel on the Heisenberg group.

Theorem3.1. LetmeN, 1 <g<oo,t =L ...4 L ag=q+---+a, 1 <qg,<cowithj=1,..m
qq-a~q1 dm J
JJ

and f; be a radial function in LY(H", |x|, " ). Assume that the kernel K is the constant defined by (3.1).
Then " ,
I mam =C (3.3)

L (m", IXI )X'"XL‘f’"(H”,IXIh T )= LaE" Al

Proof. Consider that
1 i i
gilx)=— fiOw,Edé;, xeH, j=1,..,m.
wQ |§j|h:1

Obviously, g; satisfies g; (x) = g; (|x],), and H"(fi, ..., fn) (x) is equal to

H" (g1, s 8m) (%)

= f K(yla ey Ym)gl(élxlz,yl) ce gm(élxlhym)dYI ce dy
Hmn

1
= | KO- ,ym)H — Jﬂ(5|x|h|y,|h§1)dff)d% ~dym

H” Q |§1|h

:_f K(Y1,- 9ym)

= — f K (YI, eeey ym)
mn j

=L f [ [ Kb | [ Gzl dvdn - dzy
ey lp=lz1ln [Yimlp=lzmn j=1

AIMS Mathematics Volume 10, Issue 1, 858—-883.
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( 6= fj(é““'h (5|yj|h§j))d§f)dy1 - dy,

1

J

’_js

(f fj(6|x|th)|yj|;Qde)dyl cen dym
zjln=1y,ln

1
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1 m
_mf f f K(|z11hs -+ |Zmln) nfj((slxlhzj)dﬁ o dtydzy - dz
wQ Hm Jlt]p=1 [tmln=1 j=1

f K(zZ1s eoer ) 1O, 21) * * * SOy 221+ + - Az = HO(fiy oees fin) ().
Hﬁl}’l

In the fourth to fifth lines, we let z; = ¢),,,&;. From the fifth to sixth lines, we perform an integral
permutation. In the sixth to seventh lines, we set y; = d),,7;. On the other hand, by applying Holder’s
inequality, we conclude that

— [i(01,€/)dE;

qj 1 qu
(3! I— :(f I, * dx)
LU@E|x, ¢ ) H | W0 Jigl=1
1 oo
— f |x,” dx
wWo H»
aj=1 qjo; %
[f f |fj(5|X|h§/ |q dnfj (f dX) |X|hq dx)
%) I€il=1 I€jln=1
1
;% qj
- @e "/ ff |f](5|x|h§] K dé‘:] |x|hq dX)
|§J‘h 1
N e B
oo ([ ez, dx
H" Jlzjln=|xl
o PRy
—oo ([ [ T s
|x|h |Z_[|/‘I

1
=wg Y f f Izjlh It; IhQIZJIh" |t; |h1 If](zj)qulz, 1dt; dz,)
Itjlh

([ et =

From the second to third lines, we apply Holder’s inequality. In the fourth to fifth lines, we let z; =
Ojx,&;- From the fifth to sixth lines, we perform an integral permutation. In the sixth to seventh lines,
we set x = | y,¢;. Therefore we have

Wmhmmmww<wm&w@mww

il e

LY H" |x | ) LY (H | x | )

1

S0, E)dE
=1

//\

LY H" |x | ) .

which implies that the operator H" and its restriction to the function g satisfying g; (x) = g;(|x|,) have
94
the same operator norm in LY(H", |x[;). So without loss of generality, we assume that f; € L% (H", |x|,* )

with j = 1,2,...,m satisfies that f;(x) = f;(|x|,) in the rest of the proof. Let ¢’ is the conjugate number
of g and g € LY (H", |x|})). Using duality and Holder’s inequality, and making a change of variables, we
obtain the following sequence of inequalities:

(H" v ) 8)
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< f IK (V15 w0 Yl f 18 O f1 (B, y)| -+ | G ym)| 1xl5dxdy, - - - dyy

=f K (1, . ,ym)lf Ig(X)IIXI 1O Dl - UGyl dxdy, - dy,
Hmn

1
a\q q
< f |K(y1,...,ym)|( f g (o)l |x|zdx) ( f (|f1(6|x|,,y1)|---|fm(6|x|hym>||x|,;’) dx) dy, - - -dy,
Hmn n Hn
1
ey ;
< gl (ssn oy f K 15 oo ) | |( f |f1(Gy 0| 1,7 dx) dy; -+~ dy,
Hﬂ

j=1
||g||Lq (Hn|x|0)f |K(y1»- ,ym)ll—[b"hq QJ (f |f](Z])|q |Z1|h dx) dyl d
_Y_0
:f K (y1, .. ,ym)l_[lylh Yy - dyn lIglle |x|h)]—[||f,||
Hmn

= CMIgllye o) ]_[ 151

LY (H" ¢ | )

qu (H” | |

This proves the first part of our theorem.

For the second part, we will show that if the kernel K is nonnegative, then the operator norm ||7H"||

of H" is equal to C". For a positive number & and i = 1,2, ..., m, we define the sequences of functions
g. and fj, by

Qm

8s(x) = |X|; 7,)(3(0 @, fe=1," " o (x).

By a simple computation, we have

o _%_0, e\ g 4j 4
’ —0+ q9 4; 4j
e sy = [ i e=|( [ 1,7 o dx)

H~ H~

= ||f ||q = gl le,»n [ _ Yo

LY (HP |x | ) €

Therefore, we have
|<7_{h (fl,a, ceey fms) s g.9>

_Q+ar+%
= f ol f K (.. ,ym>|]—[ﬁg<6|x|hy,)dy1 - dyndx
B(0,1) mn

e[ _J_Q+
:f |X|h T xlhf f K(YI,- aym)l—[ |x|h |y}|h) ¢ U q’dyl dymdx
B(0,1) BO. i) BO. ) J=1
_Y_o,
& q q; l]
= f I, ©* f f K@, ,ym)]_[|y,|h Ty, dyndx
B(O,1) B(O. ;) B(O. ;) i=1
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= f B 1[ K (1, ,ym)nlyj Z Ty dyndr
B(0,1 ) B(0,1 )
Q.

(,UQ f I"_l_sf e f K (ly] |h 5 |ym|h) n |yj|h i q, dy] dymdl"
1 BO.r) B,
wo [ o [ -gegron

=—-— ro)y | Wb K(r,...,ry, r, s dry---dr, |dr
: 1() QL kﬁ r >UJ 1

m+l m

K(rl, ey T 1_[ i 1dr1 ceodry, + Z L;,

where L, is defined as

m+1 _ﬁ_2+£+Q_1
L= K(”l, AR i T
—%—q2+q +0-1
><| |rj s dry....dri---dr,dr
Jj#i
wm+1 m_ @ g 0-1 A
= K(ri,...,rm) | | r; ri-o-d dr,dr;
J=1

A
Here dr; means that we do not integrate with respect to the variable r;. The last equality follows from

integration by parts and the observation that, if we let

X X moo U Q640
_ TR
.,x)—f f K(rl,...,rm)l_[rj dry---dr,,

then
dF (x, _G_ Qe - *ﬁ**h* +0-1 A
( Z K(rl,... v F)X 4 ot rlrj ! K dri---dri---dry,
i=1 J#i

where the upper index (i) means that x replaces the variable r; in the i-th position. By means of the
previous step, we have

Kﬂh (fl E3 *es fm,s) ’ ga>

||g€||[ﬂ H” || “l M ||fm’5|| qmam
|X|h L4 (]H[" | | ) Lqm(H”’|x|h q ) (34)
1 1 m ¥ _ Q. e m
[ 0-1 eL
q9 4 q 4
:Cl)g f K(rla ’rm) rj P drl drm"l' —_—
0 0 . wo

Let E; denote the domain of integral L; above (3.4), that is,

E;={(r1cnr) € (0,00)" 1 1 <1y < 00,0 < 1y < 1 j # ).

AIMS Mathematics Volume 10, Issue 1, 858-883.



873
Taking into account that 7 = - + -

+ —, we can bound the integrand of fui on E; as follows
m
Mmoo U 04 e 40 “U_240-
- q9 4 45 - + +
r; SK(rl,...,rm)l |rj s <r° qu(rl,.. rm)l |
J=1

m

: —ﬂ—2+Q—1
-5 a d4j
=r; 7K (ry,.. )

> Tm

N
=X
—_
=
=
3
N
O
=
I
2o
?

j=1
For the integrand of the first term in (3.4) on [0, 1]

, we also have that
m aj

— _;_f +0-1
. ’ K(}’l,.. rm)n
j=1

Since the condition of kernel K (3.1) is equivence to

a;:

J_Q

K(yl’- ’)’m)rl|y1|h qjdyl d
Hmn

j=1

00 00 m _J_<
m q
wa f K(rl,...,rm)l—[rj

0 0 i=1

using assumption (3.5), we can use the Lebesgue dominated convergence theorem, which implies that

_;_f Q—
SILI(I)lwa—Q—wa f f K(rl,.. rm)l_[

Ch

(3.5)

--dr,, < oo,

--dr,dr;, (3.6)
and
1 1 ot 0,0
811)%1(1)3 0 L K(rl’ 9rm)l_1[rj s drl" drm
: ! " (3.7)
O el
:wgf“'fK(ru...,rm)l—[rjq 4 dry---dr,.
0 0 i1
Furthermore, we have
[0.11" U [U Ei) = (0,00)",
i=1

and fori,j = 1, ..., .

m, any of the intersection sets [0, 1]" N E;, E; N E;, i # j, has Lebesgue measure
zero in H". Consequently, (3.4), (3.6), and (3.7) imply that

(a8 I

L91 (H", |x|

qmam

)X X Lam (x4

)y—La(H,|xIS)

#=0|gell (E" )0

<7_{h (fl,s:a (XL} fm,s) > ga>

h
=C".
s || ae ottt ||fm, || qulm
L11 (Hn’lxlh 4q ) Lam (H", |x| )

This finishes the proof of Theorem 3.1
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4. Application: Sharp weighted L? estimates for a class of integral operators

By taking a particular kernel K in operator 7 defined by (3.1), we can obtain sharp weighted L”
estimates for Hardy, Hardy-Littlewood-Poélya, and Hilbert operators on the Heisenberg group. Our
results in this section are as follows.

Corollary 4.1. Assume that the real paramenters q, q;, @, and a; with j = 1,2, ...,m are the same as

9j%

in Theorem 3.1, and f; is a radial function in L (H", |x|hT). Assume also that —% — % + Q> 0. Then
J

C que2in TTLT(@ =7 =D)/2)
L91 (H, |x| )>< xLam (H", |x|:m m)—>L‘I(H",|xIZ) mqgQ —a—-0Q [(mQ - ; - %)/2) .

||7_{h

4.1)

Corollary 4.2. Assume that the real paramenters q, qj, o, and aj with j = 1,2,...,m are the same
ajej
as in Theorem 3.1, f; is a radial function in LY(H", |x|," ). Assume also that —% - g + Q > 0 and
J

% < 0. Then

q

m a Y
|| h” ‘ImUm = qu(mQ ) . (42)
La(H, |x|h >x xLam(E A, 1 ) -LiEn ) (a+ Q) [ =1 (Q — ; - ;)
J

Corollary 4.3. Assume that the real paramenters q, q;, @, and a; with j = 1,2, ...,m are the same as
94

in Theorem 3.1, and f; is a radial function in LY(H", |x|," ). Assume also that —% - g + Q > 0and
J
—% - % < 0. Then

m (I+Q e L
||7—(h|| qmam - wQF( qQ )H r(l qj) (4‘3)
L E iy T LB ]y Ty LGB ) ol (m) '
Proof of Corollary 4.1. Next, we will use the methods in [7,17]. If we take the kernel
K 1y oo Yi) = X(01ymlly<l) D15 o0s Yim) 4.4)

in Theorems 3.1, by a change of variables, it is easy to verify that H" = H/, and then H]' can be
denoted by
H = f Jilxly y1) -« fullxly yaddyy - - - dyp.

|(y1 ----- ym)\,,<1
Then all things reduce to calculating

......

To calculate this integral, employing the polar coordinates y; = p;&;, j = 1,2,...,m, and Fubini’s
theorem, we obtain

m

———7+Q 1
Ch f ff l_lqu Y dpldpmdo-(é:l)do-(gm)
'"]p <l,p;>0,j=1,...m

m.o _%4_0.09-
N ] a qj+Q ld ceed
_(")Q pj P1 Pm-
Z’/”:l p§<1,p_,4>0,j:1 m i
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We use the m-dimensional spherical coordinates

P1 =rCcos ¢,
P2 = rsing; cos ¢y,

03 = rsin g sin ¢, cos ¢3,

Pm_1 = rSin; Sin, - - - $in @,,_» COS Y,,_1,

Pm = FSing; sing; -« - Sin @, _» Sin @,,,_1,
where r > 0 is the radial coordinate and ¢;, j = 1,2,...,m — 1, are angular coordinates, ¢; € [0, ],
j=12,...m—-2, ¢, €[0,2n), and the known fact that the associated Jacobian is

|l = P sin™ 2 ¢ sin™ > @, - - - sin o

in (4.5). Since - — g + 0 > 0, we have

1 o Tz T
m o _4_0.01y 2 2 2. 2, . - .
Ch = iy f ARGt [T [T [ sing singn) - sin )|
0 0 0 0
2

m m _"J_Q _ m _(LJ_Q — am [¢)
DN 50D Ging 2)2_,:,,,_1< P840 i g, BB

0‘7711 _0 1
q’" ;e (COS 1) q"’l e doy -+ -de,_dr

“(singy)

_ﬂ_g am2
(cosp) @ a7 (cos )

Lo UL
:wg Pl g dr
0
% % m Y% 0 —(L—
Xf f l—[(smgoj yr-GHDEL o (-2 )(cosgoj) 7 dgol N
0 0

(,l) 7 7 — . _n_q_\m a4, 0 A ) -1
= f f ﬂ(smso»@m DT G (cos @) 0 0 dey - dip,
Z]‘:l(_—J—_.+Q) 0 0 =1
Q_Z_ﬁ_g

l—[ Lol X (G g PN T}
a/+Q f (1 ) : dt]
mQ — —*=

j_Q
qwmzl —-m m—1 Q(m—j)— Ztnﬁ—l q ‘g)—l Qiijziﬂ_l
= 1—[ (1 - Sj) de
qu a-0

qup2'™" r B[Q(m DY@+ s 0-

(singy)

q]

:qu—a—Ql_—[ 2 ’ 2

j=1
We also use the fact ¢; € (0,7/2), j = 1,2,...,m— 1. From the seventh to eighth lines, we let 7; = sin¢;
for j=1,2,...,m— 1. From the eighth to ninth lines, we set s; = tf for j=1,2,..,m—1, as well as the
definition of the beta function (see, e.g., [24]).
By using the following well-known relation between Euler’s beta and gamma functions:
I'(a) I (b)
F'(a+b)’

(see, for example, [24]), after some simple calculations, we see that the following relations hold:

B(a,b) =

AIMS Mathematics Volume 10, Issue 1, 858-883.
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Qm=j)-31 ., (F+2 0-3-2
_ . . F J q 4 F J
P (Qun =B G D 0% ——] el ( z )( :
> m Q
_‘L/_Q
H] lr( )
- mo-2< Qo
)

Then we have

h _
L=

g2 TS T(Q =7 = 2)/2)
mgQ-a=0Q I(mQ-%-9/2)
This finishes the proof of Corollary 4.1.

Proof of Corollary 4.2. Next, we refer to the methods in [3]. If we take the kernel

1
K 5o y) = (4.6)
1 [max (1, [y1[2 ...y D)1

in Theorem 2.1, by a change of variables, we have H? = 7—(;, and then 7—(5’ can be denoted by

1
W=f Fi(xly0) -+ Iy yidddyy - - - dy
g [max (1, [y12 , ..o, [yul)]"

Then, we reduce to calculating

1 ,,/
Cg = f 0 l—[ |yj|h dyl

s [max (1, 112, ooy [yml?)

To calculate this integral, we divide the integral into m parts. Let

Eo = {1, 0o ym) €H' X oo X H" 2 [y, < 1, 1 <k <mj;
E, ={1, .0, ym) € H" X ~-xH"WMM>1tmu<Wm, <k <m};
= {()’1, '..,ym) € Hn - X H" |yt|h > 1 |y]|h < |yl|h 5 |yk|h |yl|h , l J < l < k }

<
= {(yla aym) eH'x---xH": . |ym|h > Llyjlh < |ym|ha < .] }

It is clear that .
U@:mexw,
j=0

and E;NE; =2 (i # j). Let

% _Q

1 L
K“:=\f‘ el, © “dyr - dym,
! Ejnnax<1Ayn$,.nAym|)]m]fl !
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and then we have

m m 1
Cg = K:: = f |yk| ym'
J . E. [ 0 )]m l_[ h

j=1 Jj= J max(lalyllh PR |ym|h

Now let us calculate J;, j = 1,2, ...,m. Since —%—%+Q > (, using the polar coordinate transformation,
J

we have
m _;_, m _Y%_0Q
Ko = nlyzlh Vdy; - l—[f yil, 7 dyi

Eo "inq j=1 YDbilpst

m aji Q9 m
o B N A —
- J I m ¥ 0N
i Jo ML (Q-%-2

Forj:1,since—%—§+Q>Oand—%—%<O,Wehave
J

_ﬁ_Q
I_Im | llh —(Y—'—Q—mQ
k- [ dydyn= [ Wi O ol dva - dydy
gy [max(L, [yi]2 ... [yl D] Ey l—[
_‘LI_Q_mQ m _ﬂ_g
= f |}’1|h o l—[f ij'h ! q]dyjdyl
[yilp>1 j=2 |Y_i|;,<|y||h
%0
—ﬂ—g—mQ m |)’1|1 q 4;
= f |)’1|h v anﬁd)’l
yilp>1 j=2 Q -9 q_,
m—1 m
- - f Iyll_%_%_Qdyl = ki’
h m a; *
(@ -2 = L) Sy @+ QI @-7 -2
Similar fori =2, ...,m — 1, we have
_Y%i_ Q0 0 mn —%—2
K; = | llh o rl |yj|h jdyl dy;-1dyi1dyndy;
E; J#i
2% _0 i1 _Y_o m % _0
4L 0 - _%k_©Q
= f yil, © Hf i, " “dy; 1—[ f yel, © ™ dyidy;
yilp>1 =2 Y Wilaslyily k=i+1 ¥ Vlp<lyily
qwﬂ’l
@+ O hejommi (Q— 2 - 2y
When i = m, similar to the previous step, we show that
Oy . quy,
K, = |ym|h |yJ|h N dyl ym .
[yil>1 1—[ @+ [15 (Q- J)
Then, it yields that
m—1 m a Y
qup(mQ — < — %)
Ci=Ko+Ki+ Y Ki+K,= L1 4
— @+ @-7-7)

This finishes the proof of Corollary 4.2.
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Proof of Corollary 4.3. 1f we take the kernel

K(yl’ eeey Ym) = (47)
L+l + -+ palm

in Theorem 2.1, by a change of variables, we have H? = ?{g’, and then 71;’ can be denoted by

1
7{3}[ B f 0 0 mf1(|x|h)’1) o (Xl ym)dyy - - - dy
g (L+ Iyl + -+ [yml))

Then, we reduce to calculating

Ch = f |y,|{,7dy1 <dy,.
e (1 + |y1|;? -+ |ym|h n

j=1

Actually, this method stems from Benyi and Oh [2], who investigated the one-dimensional case.
Following their method, it is easy to find the higher-dimensional case, as well. For completeness,
we give the details. Employing the polar coordinates and making a change of variables, we have

m —ﬁ——+Q1
Let pJQ = t;, and we have
C3‘me f(1+r1 ) e din
Let us denote the integral on the right by
W 0 0

By making the change of variables ¢, = (1 +¢; +--- + t,,_;) t and performing integration with respect
to dt, we have the following identity:

_a _ 2 _am _ 2
m ]

0 Y eens 0
*"T'"*£+ % 0.,
f f (1+l’1 '+tm_1)t] (1+f1 S ol 1)1—1 L B q di i dt
A+t 4+ +tp)+ L+t + o+ 1) 1] -l
_aw_ 0, Q_“_m_g Q_H_I_Q Q_w_m_g
— (1 + l)_mt 4 qu Q_ldtlm_] m— q qm , q q1 s q qm
0 0 0 o
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Observe that, if we make the change of variables t + 1 = 1/s, we obtain

! I'(a)T (b)
0 I'(a+Db)

\f(uﬁ%WHm:szu—QHm:Bmm:
0

% - q%)/Q > 0. Now, we will
showthatm—(Q—%’”—qg)/Q—'"—(Q—%—q—Qk)/Q > 0 withk =m,m—1, ..., 1. Since —%—§+Q >0

and —% - % < 0, we have

for a,b > 0. According to known conditions, obviously, we have (Q —

—m _ 0 — 9 - o4 Oy 4 p (%4 £
m—Q 9  am _ Q q qk:(k 1)Q+(q+qm)+ +(q+4k)
Q Q Q
— a4 9y (e Oy (@
:(k 1)Q+(q+q) (q +(1k—l) (q+q1)
0
— e @y —a_ 20 ay 0
_(Q q qk-1)+ + (0 q q1)+(q+q) 0
= 0 >
Therefore, if we recall the relationship between the beta and gamma functions, we obtain
oo Q9 (= _ 2
f s - rone g, TCE i+ QIO (3 - £+ 0)/0)
0 I"(m)
and
—a_ 2 Q9
I m Q q q1 . Q q dm
Q 0
am _ Q. am _ Q
MEE)rn7) (eg-fo-n-g oo
= Im—l m — . 5 eeey .
I (m) 0 0 0
By a simple induction argument, we obtain from this recurrence that
_am_ Q _a_ 9 _am_ O _a_ 9
g-u_2 Q- _2 F(m_Q g T Qqul)r(Q qum)'“F(Qqul)
Ilm q q1 q qm —
’ o Q I (m)
a+Q m a; 1
rE)ar(i-4-3)

Then

o {m Q-u-_2 Q—“;m—q%]:wgr(%)ﬂﬁlf(l—%—%)
) : onrr (m)

This finishes the proof of Corollary 4.3.
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5. Further results: Sharp weighted L? estimate for the Hausdorff operator

In this section, we will use the previous results to give the weighted L” estimates for the m-linear
n-dimensional Hausdorff operator on the Heisenberg group.

Corollary 5.1. Assume that the real paramenters q, q;, «, and a; with j = 1,2, ...,m are the same as
in Theorem 3.1. A nonnegative function ® on H" satisfies

4 / m o ¥ 0 .
rly]’ Tt 6rmym L+ 22041
Ch_f f f f - )| |rj‘1 qj 9j dylldy,,ndrldrm<oo
so-1 so-1 |r1|h |7l .

J
(5.1)

Then

| He| o o = Ch,. (5.2)

Lo, IXI OO xLam (H 1) — LI, |x]y)

Proof. By a change of variables, the m-linear n-dimensional Hausdorff operator become
q) (yl >0 ym)
f f |y1|h |ym|h fl(db’ll[,lx) t fm(db,ml;lx)dy] ce dym

We can obtain

H!
@ 121 qmam

Lo @, T )xexLam (B, )—>L‘1(H",|x|"

3

ry,"‘ 6rmym B T
f f f f 11 ﬂrf Ty dydry - dr,
ot Jion g L

=Ch.

This is similar to the proof of Theorem 3.1, so we omit the details. This finishes the proof of
Corollary 5.1.

6. Conclusions

First, in the setting of the Heisenberg group, the n-dimensional fractional Hardy operator has a sharp
weak estimate from L” to L%*. The weak estimate bound is given by

H [ wWo wo (p-1
” al|U’(H”,lxlﬁ)%Lqm(H"Jx&) = Q +y pQ _ Q _,8

Additionally, for the L' case, we have

L
4

Wo

(Q-a)/(Q+5)
Q+ /5)

IH L1 ) L0000 o7y = (
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Second, we derive the sharp bounds for the m-linear n-dimensional integral operator with a kernel
on weighted Lebesgue spaces:

m _Y%_0Q
h = 7 4
[ I— wnm = | | KOy [l Ty dy
LU x|, ¢ )Xo Lam (a1 )— LIH" ) n n L

Finally, as an application, the sharp bounds for Hardy, Hardy-Littlewood-Pdélya, and Hilbert
operators on weighted Lebesgue spaces are obtained. Moreover, we also find the estimate for the
Hausdorff operator on weighted L” spaces:

H!
) 1% qmam

LI, T e xLam I, T - LA )

= ® (031 Ordp) 2y Hrooon
= o o l_[rj : dy,---dy,dry---dr,,.
0 0 se-! se-! |l”1|h "'lrmlh j
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